工程管理专业毕业论文外文翻译

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程技术协调与社会经济建模的公共政策的影响:
交通基础设施管理中的应用
摘要:
持续的基础设施投资不足和显著增长的商业及非商业的交通需求,已经使美国的当前和未来的交通设施消化不良。

显然我们的交通基础设施条件的改善必须建立在更可持续的和积极的方法上,并且满足存在的差距之间的短期和长期需要的承诺。

本文演示了长期投资克服基础设施改造的历史障碍的价值,包括需要积极的政治体系来弥补公共责任的缺陷,以及对交通基础设施的故障造成的社会经济影响的缺乏了解。

而这些过程可以避免即将到来的灾难。

本文提出了一种建模范式,描述了一种系统的制度中,一个长期的交通基础设施建设的建模,多个利益相关者的视角和涉及公共政策的构思。

该方法促进了利益相关者和决策者他们共同的利益和个人决定的协调,实现更多的符合条件的系统目标的整体系统的水准。

为了说明该建模方案的实用性,把它应用到一个桥梁的维修问题中,我们综合讨论了已有的工程实践和社会经济因素,帮助简化基础设施的长期目标与短期需求。

并且我们可以从该系统方法论点到为了基础设施维护采取一种更具前瞻性和协作性的公共政策中获得见解。

2013Elsevier 公司保留所有权利
1.引言
美国的交通基础设施,几十年来一直在恶化。

然而,恶化的过程是缓慢的,更广泛的影响并不总是显而易见。

今天,这种退化过程的影响比以往任何时候都更加明显和不祥,众多的报告表明,各种各样的后果会导致交通基础设施建设的失败。

这些措施包括,增加经济成本的货运拥挤,美国全球竞争力下降,增加了旅行成本和减少旅客的安全等等。

美国土木工程师学会(ASCE)表明,美国现有交通基础设施未能维持经济增长,以及各种各样的解决方案将建立在各级政府确保未来基础设施的正常运转这一条件上(ASCE,2011)。

在应对这一挑战,奥巴马总统已经要求立法者建立一个国家基础设施银行,并批准20亿美元改善国家的交通基础设施的预算。

如果实施基础改善方案失败了,将会导致美国企业和家庭的开支显著加大。

我们需要更好地了解和优先考虑美国的交通基础设施当前维护的需要,这是过去两年半时间里报告得出的结论。

1988年初,全国委员会发表了一片名为“脆弱的基础”应用了超过100000不能满足安全和性能标准的桥(国家公共工程改进委员会,1988)。

这种观点最近在ASCE报告上重新发布,包括一篇题为“我们能否起死回生”,其中得出美国公共基础设施的某些部分“已经处在崩溃的边缘”(ASCE,2009b)。

而在另一份报告中,ASCE(2011)估计,在美国的18%的道路在承载长途汽车时出现容量不足的现象,而Caldwell(2011)进一步强调需要改善美国的基础设施的质量,满足日益增长的需求。

一系列的持续报道中,ASCE发表了一张国家清晰的基础设施图,突出“脆弱”的基础设施作为证据,使得公民和政府机构对美国基础设施系统感到越来越绝望(ASCE,1998,203,2005,2009a,b)。

而且ASCE的基础设施报告卡最近一期(ASCE,2009a)给美国的基础设施评了D级,而美国的基础设施系统至少需要花费2.2万亿美元和5年时间才能使得目前状况达到标准。

建设美国未来报告(建设美国未来教育基金,2011)表明,美国联邦在过去的几十年里,交通基础设施投资占GDP的比例不断减小,现在的投资大致回到了1968连的水平,而那时的美国经济是很落后的。

持续性的基础设施投资不足加上商业和非商业的交通需求增长,使得美国的运输基础设施“停留在上个世纪和全球经济混乱装备不良的时候”,这直接导致美国的基础设施在2005年世界经济论坛中的竞争力排名从第1名落后到第15名(建设美国未来教育基金,2011)。

ASCE预测,2040年如果跟现在的交通基础设施条件和投资模式一样,则会出现几种情况:(1)美国基础设施的不足,将会造成比丢失400000个工作所带来的国民经济更多的损失(2)配套设施的不足,将会导致美国企业只能产生2320亿美元甚至更少的附加值,这远远比预期的要少(3)配套设施的不足,还会导致美国人的总收入不到2520亿元,这些都比预期的要少。

交通基础设施的恶化将会影响到一批高价值的知识型行业,包括商业和医疗行业餐饮和娱乐行业,其中印象最深的是商业(ASCE,2011)。

为了改善交通基础设施建设的现有条件,确保其可行性满足未来需求的增加,需要更多的维修预算款。

我们需要的是一个更可持续和积极的方法,能较好地解决长期和短期需求之间存在的差距,兵客户基础设施条件改善的历史障碍,其中包括政治结构和影响,公共受托责任的缺失,以及对交通基础设施故障造成的社会经济影响的因果关系的认识不足。

美国的交通基础设施条件要想得到改善就必须建立在一个主要模式的转变上。

决策者做决策将不得不从体系角度去看待日益恶化的基础设施的问题,还得考虑到任何可行的和可持续的解决方案必须建立在工程,科学,社会,经济和规范性因素上。

这种模式的转变需要现在立刻动手而不是以后,因为“虽然在经济萧条的时期修复和现代化国家的基础设施可能看起来让人气馁,但无所作为的成本却会成倍的增加”(Caldwell,2011)。

在应对这些需求,我们建议美国的交通基础设施进行建模个管理作为一个系统,由众多的工程,自然,人力和组织组成一个子系统。

基于已在系统文献系统定义的特性(Maier,1998),我们定义了一个系统和系统相互依存的集合,其中每个可以管理和操作独立的目标,就想决策者和相关者,同时他们又承担一个共同的角色。

该子系统和其潜在的动态过程的异质性表明,一个单一的模式是不足以模拟一个系统在系统问题中的所有方面。

此外,固有的子系统之间的相互依存关系表明,尽管决策是有一个子系统独立制作的,但这些决定依旧对其他相互关联的子系统有印象(经常在预料之外)。

因此,我们认为,系统必须通过多个模型建模,并应考虑到这些子系统的相互依存的关系。

为此,本文为运输研究的政策和实践文学背景做出贡献,本文提出了一种系统的建模范式:(1)可以再创建交通基础设施建设的公共政策过程中考虑交叉学科的建模和多方利益相关者的角度(2)可以使不同层级之间相互依存的系统和利益相关者获得更公开的评估,本文介绍了一个例子,说明了在定量方面的长期投资具有避免基础设施缺失的价值。

在这个例子中,系统的建模方式综合(和谐)现有工程实践中精确的中长期目标的社会经济因素和短期直接的需求援助。

将工程背景放入政治的舞台上,讨论的方法不仅提供了行动的理由,还说明了考虑不同或相互冲突的利益相关者视角的需要。

捅死对基础设施维护采取了一种更具前瞻性和协作性的公共政策。

另外提出了一个系统的建模方法,解决了部分的基础设施问题,为了长期的基础设施投资和维护,还提出了克服政治过程中的内在障碍的方案。

本文其余部分的结构如下。

第2部分的重点是克服基础设施投资不足的挑战。

特别是,本届讨论了阻碍美国基础设施长期发展和管理的因素,和随之而来的风险问题。

本文最后讲的是基础设施管理的完整范式一所需要的是更全面的,科学与工程为依据的方法,其中的各种权衡更加透明,系统中不同层次、不同利益相关者之间依存关系的直接评估,会让公众更明了。

第3节给出了一个系统的方法论的基础设施管理,是不同层次间的多个模型细节得到考虑和协调,也反映了不同利益相关者和系统的观点。

该方法使利益相关者和决策者将它们的共同利益和个人决定更好的协调起来,从而实现更多标准水平的系统目标。

本文还提出了一个说明性的例子,系统建模的方案体系应用于桥梁的维护问题。

第4节给出结论,而第5节详细阐述了进一步实现一个更积极的态度,交通基础设施的管理,包括对承诺的设备的落实到位,以确保讨论的建议,短期的考虑不能影响长远的基础设施需求和投资。

2.克服投资不足的挑战
基础设施管理的过程是动态的问题,因为决定经常做出变化,并且通常没有意识到这些决定的影响直至后期阶段。

过往的维修决策往往会影响未来维修选择的程度。

理想情况下,基础设施管理者以整个规划期内潜在风险的评估来权衡,他们想到了自己的维修决策会带来的更广泛的影响。


外,他们也想了解,不仅平均预期的风险来自他们的决定所引起,还有一个特点是发生和后果的高低概率的极端风险。

然而,在现实中,大多数基础设施的维护决策在积极管理长远期的考虑和不同利益相关者的需求方面,以及评估当前决策对未来选择影响方面,都显得毫无价值。

其中有许多原因,这包括:(1)美国政治结构和文化(2)个人主义价值合作的社会文化(3)风险的心理感受(4)公共账户缺乏能力。

这些紧密联系在一起的因素框架成为基础设施管理问题的解决方案,美国的政治和策划指定的过程和框架,往往会阻碍基础设施长期的投资。

大多数当选官员的选举周期较短(例如,单选市长和市议员需要3或4年,当选美国众议院需要大约2年)鼓励和强调有形的短期结果。

长期投资(10年或更多年后)是政治家难以证明和左右的。

基础设施投资,而且,产量效益玩玩很难成分可视化或完全理解。

在某种程度上类似于强大的建筑法规,以防止结构在地震中下落,负面事件的关注以及选举的官员声望难以服众。

同样的,事实上,桥不会失败(并保持通车),不显著或不具有新闻价值的话,选民是不会感激和恰当奖励他们选出的代表的。

因此,这创造了一个一般的态度,基础设施维护“不性感”(ASCE,2009b)。

政客们从建设新的基础设施中获得收益,如果基础设施建设失败,他们也不会失去什么,因为损失会被转移给其他人。

积极的效益与长期投资定期保养和维护,这些大多未见过公众,使他们难以自圆其说。

此外,公众往往不理解积极投资与基础设施的价值,因为他们不理解基础设施的复杂性和基础设施的性能的变化是如何影响到他们的生活(ASCE,2009b)。

最近的报告(ASCE,2009b)表明一个提供基础设施管理的挑战是需要探讨决策者如何能教育公众,使他们主动维护基础设施。

目前,政治制度经常是“由公众情绪的强度所领导”(Kahneman,2011),因此,基础设施的破坏通常先于管理。

如果一个基础设施发生故障,他就会在人们心中成为政治上的重要问题,所谓的可用性启发式引导基础设施管理的决策过程(Kahneman,2011)。

美国政策和政治场景的其他功能,同样阻止长期投资。

美国公司治理结构的另一障碍是其破碎和分散性。

而强大的区域规划常见于欧洲(及其他地方,如澳大利亚),例如,这种治理水平在美国是几乎不存在的。

相反,美国的特点是成千上万个地方政府单位长期竞争项目和税基,而没有想法采取和实施一个更大的基础设施的计划和眼光。

大多数的基础设施项目-桥梁或公路或地铁系统-时候需要地区性的计划,以及区域机制的融资和经营。

在当时政治文化也起着重要的作用。

美国强调小政府特有的政治史,国家的权力和联邦政府资助和领导的质疑。

政客和官员今天制定了关于政府支出价值先验问题的标准(而在私营部门的决策和投资则相反)、此外,提高税收是很难在保守的政治倾向中保持开明的,常常被官员们认为这是政治自杀。

而欧洲,其强有力的中央政府的作用是公认的,在公共基础设施上的投资被看作是一种至关重要的政府职能,美国的政治文化和倾向则在这方面更让人怀疑。

同样,有许多相互竞争的利益和政策领域,争夺有限的公共资金。

有证据表明长期的政策问题和主题(减轻自然灾害、气候变化)可能会黯然失色,尤其在地方一级,有一个主要的预算,消防和警察服务,其他更直接的需求,比如学校。

鉴于这些挑战,一个责任重大的转变将代表所有的决策者和所有的用户对改善交通基础设施建设现状的态度。

仅仅是用自己的工程解决方案是不够的,要懂得在管理和用户方面的变化。

(ASCE,2009a)。

为了提供可持续的筹资机构,所有的用户都必须参与风险基础设施的维护费用(Caldwell,2011)。

这种想法可能会导致基础设施用户的反感,需要重点注意的是,通过把维护作为最后的努力,可能会让用户感受到商业和非商业的风险((例如,更高的车辆维修费用,增加旅行的时间和成本,机会成本的损失)。

此外,拒绝投资基础设施积极维护将增加资金缺口和缺乏基础设施资产的数量,这将使未来改善基础设施的成本成倍增加。

更多的自主维修在财政约束的年代看似困难,却提供了一个对所有利益相关者更好的风险分担机制,并降低了未来成本。

为了确保基础设施管理具有更积极的态度,在各级决策的过程就需要改变。

只要考虑到了各种利益相关者的观点,包括工程,社会,经济,环境,政治和规范性层面,则在系统中的交通基础设施管理会更加有效,更加成功。

这样的方法在下面的部分中有描述。

3.基础设施管理的系统方法论
交通基础设施是一个由许多复杂的异构系统,操作和管理相对独立的子系统,一个子系统中对交通基础设施的决定会对其他互联子系统产生重大的全球影响。

交通基础设施的子系统经过很多,玩玩模棱两可,物理,虚拟组织,社会和经济相互依存的关系连接。

因此,这个基础设施可以被描述为一个系统。

考虑到我们的桥梁基础设施,不仅包括工程结构,同样也有物理环境,商业和非商业的桥梁用户,地方,州,以及联邦以及的决策和政策制定者。

我们无法理解桥梁系统之间的危险连接,其中桥系统嵌入区域社会经济系统是一个巨大的挑战,由1967年Silver大桥倒塌,1994年北岭地震,2007年Minneapolis大桥倒塌证明了,它可以造成明显的直接或间接的社会经济后果。

评估这些基础设施的当前和未来的需求和风险是不容易的任务。

这个过程需要一个方法,使许多型号的审议和协调,在不同的详细程度,反映了不同利益相关者和系统的观点。

这种方法已经被Haimes (2009,2008,2012)和Haimes(2013年-撰写)中提出。

Haimes(2012)介绍了幻影系统模型(PSM)的方法。

为系统的建模提供了更层次的原则和准则。

PSM的方法使建立在系统的建模师一个迭代学习的过程,需要你在多模型运用的前提下,在元级可以通过共享状态变量来协调。

图1说明了构建一个系统的原模型系统的一般原则。

子模型,代表着不同的观点(或子系统)的系统,是由现有的模型和知识数据库组成的。

每个子模型代表问题的不同方面,但每个子模型又是通过一组共享状态变量连接到至少一个其它子模型(共享状态变量的最小数目是一个)。

这个必要条件如果缺失就意味着子系统是独立的,而且可以模拟完全分开。

一个原模型是由子模型通过共享状态变量组成。

共享状态变量时互相关联的子系统的状态变量,并通过它,我们知道初始状态和输入,就可以确定一个系统未来的输出。

共享这样的方式,让他们考虑他们的决定和政策对整个系统的影响)。

在过去的建模努力与大型系统(即作品中的分散控制和优化Haimes,1977;LASDON和schoeffle,1966),共享变量(通常标识为耦合决策方面)提出了一个模型约束优化子系统性能的过程,但Haimes等(2013年撰写中)显示,共享变量对系统将墨盒系统的管理流程是有益的因为他们使子模型代表的不同子系统之间的信息共享。

通过共享状态变量表示,PSM的框架使所有利益相关者和决策者理解和想象他们的共同利益。

因此,PSM框架可能对广大市民非常有益,但目前尚不知道积极主动的维护能带来的好处,因此并不总是支持它传达积极的基础设施管理和沟通风险的好处。

通过使所有的决策只和利益相关者更好地理解和协调个人的决策,实现更多可接受水平的共享状态变量,且系统的总体目标更可能是通过仔细考虑到动态权衡的关系而达到的。

我们提出美国桥梁基础设施相关的一个说明性的例子,来欣赏PSM方法的关联应用于交通基础设施管理。

我们描述了桥梁基础设施作为一种由物理和工程结构系统,以及商业和非商业用户和决策、政策制定者。

对于这个系统,我们要了解不及时或不适当的工程和社会经济影响。

不合时宜和不足的桥梁维修随着时间的增加劣化率越大,从而降低上部结构状况的评价和桥梁承载的能力(参见图2)。

使车辆在规定时间内通行可以减少桥梁承载力,这可以保持我们桥梁长期通行的能力。

桥梁通信你的减少会使路途时间和商业及非商业的用户成本增加,从而对整个地区的支出造成社会和经济风险的影响。

过往的维修决策往往会影响到今后的维修选择可行性的程度。

理想的情况下桥梁管理者想评估在整个规划期的潜在风险和权衡并了解引起他们维修决策更广泛的影响。

此外没他们也想了解,不仅平均预期的风险,而且极端风险都是可能来自他们的决定。

这是一个动态问题,需要随时间变化的权衡的评价,这个问题也需要一个方式方法,从不同角度影响进行综合评估。

因此,我们应用了PSM的方法解决这个问题。

为此,我们通过共享状态变量协调工程,社会和经济模型的观点。

我们认识到,还有其他有价值的建模的观点,但我们认为我们的选择足以说明PSM方法的基础设施管理
的有效性。

我们认识到,每三个建模的观点代表了整个系统的一个部分,并认为这三个建模的角度通过共享状态变量能更好地理解系统元级的结果,最终制定公共政策的基础是科学技术和社会经济协调的问题。

图2.鉴于维修不足或不及时,桥的需求增加而其承载力随着时间推移而降低。

这会导致社会和经济风险
本文的讨论范围内涉及了桥梁维修问题的方法过程的详细描述,但我们提出的说明行示例的三个子模型代表的工程,由系统的桥系统的社会和经济层面组成。

在这个例子中,工程子模型是通过三种基本状态变量,即,上层建筑条件评级(xeng,1),桥额定负荷(xeng,2),和桥交通容量(xeng,3)来标识。

社会子模型是通过两个基本状态变量,即年平均日非商业交通过桥(XSOC,1)和桥梁同行能力(XSOC,2)。

经济子模型是通过三个重要状态变量,即年平均每日商业交通桥(xecon,1),年平均日商业负载在桥运输(xecon,2),和桥梁通行能力(xecon,3)。

这三个子模型将在第3.1.1表示中更精确,为便于这个例子的分析,这些基本变量表示为线性时不变的状态空间方程,其中X代表状态变量,U代表输入/决定。

在这个例子中,参数是从现有的数据库填充。

此外,xeng\xsoc\xecon-英镑,这表明一个共享状态变量的存在。

工程子模型:
其中,K为桥梁检测周期(K=2年),xeng,1(K)是上层建筑条件登记(这个变量的范围从0到9,9代表一个新的桥梁),xeng,2(K)是桥梁荷载登记,xeng,3(K)为桥梁的通行能力(即年平均日车辆可以过桥的最大数目),ueng,1(K)是桥梁维修投资[$],xeng,i(K)是正态分布的白噪声的零均值,i=1,2,3.
参数aeng=0.985表示超过2年的时间在桥梁状态评估的基础上桥的年龄估计的变化,降水量,除冰的频率,以及冻融循环次数。

此参数的值是Chase等人对桥梁感兴趣的结果(1999)。

参数beng=10A7指的是根据2年前规划期间的维修投资桥梁状态等级的变化。

目前还没有统一的数据收集工作,参数只能估计,这样的计算可能再桥梁维修数据收集工作提出时得到改变。

我们承认,这个参数将取决于许多因素,包括桥的类型和大小,但对这个说明性的例子,我们假设一个上千万美元维护投资将增加桥梁的上部结构状况等级1点。

参数ceng=1.37涉及桥梁状态等级的桥梁承载能力,其值是由Chase和Gaspar所取(2000)。

参数deng=5.037A103转换成桥梁承载能力内的车辆在一天内过桥的数量。

在这个说明性的例子中,按照以下公式来计算一个有趣的桥梁参数:
社会子模型:
其中呢K是桥梁检测周期(K=2年),XSOC,1(K)是年平均日非商业交通过桥,XSOC,2(K)是桥梁通行能力(即,年平均每天的车辆,可以跨桥的最大值),没过奥委会,1(K)是年平均日商业交通桥(在经济模型中,这是一个状态变量xecon,1(K+1))。

有趣的桥位于弗吉尼亚州的汉普顿路地区。

根据美国人口普查年人口估计,在弗吉尼亚海滩纽波特斯都市区从1999到2009(美国人口普查-人口估计),我们计算平均年度人口增加的面积为0.76%。

假设这个速率是恒定的,并假设没有符合效应,超过2年平均人口(K)是1.52%。

在这个模型中,我们假设的非商业性的桥梁交通的增长是人口增长比率的比例,因此,参数a=1.0152(现有人口1.52%人口的增加=101.52%或1.0152,100%)。

经济子模型:
其中K是桥梁检测周期(K=2年),xecon,1(K)是年平均日商业交通上桥,xecon,2(K)是年平均日商业交通桥(这是一个社会模式中的状态变量XSOC,1(K+1))。

参数aecon和becon 是有汉普顿路区域规划区委员会(2007)进行的一项地区性货运的一项研究估计。

本报告提供了2004至2035年内的入境和处境货运估计(以吨位和美元价值计算)。

这三十年中,在汉普顿路地区货运量预计约4.88%年增长,据吨位。

我们假设桥运货运每年的增长率和所有商业流量通过该地区的增长率相同,因此,假设没有复合效应,2年增长率为9.76%(2A4.88%)。

从相同的研究中得出,aecon=1.0976(现有吨位+增加9.76%,109.76%或1.0976吨=100%)。

Parameter=66055表示商品平均负载(磅)传送一个单一的商业运输。

3.1.2说明性的例子
考虑下面的桥梁维修问题。

维修决策每2年一次(K=2),一个决策者要确定最佳维修方案长达20年时间(见表1)。

决策者有5种可供选择的维护策略,如表1所示。

(这些维护政策在这个时候不是基于实际的参考点(因为对特定的桥梁养护费用不一致的数据集),仅仅是说明性的例子。

据预计,这些值将被桥梁养护投资收集数据中更精准、更现实的值代替)。

从工程的角度来看,我们想最大限度的发挥上层建筑状况评级xeng,1(K)和额定负载xeng,2(K),同时最大限度地减少维护投资的净现值(NPV)。

每个K的长度为2年,并且T=10.我们假设x(K)的正态分布,纯粹的随机均值为0,方差为0.01。

我们还假设初始状态xeng,1(0)是正态分布,并且xeng,1(0)=6.我们要解决一个序列多目标优化过程的问题,其中在现阶段K做出的决定会影响阶段K+1,K+2..,TA1.有关这一提法是如何解决的详细信息,请参阅(Haimes,2009)的多目标风险影响评估方法的篇章。

这里我们只提出了本实施例子的结果(参见图3和图4)。

这是每一个方位的超越概率相关的损坏程度相应的范围,而不是简单地考虑对该桥的条件评级的平均预期值,我们队探索一系列条件期望值函数更感兴趣。

因此,与规划期结束的利益维护策略相比,我们不仅着眼于平均上层建筑的条件评级(图3)和20年内的净现值法,还考虑了低范围内的上层建筑的条件评级期望值(图4),是指具有低超越概率和后果严重的风险函数(更多信息可参考Haimes2009第8章)。

相关文档
最新文档