数理统计基本概念
第六章 数理统计的基本概念pdf_(一)基本要求
.第六章 数理统计基本概念
一、基本要求、重点与难点
(一)基本要求
1.理解总体、个体、简单随机样本和统计量的概念。掌握样本均值和样本 方差的计算。
(2)设 X ~ χ 2 (n) ,则 E(X)=n,D(X)=2n .
若 X ~ χ 2 (n) ,对于α (0 < α < 1) ,称满足 P( X > χα2 (n)) = α的点χα2 (n) 为 χ 2 (n) 分布的
上侧α 分位点。当 n>45 时,R.A.Fisher 证明了下面的近似公式
( ) χα2
(n)
≈
1 2
uα +
2
2n −1 ,
其中 uα 为标准正态分布的上侧α 分位点。
2、 自由度为 n 的 t 分布:
定义设 X1, X2 独立,X1~N(0,1), X2~ χ 2 (n) ,则称
T (n) = X1 X 2 n
的分布是自由度为 n 的 t 分布,简记为 t(n) ,亦称为学生(student)分布。这种分布是英国人 w.s.Gosset 在 1908 年以笔名”student”发表的,它是数理统计中最重要的分布之一。 命题 设 T(n)是自由度为 n 的 t 分布,则它的概率密度函数为:
2.会列出分组数据统计表。 3.了解X2-分布、t-分布和F-分布的定义及性质。了解分位数的概念并会查
表计算。 4.掌握正态总体的抽样分布规律。
(二)重点
1.样本均值和样本方差的计算。 2.分组数据统计表。 3.正态总体的抽样分布规律。
【2024版】概率论与数理统计(数理统计的基本概念)
X
2 n
)
D(
X
2 1
)
D(
X
2 2
)
D(
X
2 n
)
nD (
X
2 i
)
n{ E (
X
4 i
)
[E(
X
2 i
)]2
}
n
x4
1
2
e
x2 2
dx
12
n3
1
2n
23
若 2 ~ 2(n) 分布函数为F ( x)
,0 1 若F ( x) P{ 2 x}
则其解称为 2 分布 的 分位数(临界值)
0.15 00.1.155
000.1..11
N(0,1)
n=10 n=10 nn==33
n增大
000.0..00555
nnn===111
000
-5--55
-4--44
-3-3
-2-2
-1-1
00
11
22
33
444
555
t 分布的密度曲线关于y轴对称 随着n的增大, t 分布的密度曲线越陡
n 时,t 分布趋于标准正态分布N (0,1)
后,还要对数据进行加工和提炼,将样本的有关 信息,利用数学的工具进行加工.
引入统计量的概念
12
定义 设( X1, X 2 ,, X n )为来自总体X的一个样本,
若n元函数f ( X1, X 2 ,, X n )不含任何未知参数,
则
称f
(
X
1
,
X
2
,,
X
n
)为X
1
,
X
2
数理统计基本概念
P{6.262 χ 2 24.996}
2 2
P{χ 6.262} P{χ 24.996}
0.975 0.05 0.925
注意 应注意分布表的定义与查法!
#
数理统计基本概念
3.自由度为 n的 t 分布 作笔名发表文章.
T~t(n)
又称学生氏分布--第一个研究者以Student
( X 1 , X 2 , , X n ) ~ ( 2 ) e
n 2 2
i 1
( xi )2 2 2
n
数理统计基本概念
四、统计量 定义6.1.2 设X1 , X2 , ·, Xn是总体X的样本, · · T为n元实值函数,若样本的函数 T=T(X1 , X2 , ·, Xn) · · 是随机变量且不含未知参数,称 T为统计量. 对相应的样本值( x1 , x2 , … , xn ) ,称 t =T( x1 , x2 , … , xn )
理
统
计
的
引
入
数理统计基本概念
某厂生产的一批产品中次品率为 p 。从中 抽取10件产品装箱。 概
1)没有次品的概率 2)平均有几件次品
率
3)为以 0.95的概率保证箱中 有10件正品,箱中至少要装多 少件产品。
数
理
统
计
的
引
入
数理统计基本概念
所有这些问题的关键是 p 是已知的! 如何获取 p ? 这就是数理统计的任务了!
定的α(0<α<1),数uα满足
P{ X u } ,
(C ) u1 ;
数理统计的基本概念
n 1 2
, x .
t 分布的概率密度图形
图形关于 x 0 对称, lim f ( x; n) 0 , 且 x 当 n 充分大时,f (x; n) 趋近于标准正态 分布的概率密度。
定理 4: X 1, 2, , n 是抽自正态总体 设 X X
若总体 X 是离散型的,其分布律为:
则样本的联合分布为
§6.2 抽样分布
6.2.1 统计量的概念 由样本推断总体的某些情况时,需要对样本进行“ 加工”,构造出若干个样本的已知 (确定)的函数, 其作用是把样本中所含的某一方面的信息集中起来 。 这种不含任何未知参数的样本的函数称为统计量。 它是完全由样本所决定的量。 定义2:设 X 1 , X 2 , , X n 是来自总体X的样本, g( X 1 , X 2 , , X n ) 是样本 X 1 , X 2 , , X n 的函数,如果 g( X 1 , X 2 , , X n ) 中不包含任何未知参数,则称它 是一个统计量。
1 (0.82)
1 0.7939 0.2061
X ~ N (0, 22 ), X1 , X 2 , X3 , X 4 为其样本,求a,b 例2:总体
(2). (n 1)S / ~ (n 1)
2
X (1). X ~ N ( , / n), 或 ~ N (0,) ; 1 / n 2 2 2
2
X (3). X 与 S 相互独立; (4). ~ t(n 1). S/ n
定理5:设X1, X2, …, Xm 与Y1, Y2, …, Yn分别来自总体 2 两样本独立, X ~ N ( 1 , 12 )和Y ~ N ( 2 , 2 )的样本, 2 S12 / S2 则有 F 2 ~ F ( m 1, n 1). 2 1 / 2 定理6*:设X1, X2, …, Xm 与Y1, Y2, …, Yn分别来自
数理统计的基本概念
第6章
§6.1-6.2
第10页
设(X1,X2,…,Xn)为来自总体X的简单随机样本 1 n 1.样本均值: X X i 常用于估计总体分布的均值,或 检验有关总体分布均值的假设。 n i 1
n 1 2 S2 ( X X ) 2.样本方差: i n 1 i 1
首页 上页 返回 下页 结束
第6章
§6.1-6.2 §6.1 样本及抽样分布
第3页
数理统计的核心问题是由样本推断总体,即统计推断
6.1.1 总体、个体与样本
1. 总体:研究对象的全体称为总体(母体),用X表示, 它是一个随机变量. 总体分为有限总体和无限总体. 个体:组成总体的每个研究对象称为个体.
i 1 i 1
i
ki !
e
首页
上页
返回
下页
结束
第6章
§6.1-6.2
第8页
3 加工某零件时,每一件需要的时间服从均值为1 / 的 指数分布,今以加工时间为零件的数量指标,任取n件 零件构成一个容量为n的样本,求样本分布.
解:零件的加工时间为总体X,则X ~ E ( ), 其概率 e x x0 密度为 f ( x) x0 0 于是样本( X 1 , X 2 , X n )的密度为 f ( x1 , x2 , xn )
样本容量为5
首页 上页 返回 下页 结束
第6章
§6.1-6.2
第5页
样本是随机变量. 抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量(X1, X2, …, Xn). 一旦取定一组样本,得到的是n个具体的数 (x1,x2,…,xn),称为样本的一次观察值,简称样本值 .
数理统计的基本概念
样本k阶原点矩 样本 阶原点矩 样本k阶中心矩 样本 阶中心矩
河南理工大学精品课程
1 Ak = n 1 Bk = n
∑ ∑
n
n
i =1
X ik ( k = 1, 2 , L )
i =1
( X i − X ) k ( k = 1, 2 , L )
概率论与数理统计
说明 (修正 样本方差还可表示为 修正)样本方差还可表示为 修正
n 1 S2 = [ ∑ X i2 − n X 2 ] n − 1 i =1
1 n 推导】 【推导】 S 2 = ( X i − X )2 ∑ n − 1 i =1 = = = =
河南理工大学精品课程
1 n ( X i2 − 2 X i X + X 2 ) ∑ n − 1 i =1 n n n 1 [ ∑ X i2 − 2 X ∑ X i + ∑ X 2 ] n − 1 i =1 i =1 i =1 n 1 [ ∑ X i2 − 2 n X 2 + n X 2 ] n − 1 i =1 n 1 [ ∑ X i2 −n X 2 ] n − 1 i =1
河南理工大学精品课程 概率论与数理统计
做法
从总体中随机地抽取若干个体(灯泡、 从总体中随机地抽取若干个体(灯泡、工大男
生),测试其所需数据(寿命、身高),最后对所得数据通过 ),测试其所需数据 寿命、身高), 测试其所需数据( ),最后对所得数据通过 整理加工和分析来推断总体(这批灯泡寿命、 整理加工和分析来推断总体(这批灯泡寿命、工大男生身 高)的分布情况,从而了解整体情况. 的分布情况,从而了解整体情况. 一般,我们所研究的总体的某项数量指标X 一般,我们所研究的总体的某项数量指标X是一个随 机变量,其取值在客观上有一定的分布.因此, 机变量,其取值在客观上有一定的分布.因此,对总体的研 究,就是对相应的随机变量X的研究。 就是对相应的随机变量X的研究。 今后,我们称X 今后,我们称X的分布函数和数字特征分别为总体的 分布函数和数字特征, 分布函数和数字特征,并不再区分总体与相应的随机变量 X.对总体的称呼 总体,总体X 总体F X.对总体的称呼:总体,总体X与总体F. 对总体的称呼:
第六章 数理统计的基本概念
1 n 2 S S ( X X ) i n 1 i 1
2
(4) 样本k阶(原点)矩
1 n k Ak X i n i 1
k 1, 2,
k 2,3,
(5) 样本k阶中心矩
1 n Bk ( X i X )k n i 1
§2
常用统计量的分布
统计量的分布称为抽样分布.下面介绍三种由 正态总体演化而来的统计量的分布:
• 从二战后到现在,是统计学发展的第三个时期,这是一个在 前一段发展的基础上,随着生产和科技的普遍进步,而使这 个学科得到飞速发展的一个时期,同时,也出现了不少有待 解决的大问题.
学科奠基者
数理统计作为一个进一步完善的数学学科的奠基者是英国人费歇尔。他1909 年入剑桥大学,攻读数学物理专业,三年后毕业。毕业后,他曾去投资办工 厂,又到加拿大农场管过杂务,也当过中学教员。1919年,他开始对生物统 计学产生了浓厚的兴趣,参加罗萨姆斯泰德试验站的工作,致力于数理统计 在农业科学和遗传学中(费歇尔1890—1962)的应用研究。 年轻的费歇尔主要的研究工作是用数学将样本的分布给以严格的确定。 在一般人看来枯燥乏味的数学,常能带给研究者极大的慰藉,费歇尔热衷于 数理统计的研究工作,后来的理论研究成果有:数据信息的测量、压缩数据 而不减少信息、对一个模型的参数估计等。 最使科学家称赞的工作则是试验设计,它将一切科学试验从某一个侧面 “科学化”了,不知节省了多少人力和物力,提高了若干倍的工效。 费歇尔培养了一个学派,其中有专长纯数学的,有专长应用数学的。在30- 50年代费歇尔是统计学的中心人物。1959年费歇尔退休后在澳大利亚度过了 最后三年。
若 x1 , x2 , , xn 是样本的观察值, 则 g ( x1 , x2 , xn ) 是 g ( X 1 , X 2 , X n )
数理统计基本概念
1 1 n1 n2
~ t ( n1 n2 2)
定理 5 (两总体样本方差比的分布)
且X与Y独立, 设X ~ N ( 1, ), Y ~ N ( 2 , ), X1, X2,…, X n1是取自X的样本, Y1,Y2,…, Yn2 是
样本是联系二者的桥梁 总体分布决定了样本取值的概率规律, 也就是样本取到样本值的规律,因而可以由 样本值去推断总体.
二、统计量和抽样分布 1. 统计量 由样本值去推断总体情况,需要对样本 值进行“加工”,这就要构造一些样本的 函数,它把样本中所含的(某一方面)的 信息集中起来.
这种不含任何未知参数的样本的函数 称为统计量. 它是完全由样本决定的量.
2. 独立性: X1,X2,…,Xn是相互独立的随机 变量.
由简单随机抽样得到的样本称为简单 随机样本,它可以用与总体独立同分布的 n个相互独立的随机变量X1,X2,…,Xn表示.
若总体的分布函数为F(x),则其简单随机 样本的联合分布函数为 F(x1) F(x2) … F(xn) 简单随机样本是应用中最常见的情 形,今后,当说到“X1,X2,…,Xn是取自某 总体的样本”时,若不特别说明,就指简 单随机样本.
数理统计的基本概 念
一、总体和样本
1.总体
一个统计问题总有它明确的研究对象.
研究对象的全体称为总体(母体), 总体中每个成员称为个体.
总体
…
研究某批灯泡的质量
然而在统计研究中,人们关心总体仅仅 是关心其每个个体的一项(或几项)数量指标 和该数量指标在总体中的分布情况. 这时, 每个个体具有的数量指标的全体就是总体.
统计中,总体这个概念 的要旨是:总体就是一个 概率分布.
数理统计的基本概念
证明:设F~F(n1,n2),则
P{F F1 (n1 , n2 )} 1
1 1 P{ } 1 F F1 (n1 , n2 ) 1 1 P{ } F F1 (n1 , n2 )
得证!
1 P{ F (n2 , n1 )} F
5.1.4 统计量及抽样分布
2. F分布的分位点 对于:0<<1,
若存在F(n1, n2)>0,
满足
P{FF(n1, n2)}=, 则
称F(n1, n2)为 F(n1, n2)的 上侧分位点;
F (n1 , n2 )
注:
1 F1 (n1 , n2 ) F (n2 , n1 )
1 ~ F ( n2 , n1 ) F
列出其频数频率分布表。
组序 分组区间 组中值 1 (147,157] 152 2 (157,167] 162 3 (167,177] 172 4 (177,187] 182 5 (187,197] 192 合计
频数 4 8 5 2 1 20
频率 累计频率(%) 0.20 20 0.40 60 0.25 85 0.10 95 0.05 100 1
1、设X 1 , X 2 ,
, X n (n 2)为来自总体N (0,1)的简单随机样本, (n 1) X 12
2 X i i 2 n
X 为样本均值,S 2为样本方差,则统计量
服
从 __________ 分布。 (05—06二)
2、设 X 1 , X 2 , X 3是来自正态分布 N (0, 2 )总 体的简单随机样本,则 统计量 2 服从 ________ 分布。(05—06三) X1 X X
3.总体、样本、样本观察值的关系 总体
概率论和数理统计(第三学期)第7章数理统计的基本概念
n i1
i
1 n
n
Ei
i1
D
D 1 n
n i 1
i
1 n2
n
Di
i 1
2
n
2
S~ 1 n
n i 1
i
2
1 n
n i 1
i2 2i
2
1 n
n
i2
i 1
2
n
i
i 1
n
2
1 n
n
i2
i 1
2
2
2
1 n
n
i2
i 1
2
E S~2
E
1 n
n
i2
i 1
23
.209
2
2 0.95
20
10
.851
当自由度n 45时,可用下面近似公式去求2 n:
x2 n
1 2
u
2
2n 1
例3
求
2 0.05
60 .
解
2 0.05
60
1 2
u0.05
2
2 60 1
1 1.645
2
119 78.798
2
3、t分布的上侧分位点
对于给定的α(0<α<1),使
2
e
xi 2 2
2
(2
) e 2
n 2
1
2 2
n i1
xi 2
在数理统计中,总体的分布往往是未知的,需 要通过样本找到一个分布来近似代替总体分布。
§7.3 分布的估计
频率分布 例 某炼钢厂生产的钢由于各种因素的影响,各炉
钢的含硅量可以看作是一个随机变量,现记录了 120炉钢的含硅量百分数,求出这个样本的频数分 布与频率分布。
第五章 数理统计的基本概念
线性无偏估计量
定义:如果总体参数的 点估计 满足 ( 1 ) 是样本的线性函数; (2)E
最小方差线性无偏估计量
定义:如果总体参数的 点估计 满足 ( 1 ) 是样本的线性函数; (2)对 的一切线性无偏估计量 0,D D 0
定理 (R-C不等式)
设总体X具有分布密度f ( x; )。抽取样本( x1 ,..., xn ), 设g ( )为 的一个可估函数,T T ( x1 ,..., xn )为g ( ) 的一个无偏估计量,且 满足正则条件
• 若12, 22已知
(X Y) ( 1 2 ) U ~ N (0,1)
2 1
n
2 2
m
• 若12, 22未知,但是12= 22
T (X Y) ( 1 2 ) ~ t (m n 2)
12
m
2 2
n
mS12
12
2 nS2 2 2
T
(X Y) (1 2 ) 1 1 2 mS12 nS2 /(m n 2) m n
~ t (m n 2)
推论:设( X 1 ,..., X n )和(Y1 ,..., Ym )分别为来自
2 2 正态总体N ( 1 , 1 )和N ( 2 , 2 )的两个相互
独立的样本,则随机变量
F
2 若 1 2 2
2 2 Sm / 1 2 Sn 2 / 2
~ F (m 1, n 1)
F
2 Sm 2 Sn
~ F (m 1, n 1)
第六章 参数估计
第一节 点估计
• 定义:设为总体分布中的未知参数,从X 中抽取样本 (x1,…,xn) ,构造适当的统计量 (x1,…,xn), 估计 (以的值作为的近似), 这种方法称为参数的点估计。 • 统计量称为的点估计量; • 对于一组样本观测值 (x1,…,xn) ,该统计量 相应的值(x1,…,xn)称为的点估计值 • 的点估计量和点估计值简称为的点估计。
数理统计的基本概念
概率论与数理统计的区别: 在概率论中,假设随机变量的分布列或者分布函数已知,然 后描述随机变量的统计规律. 数理统计首先解决,如何知道 随机变量的分布规律,如何知道分布中所含的参数.
数理统计研究问题:它研究怎样有效地收集整理和分析带有随 机性的数据,以对所考察的问题作出推断或预测,直至为采取一 定的决策和行动提供依据和建议.
概率统计的基本问题:依据有限个观测或试验如何对整体所作 出推论的问题.这种伴随有一定概率的推断称为统计推断.
母体与子样、经验分布函数
1、母体:把研究对象的全体所构成的一个集合称为母体或总体; 组成母体的每一个成员称为个体. 注:10、实际应用中总体往往指研究对象的某项数值指标的全体。 20、总体的某个数值指标是一个具有分布函数F(x)随机变量,称 总体为具有分布函数F(x)的总体。 30、也可能是一个随机向量,相应的分布函数就为多元函数.
(i
n! 1)!(n
i)![F (
y)]i1[1
F(
y )] n1
f
(
y),
0 ,
a yb 其它
证明 第 i个次序统计量(i)落入无穷小区间 [ y , y y)
内这一事件等价于”容量为n的子样1 ,2 , n 中有(i 1)
个分量落入区间[a , y)内,1个分量落入区间[ y , y y)内,
n
F ( x1 ,, xn ) F ( xi ) i 1
例1 设总体 X 服从参数为 ( 0)的指数分布, ( X1, X2 ,, Xn )
是来自总体的样本, 求样本( X1, X2 ,, Xn )的概率密度.
解
总体 X 的概率密度为
ex ,
f (x)
数理统计的基本概念
另一类是研究如何分析所获得的随机数据,对所研究 的问题进行科学的、合理的估计和推断,尽可能地为 采取一定的决策提供依据,作出精确而可靠的结论. 这部分的内容称为推断统计学,如:参数估计、假设 检验等。
我们主要讨论有关推断统计学中几个最基本的 问题。
在数理统计中总体X的分布永远是未知的,即使 有足够的理由可以认为总体X服从某种类型的分布, 但这个分布的参数还是未知的。
例如本市家庭的月收入X是个随机变量,X服从什么
分布事先是不清楚的,根据资料可确信 X ~ N , 2 .
但 , 2 究竟取什么值还是未知的,
由于总体X的分布是未知的,因此X的数字特征如 均值、方差等往往也是一个未知的值。对于这些未知
不过在统计研究中,人们关心总体仅仅是关心
其每个个体的一项(或几项)数量指标和该数量指标在总体中的分布
情况. 这时,每个个体具有的数量指标的全体就是总体.
称总体中所含个体的数目为总体容量, 总体容量有限的称为有 限总体, 总体容量无限的称为无限总体.
当个体个数很大时通常把有限总体看作无限总体。
从另一方面看: 统计的任务,是根据从总体中抽取的样本, 去推断总体的性质. 由于我们关心的是总体中的个体的某项指标(如人的身高、体重, 灯泡的寿命,汽车的耗油量…), 所谓总体的性质,无非就是这 些指标值集体的性质. 概率分布是刻划这种集体性质最适当的工具. 因此在理论上可 以把总体与概率分布等同起来. 如研究某批灯泡的寿命时, 关心的数量指标就是寿命, 那么, 此 总体就可用描述其寿命的随机变量 X 或用其分布函数 F(x)表示.
一个统计量.
ex1.设 X1, X 2, X3 是取自正态总体 X ~( , 2) 的一个样本,
数理统计的基本概念
数理统计的基本概念第6章数理统计的基本概念6.1 内容框图6.2 基本要求(1)理解总体、样本及统计量的概念,并熟练掌握常⽤统计量的公式.(2)掌握矩法估计和极⼤似然估计的求法,以及估计⽆偏性、有效性的判断. (3)掌握三⼤抽样分布定义,并记住其概率密度的形状.(4)理解并掌握有关正态总体统计量分布的⼏个结论,如定理6.4~6.9及定理6.11.6.3 内容概要1) 总体与样本在数理统计中,我们把作为统计研究对象的随机变量称为总体,记为ξ,η,… 。
对总体进⾏ n 次试验后所得到的结果,称为样本,记为(n X X X ,,,21 ),(n Y Y Y ,,,21 ),……,其中,试验次数 n 称为样本容量。
样本(n X X X ,,,21 )中的每⼀个 i X 都是随机变量。
样本所取的⼀组具体的数值,称为样本观测值,记为总体与样本统计量点估计矩阵估计常⽤统计量定义统计量的分布正态总体统计量的分布极⼤似然估计点估计的评价三⼤抽样分布(n x x x ,,,21 )。
具有性质:(1)独⽴性,即 n X X X ,,,21 相互独⽴。
(2)同分布性,即每⼀个 i X 都与总体ξ服从相同的分布。
称为简单随机样本。
如果总体ξ是离散型随机变量,概率分布为 }{k P =ξ,那么样本(n X X X ,,,21 )的联合概率分布为∏∏=========ni i ni i in n x P x XP x X x X x X P 112211}{}{},,,{ξ。
如果总体ξ是连续型随机变量,概率密度为 )(x ?,那么样本(n X X X ,,,21 )的联合概率密度为∏∏====ni i ni i X n x x x x x i1121)()(),,,(*??。
如果总体ξ的分布函数为 )(x F ,那么样本(n X X X ,,,21 )的联合分布函数为∏∏====ni i n i i X n x F x F x x x F i 1121)()(),,,(* 。
数理统计第二章学生
定理2. (样本方差的分布)
设 X1 , X2 , … , Xn 是取自正态总体 样本 , 则有 的 分别为样本均值和修正样本方差
的样本, 则有
和 证明:设
相互独立。
而
定理3(与样本均值和样本方差有关的一个分布)
, X n )T 的次序统计量,样本的中位数定义为
X n 1 , ( 2) X 1 [ X n X n 1 ], ( ) 2 (2) 2 n为奇数, n为偶数,
其观测值为
x n 1 , ( ) 2 x 1 [ x n x n 1 ], ( ) 2 (2) 2
性质2:设
,则
0
y
(二)
t分布 设X~N(0, 1), 则称随机变量 , 并且X, Y独立,
t分布的概率密度为
h(t)
n=∞(正态) n=10
服从自由度为n的t分布. 记为t ~ t(n).
0
n=1
t
t 分布的特点: 1、其概率密度函数是偶函数。当n>30时, t 分 布与标准正态分布非常接近;当n 趋于无穷大 时,t 分布趋于标准正态分布。 2、t 分布的尾重比正态分布大。 3、t 分布只存在k<n阶矩。
抽样分布 —— 统计量的分布. 几种常用的统计统计分布 (一) 分布 设X1, …, Xn是来自总体N(0, 1)的样 本, 则称统计量 服从自由度为n的 分布.
§2.3 次序统计量与经验分布函数 §2.4 描述性统计分析
17
记为
.
分布的概率密度为
分布的性质: 性质1:设 ,则
f (x)
数理统计的基本概念
数理统计的基本概念
1. 总体和样本:总体是研究对象的全体,样本是从总体中选取的一部分。
2. 参数和统计量:参数是总体的性质,统计量是样本的函数,用来估计总体的参数。
3. 随机变量和概率分布:随机变量是取值不确定的变量,概率分布是描述随机变量取值可能性的函数。
4. 分布特征:包括均值、方差、标准差、偏度和峰度等。
5. 假设检验:用样本的统计量推断总体参数的方法。
6. 置信区间:用来估计总体参数的区间,表示参数真值有一定概率落在该区间之内。
7. 方差分析:用来比较多组数据的差异来源和大小的方法。
8. 回归分析:用来研究自变量和因变量之间关系的方法。
数理统计的基本概念
i 1
若总体X是持续型r.v. ,d.f.为f(x),则样
本的联合d.f.为
n
fn( x1, x2 ,, xn ) f ( xi )
i 1
若总体X是离散型r.v. ,其概率分布为
p(x)=P(X=x),则样本的概率分布为: n
pn (x1, x2, , xn ) P(X1 x1, X2 x2, , Xn xn) p(xi ).
注:在统计研究中,人们关心总体仅仅是关心其每个 个体的一项(或几项)数量指标和该数量指标在总体中 的分布状况.这时,每个个体含有的数量指标的全体就 是总体.
样本 —— 从总体中抽取的部分个体. 用 ( X1, X 2,, X n )表示, n 为样本容量.
称 (x1, x2,为,总xn体) X 的一个容量为n
★K.皮尔森在1990年提出了检验拟合优
度的 2统计量,并证明了其极限分布就是 2分布。
★K.皮尔森的学生英国医生戈塞特1908
年导出了 t统计量的精确分布— t分布,开
创了小样本的先河。
★费希尔系统发展了正态分布总体下多 个统计量的抽样分布理论;建立了以极 大似然预计为中心的点预计理论;创立
了实验设计,并发展了对应的数据分析 办法——方差分析。
k 1
n ik e
sn
e n
k 1 ik !
i1 !i2 ! in !
其中ik (1 k n)取非负整数,sn i1 i2 in.
统计推断:运用总体的样本信息对未知的总
体分布进行推断。
总体、样本及样本值间的关系
总体(理论分布)?
样本值
样本
样本是联系两者的桥梁
总体分布决定了样本取值的概率规律,也就 是样本取到样本值的规律,因而能够由样本 值去推断总体.
第6章 数理统计的基本概念
(
n1 2
n1
)
+ n2 2
(
)
n2 2
)
(
n1 n2
)(
n1 n2
n1 −1
x) 2 (1 +
n1 n2
−
x)
n1 + n2 2
,x
0
0,
x0
24
f (x) =
(
(
n1 2
0
n1 + n2 2
) ( ,
)
n2 2
)
(
n1 n2
)(
n1 n2
n1 −1
x) 2 (1 +
n1 n2
− n1 + n2
n−2 23
3、F 分布
定义 设 X ~ 2 (n1 ) , Y ~ 2 (n2 ) ,且 X 与 Y 相互
独立,则称随机变量
F = X / n1 Y / n2
服从自由度为 (n1, n2 )的 F 分布,记为 F ~ F (n1, n2 ) .
F(n1,n2)的概率密度为
f (x) =
(
实际上,每一次测量所得结果是一个个体, 而总体是由“一切可能的测量值”组成。这只是 一个想象中存在的集合,因为不可能去进行无限 次测量。它的个体是通过试验“制造”出来的。
这种情况在实际应用中非常之多。给这种总 体同样可规定分布,例如上述例子中说“测量结 果服从正态分布”是容易理解的。
8
二、样本
一般情况下,对总体的每一个个体都进行观察或试 验是不可能的,这是因为经济上、时间上不允许(如个体 的数量很大),或观察试验是带破坏性的(如灯泡的寿命、 炮弹的射程).因此,必须对总体进行抽样观察.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X1 +X2 +X3 +X4……..XN ……..X
X(平均值)= (平均值)=
N
X(中位数)= (中位数)= R(极差) = 极差)
一组数据按大小排列,中 间的那个数(奇 数时)。中间两个数的平均值(偶数时) Xmax – Xmin
S
2
=
1 / (N-1) . ∑[XI - X(平均值)]2 (N平均值)
S=+ √ S2
11
例: 求 1、2、3、4、5 五个数的平均值、 中位数、极差、方差、标准偏差。 X(平均值)= 3 平均值) X(中位数)= 3 中位数) R= 5 – 1 =4 S =1/4{4+1+0+1+4} = 1/4{10} = 2.5 S =1.58
2
12
七、统计推断 的可能性
1、用样本推断总体的方法是: 分析样本质量分布,计算样本的平均值和标 准偏差,来推断总体的质量分布。 总体平均值用“ 表示,标准偏差用“ 总体平均值用“µ”表示,标准偏差用“σ”表 示。 样本平均值用“ 样本平均值用“X平均”表示,标准偏差用 “S”表示。 13
1、分布中心与公差中心重合的情况下: T CP = B TU--- 上偏差 = 6S TL---下偏差 ---下偏差
21
TU - TL
2、分布中心与公差中心不重合的情况下: T - 2ε CPK = 6S ( TU -TL) -2ε TL) = 6S
ε = M - X(平均)的绝对值 (平均) M =公差中心值 =公差中心值 X=样本平均值 X=样本平均值
19
过程能力指数的数学模型: T CP = B = 6S T
CP--------过程能力指数 CP--------过程能力指数 T----------公差(技术要求) ----------公差(技术要求) B----------过程能力(工序能力) ----------过程能力(工序能力)
20
过程能力指数的计算
正常波动----随机原因引起、影响小、难克服。 正常波动----随机原因引起、影响小、难克服。 异常波动----系统原因引起、影响大、容易克服。 异常波动----系统原因引起、影响大、容易克服。 (系统即“人、机、料、法、环、测”系统。) (系统即“人、机、料、法、环、测”系统。)
3
正常波动 异常波动 质量水平
(1)现场型QC小组选题主要是针对解决异 )现场型QC小组选题主要是针对解决异 常波动。小组活动的目标是恢复到原来的质 量水平。(这个目标无论是小组自选的还是 考核指令的,都可以不进行目标的可行性分 析,因为它解决的是过程因素的失控课题) (2)攻关型QC小组选题主要是针对解决正 )攻关型QC小组选题主要是针对解决正 常波动。小组活动的目标是提高一个新的质 量水平。(攻关型课题一般都是指令的,这 时候要考虑攻关目标的可行性分析)
16
当前,不少企业根据产品的特点或考 虑产品质量对于顾客的影响程度,把控 制范围升程。提出“8S、10S、12S” 制范围升程。提出“8S、10S、12S” 的幅度进行控制, 的幅度进行控制,这都是根据本企业经 营需要所确定的质量目标和管理理念。 采用的“六西格玛” 采用的“六西格玛”管理理念,实 际是把“12S” 际是把“12S”做为控制范围,在中心 值“3S”的波动下,不合格概率能控制 3S” 在3.4/100万的水平。(包括产品质量 3.4/100万的水平。(包括产品质量 也包括工作质量)
17
2、过程能力的定量表示
B =
数 B----过程能力 ----过程能力
6S
6----常 ----常
S----标准偏差 ----标准偏差
例: 某生产过程通过样本数据计算知到 S = 0.24秒 0.24秒 那么该过程的过程能力 “B” 是: 6 × 024 = 1.44 秒
18
3、过程能力指数
过程能力是描述过程本身具有的能力。 质量标准是来自与顾客或产品设计的要求。 我们把质量要求和过程能力的比值 (满足程度)叫做“过程能力指数” (满足程度)叫做“过程能力指数”用 “CP”表示。 CP”
计量值
计数值
7
四、总体与样本 四、总体与样本
1、总体: “在某一次统计中研究对象的全体”。 在某一次统计中研究对象的全体” 2、个体: “组成总体的每个单元”。 组成总体的每个单元” 3、样本: “在总体中随机抽取的进行研究分析的一部 分个体” 分个体”。 4、随机抽样:使总体中每个个体都有同等机会 被抽取组成样本的过程。
8
五、随机抽样的方法 五、随机抽样的方法
1、一般随机抽样法(简单随机) 2、顺序抽样法(等距离抽样、系统抽样) 3、分层抽样法(类型抽样法、先分层再简单随 机) 4、整群抽样法(集团抽样法)
9
六、统 六、统 计 特 征 数
1、显示数据集中位置的统计特征数: 样本平均值(X 样本平均值(X平均值) 样本中位数(X 样本中位数(X中位数) 2、显示数据离散程度的统计特征数: 样本极差(R 样本极差(R) 样本方差(S 样本方差(S2) 样本标准偏差(S 样本标准偏差(S)
22
3、ห้องสมุดไป่ตู้向公差情况下的过程能力指数 计算
只有上偏差时: TU -X(平均值) CPU = 3S 只有下偏差时: X CPL = 3S
23
(平均值)
- TL
例题:
用C30车床加工ф20的芯轴,质量要求是 C30车床加工ф20的芯轴, 19.90至20.10毫米.加工100根后对其进行 19.90至20.10毫米.加工100根后对其进行 测量,然后用计算器计算得出X 测量,然后用计算器计算得出X(平均值)是 20.02毫米,标准偏差S 0.02毫米, 20.02毫米,标准偏差S是0.02毫米,求CPK
24
计算如下: 计算如下: M = (20.1 + 19.9) / 2 =20.00 毫米 X(平均值)=20.02毫米 X(平均值)=20.02毫米 ε = 20.02 - 20.00 = 0.02毫米 0.02毫米 (20.1(20.1-19.9) - (2 × 0.02) CPK= 6 × 0.02 = 1.33
3 正态分布曲线是对称的钟形曲线。 X平均
S
拐点
-3S
-2S
–S
S
2S
3S
15
九、 过程能力和过程能力指数
1、过程能力(加工精度) 生产过程在一定时间内处于统计控制状态 下制造产品的质量特性值的经济波动幅度。 (过程自然存在分散的参数) 过程能力高,质量波动的幅度小; 过程能力低,质量波动的幅度大 我们习惯把 “6S”做为波动幅度范围。 6S”
5
三、数 三、数 据 的 分 类
1、计量值数据: “能在数列上连续读值的数据”。 能在数列上连续读值的数据” 如:重量、长度、温度、压力、容积等 2、计数值数据: “不能在数列上连续读值的数据”。 不能在数列上连续读值的数据” 如:不合格数、疵点数、合格数等
6
数列的读值 0 +∝ 1 2 3 4
25
数理统计基本概念
TPS推进部 推进部 2010年 2010年3月
目
录
一、产品质量波动 二、波动的分类 三、数 据 的 分 类 四、总体与样本 五、随机抽样的方法 六、统 计 特 征 数 七、统计推断 的可能性 八、计量值数据质量分布的规律性 九、 过程能力和过程能力指数
数理统计的概念
一、产品质量波动------必然性和规律性。 一、产品质量波动------必然性和规律性。 二、波动的分类:
八、计量值数据质量分布的规律性
1、计量值数据质量分布服从正态分布。 2、正态分布中,以X(平均)为中线 、正态分布中,以X 各一个“ 各一个“S”区间质量分布的概率是 0.6826,各两个“ 0.6826,各两个“S”区间的质量分布概率 是0.9544, 各三个“ 各三个“S”区间的质量分布概率是 14 0.9973