广东省2011年中考数学压轴题复习(18道题 答案)

合集下载

2011中考数学压轴题精析

2011中考数学压轴题精析

⑵当该矩形的长为 a 时,它的周长最小,最小值为 4 a . 【考点】画和分析函数的图象, 配方法求函数的最大(小)值. 【分析】⑴将 x 值代入函类数关系式求出 y 值, 描点作图即可. 然后分析函数图像.
2 ⑵仿⑴③ y 2( x ) = 2 ( x ) (
a x

a 2 ) x
四边形 AMNP
﹣S△PAM=S△DPN+S
梯形 NDAM
﹣S△PAM,即可求得关于 t 的二次函数,列方程
即可求得 t 的值; (3)根据图形,即可直接求得答案. 解答:解: (1)把 x=0,y=0 代入 y=x2+bx+c,得 c=0,
-1-
再把 x=t,y=0 代入 y=x2+ห้องสมุดไป่ตู้x,得 t2+bt=0, ∵t>0, ∴b=﹣t;
y x
1 ( x 0)的最小值为 2. x 1 1 2 1 1 1 2 = ( x) ( ) = ( x )2 ( )2 2 x 2 x x x x x x
③ y x
=( x
1 2 ) 2 x
当 x
1 1 =0,即 x 1 时,函数 y x ( x 0) 的最小值为 2. x x
如图 1,当 0 t 4 时, AP 4 3 3t,AQ 4 t.
S
1 1 3 2 AP· AQ 4 3 3t 4 t t 8 3 . 2 2 2


如图 2,当 t ≥ 4 时, AP 3t 4 3 , AQ 4 t ,
1 (x >0)的最小值. x

解决问题:⑵用上述方法解决“问题情境”中的问题,直接写 答案.

2011年广东中考数学压轴题

2011年广东中考数学压轴题

2011年广东中考数学压轴题1.(11年广东)22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.2.(11年广东茂名)25. 如图,在平面直角坐标系xoy 中,已知抛物线经过点A(0,4),B(1,0),C (5,0),抛物线对称轴l 与x 轴相交于点M .(1)求抛物线的解析式和对称轴;(3分)(2)设点P 为抛物线(5>x )上的一点,若以A 、O 、M 、P 为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出....点P 的坐标;(2分) (3)连接AC .探索:在直线AC 下方的抛物线上是否存在一点N ,使△NAC 的面积最大?若存在,请你求出点N 的坐标;若不存在,请你说明理由.(3分)3.(11年广东河源)21.如图9,已知线段AB 的长为2a ,点P 是AB 上的动点(P 不与A ,B 重合),分别以AP 、PB 为边向线段AB 的同一侧作正△APC 和正△PBD .(1)当△APC 与△PBD 的面积之生取最小值时,AP=___________;(直接写结果)(2)连结AD 、BC ,相交于点Q ,设∠AQC=α,那么α的大小是否会随点P 的移动面变化?请说明理由;(3)如图10,若点P 固定,将△PBD 绕点P 按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)4.(11年广东河源)22.如图11,已知抛物线243y x x =-+与x 轴交于两点A 、B ,其顶点为C . 第25题图(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;(2)求证:△ABC是等腰直角三角形;(3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.5.(11年广东广州)24.(14分)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD 的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1- S2为常数,并求出该常数。

中考数学压轴题100题精选及答案(全)

中考数学压轴题100题精选及答案(全)
【013】如图,抛物线经过 三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作 轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与 相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得 的面积最大,求出点D的坐标.
【014】在平面直角坐标中,边长为2的正方形 的两顶点 、 分别在 轴、 轴的正半轴上,点 在原点.现将正方形 绕 点顺时针旋转,当 点第一次落在直线 上时停止旋转,旋转过程中, 边交直线 于点 , 边交 轴于点 (如图).
②当点 在线段 上时(如图3),是否存在点 ,使 为等腰三角形?若存在,请求出所有满足要求的 的值;若不存在,请说明理由.
【006】如图13,二次函数 的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为 。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(3)第(2)问中的一次函数的图象与 轴、 轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积 与四边形OABD的面积S满足: ?若存在,求点E的坐标;
若不存在,请说明理由.
【017】如图,已知抛物线 经过 , 两点,顶点为 .
⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.
【016】如图9,已知正比例函数和反比例函数的图象都经过点 .
(1)求正比例函数和反比例函数的解析式;

中考数学---几何选择填空压轴题精选1

中考数学---几何选择填空压轴题精选1

中考数学---几何选择填空压轴题精选1一.选择题:1.如下图1,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A. 1个B. 2个C. 3个D. 4个2、如上图2,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个3.如上图3,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③ B.②④ C.①④ D.②③4.如下图1,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B. C. D.5、如上图2,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个6.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下图1,下列结论:①(BE+CF)=BC;②S△AEF ≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个7.如上图2,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD =S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A.①④⑤B.①②④C.③④⑤D.②③④8.如上图3,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE 交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤9.如下图1,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④10.正方形ABCD、正方形BEFG和正方形RKPF的位置如上图2所示,点G在线段DK上,正方形BEFG 的边长为4,则△DEK的面积为()A. 10B. 12C. 14D. 16二.填空题1.如下图1,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形, 图4中有30个菱形…,则第6个图中菱形的个数是 个.2.如下图2,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .3.如下图1,已知Rt △ABC 中,AC=3,BC=4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,C 1A 2,…,则CA 1= ,= .4、如上图2,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ﹣1在射线OB 上, 且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ﹣1B n ﹣1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ﹣1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ﹣1A n B n ﹣1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面为 ; 面积小于2011的阴影三角形共有 个. 5、如下图1,已知点A 1(a ,1)在直线l :上,以点A 1为圆心,以为半径画弧,交x 轴于点B 1、B 2,过点B 2作A 1B 1的平行线交直线l 于点A 2,在x 轴上取一点B 3,使得A 2B 3=A 2B 2,再过点B 3作A 2B 2的平行线交直线l 于点A 3,在x 轴上取一点B 4,使得A 3B 4=A 3B 3,按此规律继续作下去, 则①a= ;②△A 4B 4B 5的面积是 .6、如下图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有.7、如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为.8、如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于.9.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD =15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.中考数学---几何选择填空压轴题精选1答案一.选择题:1、解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC ∴EC=EJ,∴△DJE≌△ECF ∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF ∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.故选C.(第5题图)2、解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为X,则易求出GE=EC=2﹣X 因此,S△AGC =SAEC﹣SGEC=﹣+x=﹣(x2﹣2x)=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.故选C.3、解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣(∠BGD+∠EGF)=180°﹣(∠BGD+∠BGC),=180°﹣(180°﹣∠DCG)÷2=180°﹣(180°﹣45°)÷2=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,∴S△CDG =S▭DHGE.故选D.4、解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.5、解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;(见上图)④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形;∴BN=PB=PC,正确.故选D.6、解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF =AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC =×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF =S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.7、解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD >S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选:A.8、解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE :S△BCG=(x+x):x=,此结论正确;故正确的结论有①②⑤.故选C.9、解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(上图2)(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,(上图3)∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,(见下图2)可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.10、解:如下图1,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE =S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=4×4=16 故选D.二.填空题:1、解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.2、解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.3、解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.4、解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.5、解:如图所示:①将点A1(a,1)代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.6、解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的是①②④.7、解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n﹣1故答案为()n﹣1.8、解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,(见上图3)同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故答案为:.9、解:如图,连接EF;∵△ADF与△DEF同底等高,∴S△ADF =S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD =S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.。

2011中考数学压轴题选精选

2011中考数学压轴题选精选

10.星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为 30 米的篱笆 围成 .已知墙长为 18 米(如图所示) ,设这个苗圃园垂直于墙的一边的长为 x 米. (1)若平行于墙的一边的长为 y 米,直接写出 y 与 x 之间的函数关系式及其自变量 x 的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于 88 平方米时,试结合函数图像,直接写出 x 的取值范围. 18 米 墙 苗圃园
a A O
20 40 80
t(h)
7.小华观察钟面(图 1) ,了解到钟面上的分针每小时旋转 360 度,时针毎小时旋转 30 度.他为了进一步 探究钟面上分针与时针的旋转规律,从下午 2 : 00 开始对钟面进行了一个小时的观察.为了探究方便,他 将分针与分针起始位置 OP(图 2)的夹角记为 y1,时针与 OP 的夹角记为 y2 度(夹角是指不大于平角的 角) ,旋转时间记为 t 分钟.观察结束后,利用获得的数据绘制成图象(图 3) ,并求出 y1 与 t 的函数关系 式:
少要留够 0.5 米宽的平直路面,以方便同学们参观学习.当(1)中 S 取得最值时,请问这个设计是否可 行?若可行,求出圆的半径;若不可行,请说明理由. 围墙 A O1 B O2 C D
14.王伟准备用一段长 30 米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为 a 米, 由于受地势限制,第二条边长只能是第一条边长的 2 倍多 2 米. (1)请用 a 表示第三条边长; (2)问第一条边长可以为 7 米吗?请说明理由,并求出 a 的取值范围; (3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,请说 明理由. 15.李明在小岛上的 A 处,上午 8 时测得在 A 的北偏东 60º的 D 处有一艘轮船,9 时 20 分测得该船航行 到北偏西 60º的 C 处,9 时 40 分测得该船到达位于 A 正西方 5 千米的港口 B 处,如果该船始终保持匀速 直线运动,求: 北 (1)A、C 之间的距离; (2)轮船的航行速度. D

2011年全国各地中考数学压轴题专集答案

2011年全国各地中考数学压轴题专集答案

2011年全国各地中考数学专集答案三、反比例函数1.解:(1)作AM⊥x轴于M,BN⊥x轴于N,设AM交OB于点E则S△AOM=S△BON∴S△AOE=S梯形BEMN,∴S△AOB=S梯形BAMN由题意知,A(a,-4a),B(2a,-2a)∴AM=-4a,BN=-2a,MN=-a∴S△AOB=12(-4a-2a)(-a)=3 ·······································································4分(2)作BE⊥x轴于E∵四边形ABCD为正方形,∴BC=CD,∠BCD=90°∴∠BCE+∠OCD=90°又∠BCE+∠EBC=90°,∴∠EBC=∠OCD∴Rt△EBC≌Rt△OCD,∴BE=CO又A(a,-4a),B(2a,-2a),点C在x轴上,点D在y轴上∴C(a,0),D(0,-2a),∴-2a=-a分2又∵点P在反比例函数=-2x(x<0)图象上,且纵坐标为53∴P(-65,53)把x=-65代入y=x+2,得y=45,∴EM=45S△EOF=S△AOF-S△AOE=12×2×53-12×2×45=1315 ··················································4分(2)以AE、EF、BF为边的三角形是直角三角形理由如下:由题意知△AOB 是等腰直角三角形,则△AME 又-2<a <0,0<b <2,AM =2-(-a)=2+a∴AE 2=(2AM)2=2a2+8a +8而BN =2-b ,∴BF 2=(2BN)2=2b2-8b +8PE =PM -EM =PM -AM =b -(2+a)=b -a -2又ab =-2,∴EF 2=(2PE)2=2a2+2b2+8a -8b ∵|a|≠|b|,∴AE ≠BF又(2a2+8a +8 )+(2b2-8b +8)=2a 2+2b2+8a -8∴AE 2+BF 2=EF 2故以AE 、EF 、BF 为边的三角形是直角三角形 ···················································· 9分3.解:(1)∵y =3,∴3=63x∴x =2 3∴a =33+23=5 3 ···················································································· 2分 (2)①∵tan ∠AOB =333=33,∴∠AOB =30° 又∵OA =OB ,∴当α=30°时,点B 的坐标为(-33,-3)∴k =(-33)(-3)=9 3 ················································································ 4分 ②能 ··········································································································· 5分 ∵A (-33,3),OA =OB ,∴OB =OA 将△OAB 绕点O 按逆时针方向旋转α由①知反比例函数为y =93 x,若点B 在则(-6cos α)(-6sin α)=93,即sin αcos α∵0°<α<90°,sin α1-sin 2α=34整理得:16sin 4α-16sin 2α+3=0,∴sin 2α∴sin α=1 2或sin α= 32,∴α=30°或α=当α=30°时,点A 在x 轴上,舍去当α=60°时,点A 坐标为(-33,-3)∴α=60° ········································图34.解:(1)过点A 分别作AM ⊥y 轴于M ,AN ⊥x 轴于N ,如图1∵△AOB 是等腰直角三角形,∴AM =AN ∴设点A 的坐标为(a ,a )∵点A 在直线y =3x -4上,∴a =3a -4,解得a =2 ∴A (2,2) ················································· 1分∵反比例函数y =kx(x >0)的图象经过点A∴2=k2,∴k =4 ············································ 2分∴反比例函数的解析式为y =4x·························· 3分(2)∵A (2,2),∴AO 2=22+22=8把x =0代入y =3x -4,得y =-4 ∴C (0,-4),∴OC =4在Rt △COD 中,CD 2=OC 2-OD 2 ① 在Rt △AOD 中,AD 2=OA 2-OD 2 ②①-②,得CD 2-AD 2=OC 2-OA 2=16-8 ··········· 7分 (3)①若∠P AQ =90°,AP =AQ ,如图2连接BQ在△AOP 和△ABQ 中∵AO =AB ,∠OAP =∠BAQ =90°-∠P AB ,AP =AQ ∴△AOP ≌△ABQ ,∴∠ABQ =∠AOP =45° 又∠ABO =45°,∴∠OBQ =90°,即QB ⊥OB ∵A (2,2),∴B (4,0)把x =4代入y =4x,得y =1∴Q 1(4,1) ················································· 8分 ②若∠AQP =90°,AQ =PQ ,如图3过A 作AC ⊥x 轴于C ,过Q 分别作QD ⊥AC 于D ,QE ⊥x 轴于E 在Rt △ADQ 和Rt △PEQ 中∵AQ =PQ ,∠AQD =∠PQE =90°-∠DQP ∴Rt △ADQ ≌Rt △PEQ ,∴AD =PE ,DQ =EQ设Q (m ,4 m ),则OE =m ,CE =DQ =EQ =4m由OC +CE =OE ,得2+ 4m=m ,∴m =1± 5∵m >0,∴m =1-5 不合题意,舍去,∴m =1+ 5 ∴Q 2(5+1,5-1) ····································10分 ③若∠APQ =90°,P A =PQ ,如图4过A 作AC ⊥x 轴于C ,过Q 作QD ⊥x 轴于D在Rt △ACP 和Rt △PDQ 中∵P A =PQ ,∠APC =∠PQD =90°-∠DPQ∴Rt △ACP ≌Rt △PDQ ,∴AC =PD ,CP =DQ设Q (n ,4 n ),则OD =n ,CP =DQ =4n,PD =AC =2由OC +CP +PD =OD ,得2+ 4n+2=n ,∴n =2±2 2∵n >0,∴n =2-22 不合题意,舍去,∴n =2+2 2∴Q 3(22+2,22-2) ······························································· 12分 综上所述,在反比例函数的图象上一共存在三个符合条件的点Q ,其坐标分别为: ∴Q 1(4,1),Q 2(5+1,5-1),Q 3(22+2,22-2)5.解:(1)∵反比例函数y =4-2mx(x >0)的图象在第四象限 ∴4-2m <0,∴m >2 ···································································· 2分 (2)∵点A (2,-4)在反比例函数y =4-2mx的图象上 ∴-4=4-2m2,解得m =6 ····························································· 4分 ∴反比例函数为y =-8x过点A 、B 分别作AM ⊥OC 于点M ,BN ⊥OC 于点N ∴∠BNC =∠AMC =90°又∵∠BCN =∠ACM ,∴△BCN ∽△ACM ∴BNAM=BCAC∵BCAB=1 3,∴BCAC = 1 4 ,即BNAM =1 4∵AM =4,∴BN =1∴点B 的纵坐标是-1 ············································∵点B 在反比例函数y =-8x的图象上,∴当y =-1时,x =8∴点B 的坐标是(8,-1)······························································ 7分 ∵一次函数y =kx +b 的图象过点A (2,-4)、B (8,-1)∴⎩⎪⎨⎪⎧2k +b =-48k +b =-1 解得⎩⎪⎨⎪⎧k =12b =-5∴一次函数的解析式是y =12x -5 ····················································· 8分(3)0<x<2或8<x<5+41 ····························································· 10分6.解:(1)k =1×2=2 ·················································································· 2分(2)当k >2时,如图1,点E 、F 分别在P 点的右侧和上方作EC ⊥x 轴于C ,作FD ⊥y 轴于D ,EC 与FD 相交于点G ,则四边形OCGD 为矩形 ∵PF ⊥PE∴S △PEF=1 2 PE ·PF = 1 2 ( k 2 -1)( k -2)= 14k 2-k+1 ··············∵四边形PFGE 为矩形,∴S △GEF=S △PEF S △OEF=S 矩形OCGD-S △GEF-S △ODF-S △OCE=k 2 ·k -(1 4 k 2-k +1)-k = 1 4k2-1 ·························· 5分 ∵S △OEF =2S △PEF ,∴ 1 4 k 2-1=2( 14k 2-k+1)解得k =2或k =6∵k =2时,E 、F 重合,∴k =6∴E 点坐标为(3,2) ········································· 6分 (3)存在点E 及y 轴上的点M ,使得△MEF 与△PEF 全等①当k <2时,如图2,只可能△MEF ≌△PEF 作FH ⊥y 轴于H ,由△FHM ∽△MBE 得:BMHF=EMMF∵HF =1,EM =EP =1-k2,MF =PF =2-k∴ BM 1 = 1-k 22-k ,∴BM =12··································· 7分在Rt △BME 中,由勾股定理得:EM 2=BE 2+BM 2 ∴(1-k 2 )2=(k 2)2+(1 2)2,解得k =3 4此时E 点坐标为(38,2) ···································· 8分②当k >2时,如图3,只可能△MFE ≌△PEF 作FQ ⊥y 轴于Q ,由△FQM ∽△MBE 得:BMQF=EMMF∵QF =1,EM =PF =k -2,MF =PE =k2-1BM 1= k -2k2-1,∴BM =2 ······································ 9分 在Rt △MBE 中,由勾股定理得:EM 2=BE 2+BM 2∴(k -2)2=(k 2)2+22,解得k =0(不合题意,舍去)或k =163此时E 点坐标为(83,2)综上所述,符合条件的E 点坐标为(3 8,2)和(83,2) ······················ 10分图37.解:(1)∵点B (2,1)在曲线y =mx(x >0)上∴m =1×2=2 ··············································································· 1分 设直线l 的解析式为y =kx +b ∵直线l 经过点A (1,0),B (2,1)∴⎩⎪⎨⎪⎧k +b =02k +b =1 解得⎩⎪⎨⎪⎧k =1b =-1 ∴直线l 的解析式为y =x -1 ··························································· 4分 (2)∵点P (p ,p -1)在直线y =2上∴p -1=2,即p =3,∴P (3,2)把y =2分别代入y =2 x和y =- 2x,得x =1和x ∴M (1,2),N (-1,2)∴PM =2,PN =4,P A =22,PB = 2∴PMPN=PBP A=1 2,又∵∠BPM =∠APN ∴△PMB ∽△PNA ·····································(3)存在∵点P (p ,p -1)(p >1),∴点P 在直线l 上∵点P (p ,p -1)(p >1),∴M 、N 两点的纵坐标都为p -1 把y =p -1分别代入y =2 x和y =- 2 x ,得x =2 p -1和x =-2 p -1∴M (2 p -1,p -1),N (-2p -1,p -1)∵S △AMN=4S △APM,△AMN 和△APM 等高,∴①当1<p<2时,点P 在点M 的左侧MN =4p -1,PM =2p -1-p∴4p -1=4(2p -1-p)整理得p2-p -1=0,解得p =1±52∵1<p<2,∴p =1-52不合题意,舍去 ∴p =1+52·············································②当p >2时,点P 在点M 的右侧 MN =4p -1,PM =p -2p -1∴4p -1=4(p -2p -1)整理得p2-p -3=0,解得p =1±132∵p>2,∴p=1-132不合题意,舍去∴p=1+132··············································································14分综上所述,存在实数p=1+52或p=1+132,使得S△AMN8.解:(1)点P在线段AB上,理由如下:∵点O在⊙P上,且∠AOB=90°∴AB是⊙P的直径∴点P在线段AB上(2)过点P作PP1⊥x轴,PP2⊥y轴由题意可知PP1、PP2是△AOB的中位线故S△AOB=12OA·OB=12×2PP1·2PP2=2PP1·PP2∵P是反比例函数y=6x(x>0)图象上的任意一点∴PP1·PP2=6∴S△AOB=2PP1·PP2=12(3)连接MN,则点Q在线段MN上,且S△MON=S△AOB=12∴OA·OB=OM·ON,即OAOM=ONOB又∵∠AON=∠MOB,∴△AON∽△MOB ∴∠OAN=∠OMB∴AN∥MB9.解:(1)∵点E、F在函数y=kx(x>0)的图象上,∴设E(x1,kx1)(x1>0),F(x2,kx2)(x2>0) ·································· 1分∴S1=12·x1·kx1=k2,S2=12·x2·kx2=k2 ··················∵S1+S2=2,∴k2+k2=2,∴k=2 ·················· 4分(2)∵四边形OABC为矩形,OA=2,OC=4设E(k2,2),F(4,k4) ······························· 5分∴BE=4-k2,BF=2-k4 ······························· 6分∴S△BEF=12(4-k2)(2-k4)=116k2-k+4 ·········· 7分S△OCF=12×4×k4=k2,S矩形OABC=2×4=8 ········ 8分∴S四边形OAEF=S矩形OABC-S△BEF-S△OCF=8-(116k2-k +4)-k 2=-1 16 k 2+ k2 +4=- 116( k -4)2+5 ···················· 9分 ∴当k =4时,S 四边形OAEF=5,∴AE =2当点E 运动到AB 的中点时,四边形OAEF 的面积最大,最大值是5 ······ 10分10.解:(1)∵y =(3-m)x2+2(m -3)x +4m -m2=(3-m)(x2-2x +1)+4m -m2-3+m=(3-m)(x -1)2-m2+5m -3∴A (1,-m2+5m -3) ································································ 1分∵点A 在双曲线y =3x上,∴1×(-m2+5m -3)=3解得m =2或m =3∵二次项系数3-m ≠0,∴m ≠3∴m =2,A (1,3) ····································································· 2分 ∵直线y =mx +b 经过点A ,∴2×1+b =3,∴b =1 ···························· 3分 ∴直线AB 的解析式为y =2x +1 ····················································· 4分 (2)由y =2x +1,可得B (0,1),C (-1 2,0)将直线AB 绕点O 顺时针旋转90°,得点B 的对应点为D (1,0),点C 的对应点为E (0,12)可得直线DE 的解析式为y =-1 2 x +12············································· 5分由 ⎩⎪⎨⎪⎧y =2x +1y =- 1 2 x +1 2得两直线交点为G (- 1 5,3 5) ····························· 6分 可得DE ⊥BC ,BD =2,BG =55∴sin ∠BDE =BGBD=OBAB=1010······················································ 8分 (3)N 1(5,1),N 2(-3,1) ····················································· 10分 解答过程如下(本人添加,仅供参考)连接AF ,易得F (3,1),AF =22,∠AFB =MF =6+1-3=4,当点N 在点F 右侧时,则∠AFB =∠F AN +∠∵∠AMF +∠ANF =45°,∴∠F AN =∠AMF 又∠AFN =∠AFM ,∴△AFN ∽△MF A ∴AFNF=MFAF,即22NF=422,∴NF =2 ∴N 1(5,1)由抛物线的对称性可得,当点N 在点F11.解:(1)根据反比例函数图形的对称性可知点∵∠BAC =60°,AB =4,∴∠BON =∴在△BON 中,ON=OB cos60°=1,∴点B 的坐标为(1,3),点A ∵点B 在直线y =mx 和双曲线y =k x∴m =31=3,k =1×3= 3 (2)∵∠QON +∠NOP =90°,∠MOP +∴∠QON =∠MOP又∵∠OMP =∠ONQ =90°,∴△∴MPQN=OMON,即xQN=3 1,∴QN 在Rt △PCQ 中,PC =1-x ,QC =33x ∴L =PC 2+QC 2=43x 2+4即L 与x 的函数关系式为L =43x 2+4(-1≤x ≤1) (3)S △PQC=1 2 PC ·QC = 1 2 ( 1-x )(3 3 x +3)=32整理得x2+2x =0,解得x 1=0或x 2=-2此时点P 的坐标为(0,-3)或(-2,-3)12.解:(1)在y =ax +1中,令y =0,得x =-1a;令x =0,得y =1∴A (-1a,0),B (0,1)∴S △AOB=1 2 ×|-1 a |×1=32∴a =±33················································································ 1分 ①当a =33 时,直线的解析式为y =33x +1 ∵点C (-23,m )为直线与双曲线在第三象限的交点 ∴k >0,m<0,且k 、m 满足⎩⎪⎨⎪⎧m =33×(-23)+1m =k-23解得:⎩⎨⎧k =23m =-1∴a =33,m =-1,k =2 3 ·························································· 4分 ②当a =-33 时,直线y =-3 3 x +1经过一、二、四象限,与双曲线y =kx不可能在第三象限有交点∴a =-33不合题意,舍去 ···························································· 5分综上所述,a =33,m =-1,k =2 3 (2)由(1)知,A (-3,0),B (0,1∴OA =3,OB =1,∴∠OBA =60°由作图可知,点D 在y ①当点D 在y 轴负半轴上时作CE ⊥y 轴于E ,则E (0,-1),∴∵△BCD 为等边三角形,∴DE =BE =∴OD =3,∴D 1(0,-3) ············ 7②当点D 在第二象限时∵∠BCD =∠OBA =60°,∴DC ∥y 轴 ∴点D 的横坐标为-2 3∵B (0,1),C (-23,-1),∴BC ∴DC =4,∴点D 的纵坐标为3 ∴D 2(-23,3)综上所述,D 点的坐标为(0,-3)或(-23,3) ··························· 9分13.解:(1)由⎩⎪⎨⎪⎧y =2x +8y =kx得2x2+8x -k =0 ∴x 1+x 2=-4,x 1x 2=-k 2由⎩⎪⎨⎪⎧x 1+x 2=-4x 1-x 2=2 解得x 1=-1,x 2=-3 ∴k =-2x 1x 2=-6 ······································································· 3分(2)由(1)知,反比例函数为y =-6x把x 1=-1,x 2=-3分别代入上式,得y 1=6,y 2=2 ∴A (-1,6),B (-3,2)设一次函数y =2x +8的图象与x 轴交于点C ,则C (-4,0)∴S △AOB=S △AOC-S △BOC=1 2 ×4×6-12×4×2 =8 ················································································ 6分(3)设过点A 且与OB 平行的直线与x 轴交于点D ,与抛物线交于点E分别过A 、B 、E 作x 轴的垂线,垂足分别为AA 1、BB 1、EE 1 ∵B (-3,2),∴OB =(-3)2+22=13∵AD ∥BO ,∴∠ADA 1=∠BOB 1∴sin ∠BOB 1=2 13 ,cos ∠BOB 1=313∵AD ∥BO ,∴∠ADA 1=∠BOB 1∴sin ∠ADA 1=sin ∠BOB 1=2 13 ,cos ∠ADA 1=cos ∠BOB 1=313∴AD = AA 1sin ∠ADA 1=313,A 1D =AD ·cos ∠ADA 1=9由题意,AE =13,∴ED =213∴E 1D =ED ·cos ∠ADA 1=6,EE 1=ED ·sin ∠ADA 1=4 OE 1=A 1D -A 1O -E 1D =9-1-6=2∴E (2,4) ··············································································· 8分 设所求抛物线的解析式为y =ax2+bx +c ,则: ⎩⎪⎨⎪⎧a -b +c =69a -3b +c =24a +2b +c =4解得:a =-8 15,b =-2 15,c =32 5∴抛物线的解析式为y =- 8 15x2- 2 15 x +325······································ 10分14.解:(1)设直线得⎩⎨⎧b =232k +b =0 解得⎩⎨⎧k =-3b =23∴直线AB 的解析式为y =-3x +23将D (-1,a )代入y =-3x +23,得a =33∴D (-1,33),将D (-1,33)代入y =mx中,得m =-33∴反比例函数的解析式为y =-3 3x(2)解方程组得⎩⎪⎨⎪⎧y =-3x +23y =-33x得⎩⎨⎧x 1=3y 1=- 3 ⎩⎨⎧x 2=-1y 2=33 ∴点C 坐标为(3,-3)过点C 作CH ⊥x 轴于点H 在Rt △OMC 中,CH =3,OH =3∴tan ∠COH =CHOH=33,∴∠COH =30° 在Rt △AOB 中,tan ∠ABO =AOOB=232=3∴∠ACO =∠ABO -∠COH =30° (3)如图,∵OC ′⊥AB ,∠ACO =30°∴α=∠COC ′=90°-30°=60°,∠BOB ′=α=60° ∴∠AOB ′=90°-∠BOB ′=30° ∵∠OAB =90°-∠ABO =30° ∴∠AOB ′=∠OAB ,∴AB ′=OB ′=2故当α为60度时OC ′⊥AB ,此时线段AB ′的长为15.解:(1)∵E (2,4),∴k =2×4=8∵点F 的横坐标为6,点F 的纵坐标为8 6=43∴F (6,43)设经过O 、E 、F 三点的抛物线的解析式为y =ax2+bx∴⎩⎪⎨⎪⎧4a +2b =436a +6b =4 3解得a =-4 9,b =26 9∴所求抛物线的解析式为y =- 4 9x2+ 269x ·············· 3分(2)设直线EF 的解析式为y =kx +b 1∴⎩⎪⎨⎪⎧2k +b =46k +b =4 3解得k =-2 3,b 1=163∴直线EF 的解析式为y =-2 3x +16 3过O 作OP ∥EF ,交抛物线于点P ,则点P 即为所求的点 ∴直线OP 的解析式为y =-23x解方程组 ⎩⎨⎧y =-23x y =- 4 9x2+ 26 9x得⎩⎪⎨⎪⎧x 1=0y 1=0 ⎩⎪⎨⎪⎧x 2=8y 2=-16 3。

2011年东莞市中考数学压轴题(有答案)

2011年东莞市中考数学压轴题(有答案)

2011年东莞市中考数学压轴题21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB=AC=EF=9,△BAC=△DEF=90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF(或它们的延长线)分别交BC(或它的延长线) 于G ,H 点,如图(2) (1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG=x ,BH=y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形. 【答案】解:(1)△HAB ,△HGA 。

(2)∵△AGC ∽△HAB ,∴AC GCHB AB=,即9=9x y 。

∴81=y x。

又△BC=229992092<x <+=∴ ,。

∴y 关于x 的函数关系式为()81=092y <x <x。

(3)①当∠GAH= 45°是等腰三角形.的底角时,如图1,可知9222BC x CG ===。

②当∠GAH= 45°是等腰三角形.的顶角时, 如图2, 在△HGA 和△AGC 中△△AGH=△CGA ,△GAH=△C=450, ∴△HGA ∽△AGC 。

△AG=AH ,∴9x CG AC ===③当CG >BC 时,由(1)△AGC ∽△HGA , 所以,若△AGH 必是等腰三角形,只可能存在GH=AH , 若GH=AH ,则AC=CG ,此时x=9, 如图(3),当CG=BC 时,题21图(1)BHFA (D )GCEC (E )BFA (D )题21图(2)注意:DF才旋转到与BC垂直的位置,此时B ,E,G 重合,∠AGH=∠GAH=45°,所以△AGH 为等腰三角形,所以CG=9.综上所述,当x=9或x=或9时,△AGH是等腰三角形.22.如图,抛物线2517144y x x=-++与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.22、略解:(1)易知A(0,1),B(3,2.5)=121+xO xAMNBP C题22图(2) )30(41545)121(14174522≤≤+-=+-++-=-==t t t t t t MP NP MN s(3)若四边形BCMN 为平行四边形,则有MN =BC ,此时,有25415452=+-t t ,解得11=t ,22=t 所以当t =1或2时,四边形BCMN 为平行四边形.①当t =1时,23=MP ,4=NP ,故25=-=MP NP MN , 又在Rt △MPC 中,2522=+=PC MP MC ,故MN =MC ,此时四边形BCMN 为菱形②当t =2时,2=MP ,29=NP ,故25=-=MP NP MN ,又在Rt △MPC 中,522=+=PC MP MC ,故MN ≠MC ,此时四边形BCMN 不是菱形.。

2011中考数学真题解析118 压轴题2(含答案)

2011中考数学真题解析118 压轴题2(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆压轴题241.(2011黑龙江大庆,28,8分)二次函数:y=ax 2﹣bx+b (a >0,b >o )图象顶点的纵坐标不大于.(1)求该二次函数图象顶点的横坐标的取值范围;(2)若该二次函数图象与x 轴交于A ,B 两点,求线段AB 长度的最小值. 考点:抛物线与x 轴的交点;二次函数的性质。

分析:(1)先求出y=ax 2﹣bx+b (a >0,b >0)的顶点的纵坐标,根据题意得出≥3,即可得出该二次函数图象顶点的横坐标的取值范围;(2)设A (x 1,0),B (x 2,0)(x 1<x 2),则x 1、x 2是方程ax 2﹣bx+b=0的两根,由求根公式得出x 1、x 2,根据AB =|x 2﹣x 1|求出线段AB 长度的最小值.解答:解:(1)由于y=ax 2﹣bx+b (a >0,b >0)图象的顶点的纵坐标为,则≤﹣,得≥3,∴该二次函数图象顶点的横坐标的取值范围是不小于3; (2)设A (x 1,0),B (x 2,0)(x 1<x 2) 则方程ax 2﹣bx+b=0的两根,得x 1=,x 2=,从而AB =|x 2﹣x 1|==ab ab ⋅-4)(2=4)2(2--ab由(1)知≥6.由于当≥6时,随着的增大,4)2(2--ab也随着增大, 所以=6时,线段AB 长度的最小值为2.点评:本题是一道综合性的题目,考查了抛物线与x 轴的交点问题以及二次函数的性质,是中考压轴题,难度较大.42. (2011•郴州)如图,在平面直角坐标系中,A 、B 两点的坐标分别是(0,1)和(1,0),P 是线段AB 上的一动点(不与A 、B 重合),坐标为(m ,1﹣m )(m 为常数). (1)求经过O 、P 、B 三点的抛物线的解析式;(2)当P 点在线段AB 上移动时,过O 、P 、B 三点的抛物线的对称轴是否会随着P 的移动而改变;(3)当P 移动到点()时,请你在过O 、P 、B 三点的抛物线上至少找出两点,使每个点都能与P 、B 两点构成等腰三角形,并求出这两点的坐标.考点:二次函数综合题。

中考数学复习《函数压轴题》经典题型及测试题(含答案)

中考数学复习《函数压轴题》经典题型及测试题(含答案)

中考数学复习《函数压轴题》经典题型及测试题(含答案)阅读与理解函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数关系式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.类型一 动点函数图象问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数关系式,最后根据函数关系式判断图象的变化.例1 (2016·济南) 如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【分析】 由点Q 从点N 出发,沿折线NDDCCE 向点E 运动,确定出点Q 分别在ND ,DC ,CE 运动时对应的t 的取值范围,再根据t 所在的取值范围分别求出其对应的函数关系式,最后根据函数关系式确定对应的函数图象.【自主解答】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4.第15题图 A BCDM N Q∵AD =5,DF =4,∴AF =3.∴sin ∠A=DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S随t 的增大而增大,且当t =2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2.∴S =12AB •PE =12×5×2=5.∵6>5,∴选项D 正确.变式训练1.如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC ,AB =4,D 为AB 上的动点,DP ⊥AB 交折线A -C -B 于点P.设AD =x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是( )2.(2016·烟台)如图,⊙O 的半径为1,AD ,BC 是⊙O 的两条相互垂直的直径,图1 DC B A E M N QP F 图2 A B C D E M N Q P F 图3 A B C D E (Q )M N F P点P从点O出发(P点与O点不重合),沿OCD的路线运动.设AP=x,sin∠APB =y,那么y与x之间的关系图象大致是()类型二二次函数的实际问题解答此类问题时,首先要构建合理的坐标系,并写出对应的函数解析式,并利用二次函数的性质求解后续的问题.一般来说,选择的坐标系不同,得出的解析式必然不同,因此解答此类问题时,选择最恰当的坐标系往往显得尤为重要.例2 (2017·金华) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【自主解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.变式训练3.(2017·沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是_____元时,才能在半月内获得最大利润.4、(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【自主解答】解:(1)设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x元,日总收入为y元,y=(800+x)(50﹣)=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.类型三二次函数的综合题二次函数作为整套试卷的压轴题,往往会命制三个小问题,其中第一问求解二次函数的解析式,此问题往往利用待定系数法便可解决;第二、三问往往涉及动点问题及存在点问题,此问题需要利用全等三角形、相似三角形、平行四边形、圆等知识综合解答,计算量很大,且题目较为综合.例3 (2017·泰安) )如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【自主解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).变式训练5.(2016·襄阳) 如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP 为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC 于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA 向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或6.(2017·潍坊) 如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF =S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。

2011年广东省中考数学试卷及答案(WORD版)

2011年广东省中考数学试卷及答案(WORD版)

2011年广东省初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是( )A .2B .-2C . 21D .21- 2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的1,得到的图形是( ) 4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51B .31C .85D .83 5.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数xk y =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____.8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为A .B . D . 题3图 题9图 BC O A_________________.三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:20245sin 18)12011(-︒+-.12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E 14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则题13图 B C DA F E 题14图题10图(1) E E C E 题10图(2) 题10图(3)买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E处,BF 是折痕,且BF =CF =8.(1)求∠BDF 的度数;(2)求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;第17题图 ) 题19图 B CED AF 题18图(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由)(3)问:当x 为何值时,△AGH 是等腰三角形.22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x (1(2)动点P 在线段OC 点M ,交抛物线于点N . 设点P 移动的时间为t 出t (3)设在(2)的条件下(不考虑点P 与点O BCMN 为平行四边形?问对于所求的t 2011一、1-5、DBACB二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF14、(1)⊙P 与⊙P 1外切。

中考数学压轴题20题(含答案_)

中考数学压轴题20题(含答案_)

中考数学压轴题复习20题1.在平面直角坐标系xO y 中,抛物线y =-41 m x2+45mx +m2-3m +2与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求点B 的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.2.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(Ⅱ)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.3.在平面直角坐标系中,已知抛物线y =-x2+bx +c 与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴的正半轴交于点C ,顶点为E .(Ⅰ)若b =2,c =3,求此时抛物线顶点E 的坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE=S △ABC,求此时直线BC的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE=2S △AOC,且顶点E 恰好落在直线y =-4x +3上,求此时抛物线的解析式.4.如图1,在Rt △ABC 中,∠ACB =90°,半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连结DE 并延长,与线段BC 的延长线交于点P . (1)当∠B =30°时,连结AP ,若△AEP 与△BDP 相似,求CE 的长; (2)若CE =2,BD =BC ,求∠BPD 的正切值;(3)若tan ∠BPD =31,设CE =x ,△ABC 的周长为y ,求y 关于x 的函数关系式.5.已知:如图①,在平面直角坐标系xO y 中,边长为2的等边△OAB 的顶点B 在第一象限,顶点A 在x 轴的正半轴上.另一等腰△OCA 的顶点C 在第四象限,OC =AC ,∠C =120°.现有两动点P ,Q 分别从A ,O 两点同时出发,点Q 以每秒1个单位的速度沿OC 向点C 运动,点P 以每秒3个单位的速度沿A →O →B 运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ 的面积S 与运动的时间t 之间的函数关系,并写出自变量t 的取值范围; (2)在等边△OAB 的边上(点A 除外)存在点D ,使得△OCD 为等腰三角形,请直接写出所有符合条件的点D 的坐标;(3)如图②,现有∠MCN =60°,其两边分别与OB ,AB 交于点M ,N ,连接MN .将∠MCN 绕着C 点旋转(0°<旋转角<60°),使得M ,N 始终在边OB 和边AB 上.试判断在这一过程中,△BMN 的周长是否发生变化?若没变化,请求出其周长;若发生变化,请说明理由.6.已知抛物线y =ax2+bx +c (a >0)的图象经过点B (12,0)和C (0,-6),对称轴为x =2. (1)求该抛物线的解析式:(2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由;AE C B P D 图2(备用) B PE C D A 图3(备用) A B C P E D 图1图②图①(3)在(2)的结论下,直线x =1上是否存在点M ,使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标;若不存在,请说明理由.7.如图,抛物线y =ax2+bx +1与x 轴交于两点A (-1,0),B (1,0),与y 轴交于点C . (1)求抛物线的解析式;(2)过点B 作BD ∥CA 与抛物线交于点D ,求四边形ACBD 的面积;(3)在x 轴下方的抛物线上是否存在点M ,过M 作MN ⊥x 轴于点N ,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,则求出点M 的坐标;若不存在,请说明理由.8.如图,已知抛物线y =21x2+bx +c 与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.9.如图,已知△ABC ∽△A 1B 1C 1,相似比为k (k >1),且△ABC 的三边长分别为a 、b 、c (a >b >c ),△A 1B 1C 1的三边长分别为a 1、b 1、c 1. (1)若c =a 1,求证:a =kc ;(2)若c =a 1,试给出符合条件的一对△ABC 和△A 1B 1C 1,使得a 、b 、c 和a 1、b 1、c 1都是正整数,并加以说明;(3)若b =a 1,c =b 1,是否存在△ABC 和△A 1B 1C 1,使得k =2?请说明理由.10.如图,Rt △ABC 内接于⊙O ,AC =BC ,∠BAC 的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结OG . (1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE =BF ; (3)若OG ·DE =3(2-2),求⊙O 的面积.11.已知:抛物线y =ax2+bx +c (a ≠0)的对称轴为x =-1,与x 轴交于A 、B 两点,与y 轴交于点C ,其中A (-3,0)、C (0,-2). (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得△PBC 的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE ∥PC 交x 轴于点E ,连接PD 、PE .设CD 的长为m ,△PDE 的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.12.(本小题满分12分)如图,BD 是⊙O 的直径,OA ⊥OB ,M 是劣弧上一点,过M 点作⊙O 的切线MP 交OA 的延长线于P 点,MD 与OA 交于N 点. (1)求证:PM =PN ; (2)若BD =4,P A =23AO ,过B 点作BC ∥MP 交⊙O 于C 点,求BC 的长. B C AA 1 a b cB 1C 1 a 1b 1c 1 A C B F D EO G13.如图,在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、B (-33,1)、C (-33,0)、O (0,0).将此矩形沿着过E (-3,1)、F (-334,0)的直线EF 向右下方翻折,B 、C 的对应点分别为B ′、C ′.(1)求折痕所在直线EF 的解析式;(2)一抛物线经过B 、E 、B ′三点,求此二次函数解析式;(3)能否在直线EF 上求一点P ,使得△PBC 周长最小?如能,求出点P 的坐标;若不能,说明理由.14.已知:甲、乙两车分别从相距300(km )的M 、N回,图1、图2分别是它们离各自出发地的距离y (km )与行驶时间x (h )之间的函数图象. (1)试求线段AB所对应的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了29h ,求乙车的速度; (3)在(2)的条件下,求它们在行驶的过程中相遇的时间.y h图1y h图215.如图1,在△ABC 中,AB =BC ,且BC ≠AC ,在△ABC 上画一条直线,若这条直线..既平分△ABC 的面积,又平分△ABC 的周长,我们称这条线为△ABC 的“等分积周线”. (1)请你在图1中用尺规作图作出一条△ABC 的“等分积周线”;(2)在图1中过点C 能否画出一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由; (3)如图2,若AB =BC =5cm ,AC =6cm ,请你找出△ABC 的所有“等分积周线”,并简要说明确定的方法.16.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,点P 以一定的速度沿AC 边由A 向C 运动,点Q 以1cm/s 的速度沿CB 边由C 向B 运动,设P 、Q 同时运动,且当一点运动到终点时,另一点也随之停止运动,设运动时间为t (s ). (1)若点P 以43cm/s 的速度运动 ①当PQ ∥AB 时,求t 的值;②在①的条件下,试判断以PQ 为直径的圆与直线AB 的位置关系,并说明理由.(2)若点P 以1cm/s 的速度运动,在整个运动过程中,以PQ 为直径的圆能否与直线AB 相切?若能,请求出运动时间t ;若不能,请说明理由.17.青海玉树发生7.1级强震后,为使人民的生命财产损失降到最低,部队官兵发扬了连续作战的作风。

初三中考数学压轴题精选100题(含答案)

初三中考数学压轴题精选100题(含答案)

初三中考数学压轴题精选100题(含答案)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.3.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.4.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.6.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.7.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD;∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.8.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.9.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.11.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A 类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.12.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.13.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.14.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.15.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.16.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.18.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.19.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.20.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.。

2011年广东省中考数学试卷、答案及考点详解

2011年广东省中考数学试卷、答案及考点详解

2011年广东省中考数学试卷、答案及考点详解一、选择题(本大题5小题,每小题3分,共15分)1、(2011•广东)﹣2的倒数是()A、﹣B、C、2D、﹣2考点:倒数。

分析:根据倒数的定义,即可得出答案解答:解:根据倒数的定义,∵﹣2×(﹣)=1,∴﹣2的倒数是﹣点评:本题主要考查了倒数的定义,比较简单2、(2011•广东)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A、5.464×107吨B、5.464×108吨C、5.464×109吨D、5.464×1010吨考点:科学记数法—表示较大的数。

专题:常规题型。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将546400000用科学记数法表示为5.464×108.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•广东)将下图中的箭头缩小到原来的,得到的图形是()A、B、C、D、考点:相似图形。

专题:应用题。

分析:根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.解答:解:∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选A.点评:本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4、(2011•广东)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A、B、C、D、考点:概率公式。

2011中考数学真题解析120 压轴题4(含答案)

2011中考数学真题解析120 压轴题4(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编压轴题4127.(2011山东淄博24,分)抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),与直线y=x 交于点A(﹣2,﹣2),B(2,2).(1)求抛物线的解析式;(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且,若M点的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由.考点:二次函数综合题;解二元一次方程组;待定系数法求二次函数解析式;勾股定理;平行四边形的性质。

专题:计算题。

分析:(1)把C的坐标代入求出c的值,把A、B的坐标代入抛物线的解析式得到方程组,求出方程组的解即可求出抛物线的解析式;(2)以点P,M,Q,N为顶点的四边形能为平行四边形,当M在OA上,N在OB 上时,以点P,M,Q,N为顶点的四边形为平行四边形,求出N的横坐标,求出ND、MD,根据勾股定理求出m即可.解答:(1)解:∵抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),代入得:c=﹣2,∴y=ax2+bx﹣2,把A(﹣2,﹣2),B(2,2)代入得:24222422a ba b-=--⎧⎨=+-⎩错误!未找到引用源。

,解得:121ab⎧=⎪⎨⎪=⎩错误!未找到引用源。

,∴y=12错误!未找到引用源。

x2+x﹣2,答:抛物线的解析式是y=12错误!未找到引用源。

x2+x﹣2.(2)解:以点P,M,Q,N为顶点的四边形能为平行四边形.理由如下:∵M、N在直线y=x上,∴OP=PM,OQ=QN,只有M在OA上,N在OB上时,ON=OM时,以点P,M,Q,N为顶点的四边形为平行四边形,过M作MC⊥y轴于C,交NQ的延长线于D,∵M点的横坐标为m,∴N的横坐标是﹣m,MD=ND=|2m|,由勾股定理得:(2m)2+(2m)22=,∵m<0,m=12 -.答:以点P,M,Q,N为顶点的四边形能为平行四边形,m的值是12 .点评:本题主要考查对一次函数的性质,用待定系数法求二次函数的解析式,解二元一次方程组,平行四边形的性质,勾股定理等知识点的理解和掌握,能用待定系数法求二次函数的解析式和得到MD=ND=|2m|是解此题的关键.128.(2011•山西)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O 出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C﹣B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t >0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为错误!未找到引用源。

2011年广东中考数学试卷及答案

2011年广东中考数学试卷及答案

2011广东中考数学试题全卷共6页,考试用时100分钟,满分为120分。

一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的, 1.-3的相反数是()A.3B.13C.-3D.-13C1第2题图D E2.如图,已知∠1 = 70º,如果CD∥BE,那么∠B的度数为()A.70ºB.100ºC.110ºD.120º3.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为() A.6,6B.7,6C.7,8D.6,84.左下图为主视方向的几何体,它的俯视图是()A.B. C.D.第4题图5.下列式子运算正确的是()A.3-2=1B.8=42 C.13=3 D.12+3+12-3=4二、填空题(本大题5小题,每小题4分,共20分)6.据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次。

试用科学记数法表示8000000=_______________________。

7.化简:x 2-2xy+yx-y-12-1=_______________________。

8.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=9.已知一次函数y=x-b与反比例函数y=2x45,则AC=____________。

BC D第8题图的图象,有一个交点的纵坐标是2,则b的值为________。

DA 10.如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));以此下去···,则正方形A4B4C4D4的面积为__________。

第10题图(1)1B1D2B2 BA1AA2第10题图(2)三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()-1-2cos600+(2-π)0。

2011广东省中考数学试题-解析版

2011广东省中考数学试题-解析版
()用分钟以上的人数除以总人数即可得到在分钟以上(含分钟)的人数占全班人数的百分比.
解答:解:()∵总体所调查对象的全体,
∴“班里学生的作息时间”是总体;
()如图所示:
()依题意得在分钟以上(含分钟)的人数为人,
∴÷,
∴该班学生上学路上花费时间在分钟以上(含分钟)的人数占全班人数的百分比是.
点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
、(•广东)已知:如图,、在上,∥且,∠∠.
求证:.
考点:全等三角形的判定与性质。
专题:证明题。
分析:根据两直线平行内错角相等即可得出∠∠,再根据全等三角形的判定即可判断出△≌△,得出,进而得出.
解答:证明:∵∥,
∴∠∠,
∵,∠∠,
∴△≌△,
∴,
∴.
点评:本题考查了平行线的性质以及全等三角形的判定及性质,难度适中.
、(•广东)如下数表是由从开始的连续自然数组成,观察规律并完成各题的解答.
()表中第行的最后一个数是,它是自然数的平方,第行共有个数;
()用含的代数式表示:第行的第一个数是﹣,最后一个数是,第行共有﹣个数;
()求第行各数之和.
考点:整式的混合运算;规律型:数字的变化类。
分析:()数为自然数,每行数的个数为,,,…的奇数列,很容易得到所求之数;()知第行最后一数为,则第一个数为﹣,每行数由题意知每行数的个数为,,,…的奇数列,故个数为﹣;()通过以上两部列公式从而解得.
、(•广东)如图,直角梯形纸片中,∥,∠°,∠°,折叠纸片使经过点,点落在点处,是折痕,且.
()求∠的度数;
()求的长.

近年广东省中考数学压轴题全解全析

近年广东省中考数学压轴题全解全析

2011年初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神 进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1. B ;2. A ;3. C ;4. D ;5. C ;6. B ;7. A ; 二、填空题(每小题4分,共40分)8. 2; 9.>; 10. 61008.1⨯; 11. x ≥2; 12. 5; 13.3=x ;14.9:4; 15.62; 16.π240; 17. )1,2( ,10 . 三、解答题(共89分) 18.(本小题9分) 解:原式=2124-+- ………………………………………………………………………(7分)=2122-+-=1- ……………………………………………………………………………………(9分) 19.(本小题9分) 解法一:原式=)2)((y y x y x +-- …………………………………………………………(4分)=))((y x y x +-=22y x - ………………………………………………………………………………(6分) 当1,2=-=y x 时,原式=221)2(-- ……………………………………………………(7分)=4-1=3 ………………………………………………………………(9分) 解法二:原式=222222y xy y xy x -++- ………………………………………………………(4分)=22y x - ………………………………………………………………………………(6分) 当1,2=-=y x 时,原式=221)2(-- ……………………………………………………(7分)=4-1=3 ……………………………………………………………(9分) 20.(本小题9分)解:画图………………………………(3分) (1)50,40;………………………(6分) (2)490人 ………………………(9分)21. (本小题9分) 证明:PAB ∆与PCD ∆都是等腰直角三角形∴PD PC PB PA ==,…………(4分)又 ︒=∠=∠90CPD APBBPC CPD BPC APB ∠-∠=∠-∠∴即BPD APC ∠=∠……………………(8分) ∴PAC ∆≌PBD ∆……………………(9分)22.(本小题9分)解:(1)1个…………………………………………(4分)(2)(解法一)列举所有等可能的结果,画树状图:……………(8分)由上图可知,共有12种机会均等的情况,其中两次摸到不同颜色球占10种∴P (两次摸到不同颜色球)=651210=………………………………(9分) (解法二)列表如下:…………………………………………………………………(8分)由上表可知,共有12种机会均等的情况,其中两次摸到不同颜色球占10种∴P (两次摸到不同颜色球)=651210=………………………………(9分)23.(本小题9分)解(1) 设该品牌汽车年销售量增长的百分率为x ,……………………………(1分)根据题意,得 (7.50)1302=+x …………………………………(4分)解得3.21-=x (不合题意,舍去),%303.02==x …………………(6分) (2)由(1)得该品牌汽车年销售量增长的百分率为%30 10091.65%)301(7.50<=+⨯…………………(8分) 答:(1)该品牌汽车年销售量增长的百分率为%30;(2)2011年的年销售量不能突破100万辆大关. …………………………(9分)24.(本小题9分)解:(1) 法一:在PCD Rt ∆中,︒=∠90C ,︒=∠30PDC ,3=CDCDPCPDC =∠tan ∴3333tan =⨯=∠⋅=PDC CD PC ……………(4分) 法二: 四边形ABCD 为正方形 ︒=∠∴90C又 ︒=∠30PDC PC PD 2=∴设=PC x ,则x PD 2=……………………(2分) 在PCD Rt ∆中,由勾股定理得222PD CD PC =+即222)2(3x x =+解得3±=x (舍去负值) 3=∴PC ……………………(4分)(2)法一:由(1)可知,3=PC33-=-=∴PC BC PB …………………………(5分)又由正方形ABCD 可得︒=∠=∠90C B∴当PCQBDC PB =时PBQ ∆∽DCP ∆…………………………(7分) 由3333QB=-解得13-=QB ∴当13-=QB 时,PBQ ∆∽DCP ∆.…………………………(9分)法二:由(1)可知,3=PC33-=-=∴PC BC PB …………………………(5分)︒=∠=∠90C B∴要使PBQ ∆∽DCP ∆,则必须有︒=∠=∠30CDP BPQ …………………………(6分)在PBQ Rt ∆中,由BPBQBPQ =∠tan 可得 1333)33(tan -=⨯-=∠=BPQ BP QB 故当13-=QB 时,PBQ ∆∽DCP ∆.…………………………(9分)25.(本小题13分)解:(1) )20(y x --……………………(3分) (2)①根据题意,有()9620456=--++y x y x 整理得:162+-=x y∴求y 与x 的函数关系式为162+-=x y ……………………(5分)②由①知,装运A 、B 、C 三种货物的车辆分别为x 辆、)162(+-x 辆、)4(x +辆,由题意可得:⎪⎩⎪⎨⎧≥+≥+-≥4441624x x x 解得:4≤x ≤6…………………………(7分)(注:不等式44≥+x 不列出,不扣分) x 为整数∴4=x 或5或6 ∴共有3种安排方案方案一:装运A 种货物4辆,B 种货物8辆,C 种货物8辆; 方案二:装运A 种货物5辆,B 种货物6辆,C 种货物9辆; 方案三:装运A 种货物6辆,B 种货物4辆,C 种货物10辆;………………………………(10分)(3)法一:设利润为W (百元)则:()14404810)4(4161625126+-=⨯++⨯+-+⨯=x x x x W………………………………(11分)∵048<-∴W 的值随x 的增大而减小 …………………(12分) 要使利润W 最大,则4=x ,故选方案一1440448+⨯-=最大W =1248(百元)=48.12(万元)法二:由②知,共有三种方案,获得利润分别为方案一:1248104816581264=⨯⨯+⨯⨯+⨯⨯ 方案二:1200104916561265=⨯⨯+⨯⨯+⨯⨯方案三:11521041016541266=⨯⨯+⨯⨯+⨯⨯ ………………………(11分) 1248>1200>1152∴方案一获利最大,最大利润为48.12万元.答:当装运A 种货物4辆,B 种货物8辆,C 种货物8辆时,获利最大,最大利润为48.12万元.…………………………(13分) 26.(本小题13分)解:(1)3=m ;………………(3分)(2) 由题意得B (6,2).若直线经过点A (6,0)时,则3=m ;若直线经过点B (6,2)时,则5=m ;若直线经过点C (0,2)时,则2=m .………………(4分)当点E 在OA 上时,m <2≤3,如图1,此时)0,2(m E∴m m CO OE S 2222121=⨯⨯=⋅=………………………………(5分)图1DExyCB AO DEyCB AO当点E 在BA 上时,3<m <5,如图2, 此时)3,6(-m E ,)2,42(-m D)(OAE DBE OCD OABC S S S S S ∆∆∆++-=∴)212121(AE OA BE BD OC CD OC OA ⋅+⋅+⋅-⋅=()⎥⎦⎤⎢⎣⎡-⨯⨯+--⨯+⨯--=)3(621)5)(210(212422112m m m m=25m m -………………………………(7分) 综上所述,当2<m ≤3时,m S 2=,当3<m <5时, 25m m S -=;………………………………(8分)(3)如图3,设11A O 与CB 相交于点M ,OA 与11B C 相交于点N ,则矩形1111C B A O 与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积. 由题意知,DM ∥NE ,DN ∥ME , ∴四边形DNEM 为平行四边形………………………………(9分)根据轴对称知,NED MED ∠=∠ 又由DM ∥NE 可知NED MDE ∠=∠ ∴MDE MED ∠=∠ ∴ME MD =,∴平行四边形DNEM 为菱形……………………(11分) 过点D 作OA DH ⊥,垂足为H , 设菱形DNEM 的边长为a , 则在DHN Rt ∆中,2=DH[]4)42(2=--=-=m m OH OE HE ,∴a NE HE HN -=-=4 由勾股定理得:2222)4(a a =+-解得25=a ∴5=⋅=DH NE S DNEM∴矩形1111O A B C 与矩形OABC 的重叠部分的面积不会随着点E 位置的变化而变化,面积始终为5.…………………………(13分)图3HNMC 1A 1B 1O 1DExy CBA O四、附加题(共10分)3……………………………………………………………………(5分)1.(5分)22.(5分)4………………………………………………………………(5分)。

挑战中考压轴题_圆压轴100题

挑战中考压轴题_圆压轴100题

第100题(2010.广东省深圳市中考模拟)如图是一圆形纸片,AB 是直径,BC 是弦,将纸片沿弦BC 折叠后,劣弧BC 与AB 交于点D ,得到BDC .(1)若BD ︵=CD ︵,求证:BDC 必经过圆心O ; (2)若AB =8,BD ︵=2CD ︵,求BC 的长.如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.(1)求B点坐标;(2)求证:ME是⊙P的切线;如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=12 BC.(1)求∠BAC的度数;(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;(3)若BD=6,CD=4,求AD的长.已知:如图,抛物线y=13x2-233x+m与x轴交于A、B两点,与y轴交于C点,∠ACB=90°,(1)求m的值及抛物线顶点坐标;(2)过A、B、C的三点的⊙M交y轴于另一点D,连接DM并延长交⊙M于点E,过E点的⊙M的切线分别交x轴、y轴于点F、G,求直线FG的解析式;(3)在条件(2)下,设P为CBD上的动点(P不与C、D重合),连接PA交y轴于点H,问是否存在一个常数k,始终满足: AH•AP=k?如果存在,请写出求解过程;如果不存在,请说明理由.如图1所示,以点M(-1,O)为圆心的圆与y轴、x轴分别交于点A,B,C,D,直线y=3-3x-533与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE、⊙M的半径r、CH的长;(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.第095题(自选)如图,E点为x轴正半轴上一点,⊙E交x轴于A、B两点,交y轴于C、D两点,P点为劣弧BC上一个动点,且A(-1,0),E(1,0).(1)求点C的坐标;(2)连接PA,PC.若CQ平分∠PCD交PA于Q点,当P点在运动时,线段AQ的长度是否发生变化;若不变求出其值,若发生变化,求出变化的范围;(3)连接PD,当P点在运动时(不与B、C两点重合),求证:PC PDPA的值不变如图,等腰梯形ABCD中,AD∥BC,AB=DC,以HF为直径的圆与AB、BC、CD、DA相切,切点分别是E、F、G、H.其中H 为AD的中点,F为BC的中点.连接HG、GF.(1)若HG和GF的长是关于x的方程x2-6x+k=0的两个实数根,求⊙O的直径HF(用含k的代数式表示),并求出k的取值范围.(2)如图,连接EG、DF. EG与HF交于点M,与DF交于点N,求GNNE的值.直线y=-x+m与直线y=3-3x+2相交于y轴上的点C,与x轴分别交于点A、B.(1)求A、B、C三点的坐标;(2)经过上述A、B、C三点作⊙E,求∠ABC的度数,点E的坐标和⊙E的半径;(3)若点P是第一象限内的一动点,且点P与圆心E在直线AC的同一侧,直线PA、PC分别交⊙E于点M、N,设∠APC=θ,试求点M、N的距离.(可用含θ的三角函数式表示)AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合.(1)求证:△AHD∽△CBD;(2)连HO,若CD=AB=2,求HD+HO的值.如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.在平面直角坐标系xoy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为AE的中点,AE交y轴于G点,若点A的坐标为(-2,0),AE=8.(1)求点C的坐标;(2)连接MG、BC,求证:MG∥BC;(3)过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,OFPF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)若M是线段BE的中点,N是线段AD的中点,证明:MN= 2OM;(2)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1= 2OM1是否成立?若是,请证明;若不是,说明理由.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;(3)若tan∠CED=12,⊙O的半径为3,求OA的长.如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连接AD、BD.(1)求证:∠ADB=∠E;(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3)当AB=5,BC=6时,求⊙O的半径.第085题(2009.北京市房山区九上期末)如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为等边三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)判断点C是否为弧OB的中点?并说明理由;(2)求B、C两点的坐标及直线CD的函数解析式;(3)点P在线段OB上,且满足四边形OPCD是等腰梯形,求点P坐标.第084题(自选)如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)求B,C两点的坐标;(2)求直线CD的函数解析式;(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的周长.试探究:△AEF的最大面积.在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;(2)求⊙O的半径;(3)设⊙O交BC于点F,连接EF,求EFAC的值.如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.(1)求证:AB=AC;(2)当ABBC=54时,①求tan∠ABE的值;②如果AE=2011,求AC的值.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(2-2),求⊙O的面积.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.(1)若PC=PF,求证:AB⊥ED;(2)点D在劣弧AC的什么位置时,才能使AD2=DE•DF,为什么?如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF•AC,cos∠ABD=35,AD=12.(1)求证:△ANM≌△ENM;(2)求证:FB是⊙O的切线;(3)证明四边形AMEN是菱形,并求该菱形的面积S.(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的1 3(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的1 3第076题(2010.辽宁省铁岭市)如图,已知矩形ABCD内接于⊙O,BD为⊙O直径,将△BCD沿BD所在的直线翻折后,得到点C的对应点N仍在⊙O上,BN交AD与点M.若∠AMB=60°,⊙O的半径是3cm.(1)求点O到线段ND的距离;(2)过点A作BN的平行线EF,判断直线EF与⊙O的位置关系并说明理由.如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE,CD=3,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长;(3)如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则求r的取值范围.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=12AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.第072题(2006.山东省莱芜市)半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知43BCCA,点P在AB上运动,过点C作CP的垂线,与PB的延长线交于点Q.(1)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到AB的中点时,求CQ的长;(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.第071题(2010.湖北省荆门市中考)如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知43BCCA,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.(1)求证:AC•CD=PC•BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.第070题(2006.山东省烟台市中考)如图,已知点C在⊙O上,延长直径AB到点P,连接PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)若AC=PC,且PB=3,M是⊙O下半圆弧上一动点,当M点运动到使△ABM的面积最大时,CM交AB于点N,求MN•MC的值.第069题(2011.江苏省镇江市实验学校中考数学二模)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求∠P的度数;(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.第068题(2011.北京市昌平区中考数学二模试卷)如图,已知点C在⊙O上,延长直径AB到点P,连接PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)若AC=PC,且PB=3,M是⊙O下半圆弧的中点,求MA的长.第067题(自选)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)点M是弧AB的中点,CM交AB于点N,求∠CNA的度数.第066题(2010.内蒙古包头市中考)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=12 AB;(3)点M是AB的中点,CM交AB于点N,若AB=4,求MN•MC的值.第065题(2012.江苏省南京市江宁区中考数学一模)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC的垂直平分线交BC于D点,交AC于E点,连接BE.(1)直线BE是否与△DEC的外接圆⊙O相切?为什么?(2)当AB=3时,求图中阴影部分的面积.第064题(2010.陕西省中考)如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE.(1)若BE是△DEC的外接圆的切线,求∠C的大小;(2)当AB=1,BC=2时,求△DEC外接圆的半径.第063题(2011.江苏省无锡市锡中实验学校九上期中考试)四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上任意一点,且CD切⊙O于点D.(1)试求∠AED的度数.(2)若⊙O的半径为32cm,试求:△ADE面积的最大值.如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点,交AD于点G,交AB于点F.(1)求证:BC与⊙O相切;(2)若AB=5,BC=8,求⊙O的半径.(3)若∠BAC=120°时,求∠EFG的度数.如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,垂足为F,CG⊥AD,垂足为G.(1)求证:△ACF≌△ACG;(2)若AF=43,求图中阴影部分的面积.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB、FC.(1)求证:FB=FC;(2)求证:FB2=FA•FD;(3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.(1)求证:PM=PN;(2)若BD=4,PA=32AO,过点B作BC∥MP交⊙O于C点,求BC的长.如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)如图,△ABC内接于⊙O,∠BAC=60°,点D是BC的中点.BC,AB边上的高AE,CF相交于点H.试证明:(1)∠FAH=∠CAO;(2)四边形AHDO是菱形.第055题(2008.陕西省中考)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的∠ACB的角平分线,过A、C、D三点的圆O与斜边AB 交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.第054题(2008.山东省枣庄市中考)已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=15.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.第053题(2012.四川省成都市金牛区重点学校中考二模)已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=15.(1)求证:AM•MB=EM•MC;(2)求sin∠EOB的值;(3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是⊙O的切线.如图,AB为⊙O的直径,OE交弦AC于点P,交AM于点M,且AM=CM.(1)求证:OP=12 BC;(2)如果AE2=EP•EO,且AE=65,BC=6,求⊙O的半径.如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径R的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011初三数学总复习12分题参考答案(旋转)2、 将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证: AF +EF =DE ;(2)若将图①中的D B E △绕点B 按顺时针方向旋转角α,且060α<<°°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在⑴中猜想的结论是否仍然成立;(3)若将图①中的D B E △绕点B 按顺时针方向旋转角β,且60180β<<°°,其它条件不变,如图③.你认为⑴中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF 、EF 与DE 之间的关系,并说明理由.解:⑴连接BF (如图①),∵△ABC ≌△DBE ,∴BC =BE ,AC =DE . ∵∠ACB =∠DEB =90°,∴∠BCF =∠BEF =90°, ∵BF =BF ,∴Rt △BFC ≌Rt △BFE .∴CF =EF . 又∵AF +CF =AC ,∴AF +EF =DE . ⑵画出正确图形如图②⑴中的结论AF +EF =DE 仍然成立.⑶不成立.此时AF 、EF 与DE 的关系为AF - EF =DE 理由:连接BF (如图③),∵△ABC ≌△DBE ,∴BC =BE ,AC =DE , ∵∠ACB =∠DEB =90°,∴∠BCF =∠BEF =90°. 又∵BF =BF ,∴Rt △BFC ≌Rt △BFE .∴CF =EF . 又∵AF -CF =AC ,∴AF -EF = DE . ∴⑴中的结论不成立. 正确的结论是AF -EF = DE(规律)3、如图,在直角坐标系中,已知点0M 的坐标为(1,0),将线段0OM绕原点O 沿逆时针方向旋转45,再将其延长到1M ,使得001OMM M ⊥,得到线段1OM ;又将线段1OM 绕原点O 沿逆时针方向旋转45,再将其延长到2M ,使得112OM M M ⊥,得到线段2OM,如此下去,得到线段3OM ,4OM,…,nOM.(1)写出点M 5的坐标;(2)求56M O M △的周长;(3)我们规定:把点)(n n n y x M ,(=n 0,1,2,3…)的横坐标n x ,纵坐标n y 都取绝对值后得到的新坐标()n n y x ,称之为点n M 的“绝对标”.根据图中点n M 的分布规律,请你猜想点n M 的“绝对坐标”,并写出来.解:(1)M 5(―4,―4) (2)由规律可知,245=OM,2465=M M ,86=OM∴56M O M △的周长是288+(3)由题意知,0OM 旋转8次之后回到x 轴的正半轴,在这8次旋转中,点n M 分别落在坐标象限的分角线上或x 轴或y 轴上,但各点“绝对坐标”的横、纵坐标均为非负数,因此,点n M 的“绝对坐标”可分三类情况:令旋转次数为n① 当点M 在x 轴上时: M 0(0,)2(0),M 4(0,)2(4),M 8(0,)2(8),M 12(0,)2(12),…,即:点n M 的“绝对坐标”为(0,)2(n)。

② 当点M 在y 轴上时: M 2))2(,0(2,M 6))2(,0(6,M 10))2(,0(10,M 14))2(,0(14,……,即:点n M 的“绝对坐标”为))2(,0(n.③ 当点M 在各象限的分角线上时:M 1))2(,)2((00,M 3))2(,)2((22,M 5))2(,)2((44,M 7))2(,)2((66,……,即:n M 的“绝对坐标”为))2(,)2((11--n n .(规律)4、 观察下列方程及其解的特征:(1)12x x +=的解为121x x ==; (2)152x x +=的解为12122x x ==,;(3)1103x x+=的解为12133x x ==,; …… ……解答下列问题: (1)请猜想:方程1265x x+=的解为 ;(2)请猜想:关于x 的方程1x x+= 的解为121(0)x a x a a==≠,;(3)下面以解方程1265x x +=为例,验证(1)中猜想结论的正确性.解:原方程可化为25265x x -=-.(下面请大家用配方法写出解此方程的详细过程)解:(1)15x =,215x =;(2)21a a+(或1a a+);(3)二次项系数化为1,得22615x x -=-.配方,得2222613131555x x ⎛⎫⎛⎫-+-=-+- ⎪ ⎪⎝⎭⎝⎭, 213144525x ⎛⎫-= ⎪⎝⎭.开方,得131255x -=±.解得15x =,215x =. 1(探究)5、 已知A B C △中,AC AB =,D 、E 是BC 边上的点,将ABD △绕点A 旋转,得到△D AC ',连结E D '.(1)如图1,当︒=∠120BAC ,︒=∠60DAE 时,求证:E D DE '=.(2)如图2,当E D DE '=时,DAE ∠与BAC ∠有怎样的数量关系?请写出,并说明理由. (3) 如图3,在(2)的结论下,当︒=∠90BAC ,BD 与DE 满足怎样的数量关系时,D E C'△是等腰直角三角形?(直接写出结论,不必说明理由).(1)证明:如图1∵ABD △旋转得到△D AC '∴D A AD BAC D DA '=︒=∠='∠,120∵︒=∠60DAE∴︒=︒-︒=∠-'∠='∠6060120DAE D DA D EA ∴AE D DAE '∠=∠ 又∵AE AE =∴D A E D A E '△≌△)(SAS ∴E D DE '= (2)BAC DAE ∠=∠21理由:如图2∵ABD △旋转得到△D AC '∴BAC D DA ∠='∠,D A AD '= ∵AE AE E D DE ='=, ∴D A E D A E '△≌△(SSS ) ∴D DA AE D DAE '∠='=∠21∴BAC DAE ∠=∠21AE DBD '图1CA CD 'EDB图2CAB DE D '图3AE DBD '图1 CACD 'EDB 图2 CABDE D '(探究)6、 我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在A B C △中,点D E ,分别在A B A C ,上, 设C D B E ,相交于点O ,若60A ∠=°,12D C B E B C A ∠=∠=∠.请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;(3)在A B C △中,如果A ∠是不等于60°的锐角,点D E ,分别在A B A C ,上,且12D C BE B C A∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.解:(1)回答正确的给1分(如平行四边形、等腰梯形等). (2)答:与A ∠相等的角是B O D ∠(或C O E ∠).四边形D B C E 是等对边四边形. (3)答:此时存在等对边四边形,是四边形D B C E .如图1,作C G BE ⊥于G 点,作BF C D ⊥交C D 延长线于F 点. 因为12D C BE B C A ∠=∠=∠,B C 为公共边,所以B C F C B G △≌△.所以B F C G =.因为B D F A B E E B C D C B ∠=∠+∠+∠, B E C A B E A ∠=∠+∠,所以B D F B E C ∠=∠. 可证B D F C E G △≌△.所以B D C E =. 所以四边形D B C E 是等边四边形.B OA DEC BOADECF图BOADECF 图G(抛物线)7、如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c=++经过B 点,且顶点在直线52x =上.(1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+ ∴2254()32m =⨯-+∴16m =-∴所求函数关系式为:22251210()432633y x x x =--=-+(2)在Rt △ABO 中,OA =3,OB =4,∴5AB == ∵四边形ABCD 是菱形 ∴BC =CD =DA =AB =5∴C 、D 两点的坐标分别是(5,4)、(2,0). 当5x =时,22105533y =⨯-⨯+当2x =时,2210224033y =⨯-⨯+= ∴点C 和点D 在所求抛物线上.(3)设直线CD 对应的函数关系式为y kx b =+,则5420k b k b +=⎧⎨+=⎩ 解得:48,33k b ==-. ∴4833y x =- ∵MN ∥y 轴,M 点的横坐标为t , ∴N 点的横坐标也为t .则2210433M y t t =-+, 4833N y t =-,∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭27371(图形与抛物线)8、 如图①,梯形ABCD 中,∠C =90°.动点E 、F 同时从点B 出发, 点E 沿折线BA -AD -DC运动到点C 时停止运动, 点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1 cm/s .设E 、F出发t s 时, EBF ∆的面积为y cm 2.已知y 与 t 的函数图象如图②所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题:(1)梯形上底的长AD = cm ,梯形ABCD 的面积= cm 2;(2)当点E 在BA 、DC 上运动时, 分别求出y 与 t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,EBF ∆与梯形ABCD 的面积之比为1:2? 解:(1)2,14. (2)①当点E 在BA 上运动时,如图①,此时05t <≤. 分别过点E ,A 作EG ⊥BC ,AH ⊥BC ,垂足分别为G ,H , 则△BEG ∽△BAH .∴BEEG BAAH=,即54tEG =,∴45EG t=.∴211422255y BF EG t t t=⋅=⋅⋅=.② 当点E 在DC 上运动时,如图②,此时711t ≤<.∴11C E t =-,∴()115555112222y BC CE t t=⋅=⨯⨯-=-. (自变量的取值范围写全写对得1分,否则0分)(3)当05t <≤时,2275t =,∴2t =. 当711t ≤<时,555722t -=,∴8.2t =.∴2t =s 或8.2t =s 时,EBF ∆与梯形ABCD 的面积之比为1:2.(图形与抛物线)9、在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点(02)A ,,点(10)C -,,如图所示:抛物线22y ax ax =+-(1)求点B 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使A C P △仍然是以A C 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.(1)过点B 作BD x ⊥轴,垂足为D ,9090BC D AC O AC O C AO ∠+∠=∠+∠= °,°B C D C A O ∴∠=∠; 又90BDC COA CB AC ∠=∠== °;,BC D C AO ∴△≌△, 12B D O C C D O A ∴====, ∴点B 的坐标为(31)-,;(2)抛物线22y ax ax =+-经过点(31)B -,,则得到1932a a =--, 解得12a =,所以抛物线的解析式为211222y x x =+-;(3)假设存在点P ,使得A C P △仍然是以A C 为直角边的等腰直角三角形: ①若以点C 为直角顶点;则延长B C 至点1P ,使得1P C BC =,得到等腰直角三角形1AC P △, 过点1P 作1P M x ⊥轴,11190C P BC M C P BC D P M C BD C =∠=∠∠=∠= ,,°;1M P C D BC ∴△≌△ 121C M C D P M BD ∴====,,可求得点1P (1,-1);②若以点A 为直角顶点;则过点A 作2AP C A ⊥,且使得2AP AC =,得到等腰直角三角形2AC P △,过点2P 作2P N y ⊥轴,同理可证2AP N C AO △≌△;221N P O A AN O C ∴====,,可求得点2(21)P ,; 经检验,点1(11)P -,与点2(21)P ,都在抛物线211222y x x =+-上.(翻折)13、如图①,将边长为4 cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点M 处,点C 落在点N 处,MN 与CD 交于点P ,连接EP .(1)如图②,若M 为AD 边的中点, ①△AEM 的周长= cm ;②求证:EP=AE +DP ; (2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.解:(1)① 6 .②(图略)取EP 中点G ,连接MG .梯形AEPD 中,∵M 、G 分别是AD 、EP 的中点,∴()12M G AEDP =+. 由折叠得∠EMP =∠B =90︒,又G 为EP 的中点,∴12M G EP=.故EP AE DP =+.(2)△PDM 的周长保持不变.证明:如图,设A M x =cm ,Rt △EAM 中,由222(4)AE x AE +=-,可得:2128A E x =-.∵∠AME +∠AEM =90︒,∠AME +∠PMD =90︒,∴∠AEM =∠PMD . 又∵∠A =∠D =90︒,∴△AEM ∽△DMP . ∴D M PAEMC D MCA E=,即241428D M PC x x x-=+-∴24(4)8128D M P x C x x-=⋅+=- cm . 故△PDM 的周长保持不变.N F PEC D B MA(动态)14、如图,正方形A B C D 的边长为4,E 是B C 边的中点,点P 在射线A D 上,过P 作PF AE ⊥于F .(1)求证:P F A A B E △∽△;(2)当点P 在射线A D 上运动时,设P A x =,是否存在实数x ,使以P F E ,,为顶点的三角形也与A B E △相似?若存在,请求出x 的值;若不存在,说明理由.(1)证明:由正方形A B C D 知A D B C ∥PAF AEB ∴∠=∠ 又90PFA ABE ∠=∠=P F AA B E ∴△∽△ (2)解:若E F P A B E △∽△,则PEF EAB ∠=∠∴必有PE AB ∥ ∴四边形ABEP 为矩形2PA EB ∴==,即2x = 若P F E A B E △∽△,则PEF AEB ∠=∠ 而PAF AEB ∠=∠PEF PAF ∴∠=∠,PE PA ∴=PF AE ⊥ ,∴点F 为A E 的中点,AE ==== 12E F A E ∴=由P E E FA EE B=2=得5P E =,即5x = ∴满足条件的x 的值为2或5.(动态)15、如图,A B C △中,点P 是边A C 上的一个动点,过P 作直线MN ∥BC ,设MN 交∠BCA的平分线于点E ,交∠BCA 的外角平分线于点F .(1)求证:PE=PF ;(2)当点P 在边A C 上运动时,四边形BCFE 可能是菱形吗?说明理由;(3)若AC 边上存在点P ,使四边形AECF 是正方形,且23=BCAP 在时,求∠A 的大小.(1)证明: ∵EC 平分∠BCA , ∴∠BCE=∠PCE .∵M N B C ∥,∴∠PEC=∠BCE .∴∠PEC=∠PCE , ∴PE=PC . 同理可证PC=PF.∴PE=PF.(2)四边形B C F E 不可能是菱形. 若B C F E 为菱形,则B F E C ⊥,而由(1)可知F C E C ⊥. 因为在平面内过同一点F 不可能有两条直线同垂直于一条直线,所以B F E C ⊥不能成立,所以四边形B C F E 不可能是菱形. (3)当A E C F 为正方形时,P 是AC 的中点,且E F A C ⊥.∵E F B C ∥,∴A C B C ⊥.∴A B C △是以A C B ∠为直角的直角三角形 ∵23=BCAP ,在R t △ABC 中, 332tan ===APBC ACBC A .∴∠A=30°.16、(探究)如图1,在Rt A B C △中,9068A C B A C B C ∠===°,,,点D 在边AB 上运动,DE 平分C D B ∠交边BC 于点E ,C M B D ⊥垂足为M E N C D ⊥,,垂足为N. (1)当AD=CD 时,求证:D E A C ∥;(2)探究:AD 为何值时,B M E △与C N E △相似?(3)探究:AD 为何值时,四边形MEND 与B D E △的面积相等?(1)证明:AD CD DAC DCA =∴∠=∠ 2B D C D A C ∴∠=∠又∵DE 是∠BDC 的平分线∴∠BDC=2∠BDE ∴∠DAC =∠BDE ∴DE ∥AC (2)解:(Ⅰ)当B M E C N E △∽△时,得M B E N C E ∠=∠∴BD=DC ∵DE 平分∠BDC ∴DE ⊥BC ,BE=EC. 又∠ACB =90° ∴DE ∥AC .∴B E B DB CA B =即152B D A B ===∴AD =5(Ⅱ)当B M E E N C △∽△时,得E B M C E N ∠=∠∴EN ∥BD 又∵EN ⊥CD∴BD ⊥CD 即CD 是△ABC 斜边上的高,由三角形面积公式得AB ·CD=AC ·BC ∴CD=245∴185A D ==综上,当AD =5或185时,△BME 与△CNE 相似.(3)由角平分线性质易得12M D E D E N S S D M M E ==△△·B D E M E N D S S = △四边形12B D E M D M E M ∴=·· 即12D M B D =∴EM 是BD 的垂直平分线.∴∠EDB=∠DBE ∵∠EDB =∠CDE ∴∠DBE =∠CDE 又∵∠DCE =∠BCD ∴C D E C B D △∽△C D C E D E B CC D B D∴==①2C D B E B E B CB DB M∴==即4B E C D B M=45cos 4554B MB C D B E ==∴=⨯= 由①式得2258CDCE BC ==3943939cos 85810B E B M B E B ∴=∴==⨯=39112102105AD AB BM ∴=-=-⨯=C E ND MB A 图1C B A C B A 图2(备用图) 图3(备用图) CEN D M BA 第24题C BA第24题ENMD17、如图.抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B .(1) 求此地物线的解析式;(2) 若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围;(3) 在同一平面直角坐标系中,两条直线x=m ,x=n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形? 若能,求m ,n 之间的数量关系;若不能,请说明理由.解:(1)∵拋物线y 1=ax 2-2ax +b 经过A (-1,0),C (0,23)两点,∴⎪⎩⎪⎨⎧==++2302b b a a ,∴⎪⎩⎪⎨⎧=-=2321b a ∴拋物线的解析式为y 1= -21x 2+x +23.(2)作MN ⊥AB ,垂足为N .由y 1= -21x 2+x +23易得M (1,2),N (1,0),A (-1,0),B (3,0),∴AB =4,MN =BN =2,MB =22,∠MBN =45︒.根据勾股定理有BM 2-BN 2=PM 2-PN 2. ∴(22)2-22=PM 2= -(1-x )2… ,又∠MPQ =45︒=∠MBP , ∴△MPQ ~△MBP ,∴PM 2=MQ ⨯MB =22y 2⨯22… .由 、 得y 2=21x 2-x +25.∵0≤x <3,∴y 2与x 的函数关系式为y 2=21x 2-x +5(0≤x ≤3).(3)四边形EFHG 可以为平行四边形,m 、n 之间的数量关系是m +n =2(0≤m ≤2,且m ≠1).∵点E 、G 是抛物线y 1= -21x 2+x +23分别与直线x=m ,x=n 的交点,∴点E 、G 坐标为 E (m ,-21m 2+m +23),G (n ,-21n 2+n +23).同理,点F 、H 坐标 为F (m ,21m 2-m +25),H (n ,21n 2-n +25).∴EF =21m 2-m +25-(-21m 2+m +23)=m 2-2m +1,GH =21n 2-n +25-(-21n 2+n +23)=n 2-2n +1.∵四边形EFHG 是平行四边形,EF =GH .∴m 2-2m +1=n 2-2n +1 ∴(m +n -2)(m -n )=0.由题意知m ≠n ,∴m +n =2 (0≤m ≤2,且m ≠1).因此,四边形EFHG 可以为平行四边形,m 、n 之间的数量关系是m +n =2 (0≤m ≤2,且m ≠1).18、如图,点A B 、坐标分别为(4,0)、(0,8),点C 是线段O B 上一动点,点E 在x 轴正半轴上,四边形O E D C 是矩形,且2O E O C =.设(0)O E t t =>,矩形O E D C 与AO B △重合部分的面积为S .根据上述条件,回答下列问题:(1)当矩形O E D C 的顶点D 在直线A B 上时,求t 的值; (2)当4t =时,求S 的值;(3)直接写出S 与t 的函数关系式;(不必写出解题过程) (4)若12S =,则t = . 解:(1)由题意可得90B C D B O A ∠=∠=°,C BD O BA ∠=∠,BC D BO A ∴△∽△BC C D BOO A∴=而8842t C D O E t B C C O O A ===-=-=,,,则8284tt -= 解得165t =,∴当点D 在直线A B 上时,165t =.(2)当4t =时,点E 与A 重合,设C D 与A B 交于点F ,则由C B F O B A △∽△得C F O A C B O B =,即4828C F =-,解得3C F =, 11()2(34)722S O C O E C F ∴=+=⨯⨯+=(3)①当1605t <≤时,212S t =②当1645t <≤时,217101616S t t =-+- ③当416t <≤时,21216S t t =-+ 分析:①当1605t <≤时,如图(1),212S t =②当1645t <≤时,如图(2),(40)08A B ,,(,), ∴直线A B 的解析式为28y x =-+,(28)442t t G t t F ⎛⎫∴-+- ⎪⎝⎭,,,,554842D F t D G t ∴=-=-,,155482242DFG C OED t S S S t t t ⎛⎫⎛⎫∴=-=---= ⎪ ⎪⎝⎭⎝⎭△矩形217101616t t -+-③当416t <≤时,如图(3)C D O A ∥,B C F B O A ∴△∽△,BCC FBO O A ∴=,8284tC F -∴=,44t C F ∴=-,∴211148482224216BOA BC Ft t S S S t t ⎛⎫⎛⎫=-=⨯⨯-⨯--=-+ ⎪ ⎪⎝⎭⎝⎭△△ (4)8分析:由题意可知把12S =代入21216S t t =-+中,2121216t t -+=整理,得 2321920t t -+=解得 1282416t t ==>,(舍去)∴当12S =时,8t =.(3)。

相关文档
最新文档