绥化市第一中学2018-2019学年高二9月月考数学试题解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绥化市第一中学2018-2019学年高二9月月考数学试题解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 若函数1,0,
()(2),0,
x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )
A .5
B .1-
C .7-
D .2
2. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:
小时)间的关系为0e kt
P P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%
的污染物,则需要( )小时. A.8
B.10
C. 15
D. 18
【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.
3. 已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪
+-≤⎨⎪≥⎩
则目标函数2z x y =+的最大值为( )
A .3
B .13
2
C .12
D .15
4. 已知三棱锥S ABC -外接球的表面积为32π,0
90ABC ∠=,三棱锥S ABC -的三视图如图
所示,则其侧视图的面积的最大值为( )
A .4 B
. C .8 D

5. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( )
A .),4(+∞
B .),4[+∞
C .)4,(-∞
D .]4,(-∞
【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.
6. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2
C π
=
”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
7. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30 8. 复数
121i
i
-+在复平面内所对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
9. 设F 为双曲线22
221(0,0)x y a b a b
-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到
另一条渐近线的距离为1
||2OF ,则双曲线的离心率为( )
A .
B .3
C .
D .3
【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.
10.已知点P 是双曲线C :22
221(0,0)x y a b a b
-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且
12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率
是( )
A.5
B.2 D.2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.
11.已知函数(5)2()e
22()2x
f x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩
,则(2016)f -=( ) A .2
e B .e C .1 D .
1
e
【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力. 12.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,
.

,f(x-1)≤f(x),则实数a 的取值范围为
A[] B[]
C[]
D[
] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .
14.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则
OAB ∆面积的最大值为 .
【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.
15.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.
16.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)
的标准差是a = .
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,
设函数()()2n f x x R =??a b
的图象关于点(,1)12
p
对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;
(II )若()()4
f x f p
£对一切实数恒成立,求)(x f y =的单调递增区间.
【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运
算能力.
18.(本小题满分12分)
已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.
19.(本小题满分12分)如图,四棱柱1111ABCD A B C D -中,侧棱1A A ^底面ABCD ,//AB DC ,
AB AD ^,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.
(Ⅰ)证明:11B C ^面1CEC ;
(II )设点M 在线段1C E 上,且直线AM 与平面11ADD A
所成角的正弦值为
6
,求线段AM 的长.
1
1
1
20.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,
5313a b +=.111]
(1)求{}n a ,{}n b 的通项公式; (2)求数列{}n
n
a b 的前项和n S .
21.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连
接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),
(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小。

22.一艘客轮在航海中遇险,发出求救信号.在遇险地点A南偏西45方向10海里的B处有一艘海
难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向
一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.
(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;
中,求角B的正弦值.
(2)若最短时间内两船在C处相遇,如图,在ABC
绥化市第一中学2018-2019学年高二9月月考数学试题解析(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】D111] 【解析】
试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值. 2. 【答案】15 【



3. 【答案】C
考点:线性规划问题.
【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y 轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定. 4. 【答案】A 【解析】

点:三视图.
【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图. 5. 【答案】A
6. 【答案】D
7. 【答案】D 【解析】
试题分析:分段间隔为5030
1500
,故选D. 考点:系统抽样 8. 【答案】C 【解析】
9. 【答案】B 【



10.【答案】A. 【



11.【答案】B
【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B . 12.【答案】B 【解析】当x ≥0时,
f (x )=,
由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2; 当a 2<x <2a 2时,f (x )=﹣a 2;
由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。

∴当x >0时,。

∵函数f(x)为奇函数,
∴当x<0时,。

∵对∀x∈R,都有f(x﹣1)≤f(x),
∴2a2﹣(﹣4a2)≤1,解得:。

故实数a的取值范围是。

二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
π
13.【答案】
4
【解析】
考点:正弦定理.
【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒
角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出
现.
14.
【解析】
15.【答案】2a ≥
【解析】
试题分析:因为()ln f x a x x =-在区间(1,2)上单调递增,所以(1,2)x ∈时,()'10a f x x
=-≥恒成立,即a x ≥恒成立,可得2a ≥,故答案为2a ≥.1
考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.
16.【答案】2
【解析】
试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.
考点:方差;标准差.
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.【答案】
18.【答案】(1)
3
π;(2) 【解析】
试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把
考点:向量的数量积,向量的夹角与模. 【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b ⋅<>=
求得这两个
向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角.
19.【答案】
【解析】【命题意图】本题考查直线和平面垂直的判定和性质、直线和平面所成的角、两点之间的距离等基础知识,意在考查空间想象能力和基本运算能力
20.【答案】(1)2,2==q d ;(2)12326-+-
=n n n S .
(2)
1212--=n n n n b a ,………………6分 12212
1223225231---+-++++=n n n n n S ,① n n n n n S 2
12232252321211321-+-++++=- .②……………8分 ①-②得n n n n n S 2122222222212`1221--+++++=-- 23112222211222222n n n n S --=++++-,…………10分
所以1
2326-+-=n n n S .………………12分 考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.
【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {n
n b 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S . 21.【答案】(1)1
(2)60°
【解析】(1)设BD=x ,则CD=3﹣x
∵∠ACB=45°,AD ⊥BC ,∴AD=CD=3﹣x
∵折起前AD ⊥BC ,∴折起后AD ⊥BD ,AD ⊥CD ,BD ∩DC=D
⊥平面=×AD =×()××=(=(=((2)以D 为原点,建立如图直角坐标系
3
14【解析】

题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇.
在ABC ∆中,4575120BAC ∠=+=,10AB =,9AC t =,21BC t =.
由余弦定理得:2222cos BC AB AC AB AC BAC =+-∠,
所以2221
(21)10(9)2109()2
t t t =+-⨯⨯⨯-, 化简得2
369100t t --=,解得23t =或512
t =-(舍去). 所以,海难搜救艇追上客轮所需时间为23
小时. (2)由2963AC =⨯=,221143BC =⨯=.
在ABC ∆
中,由正弦定理得6sin 6sin1202sin 141414AC BAC B BC ⨯
∠=
===. 所以角B . 考点:三角形的实际应用.
【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键.。

相关文档
最新文档