功率放大电路的发展及目前主流功放的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率放大电路的发展及目前主流功放的应用
功率放大器的发展历程:
一、早期的晶体管功放
半导体技术的进步使晶体管放大器向前迈进了一大步。
自从有了晶体管,人们就开始用它制造功率放大器。
早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。
这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。
再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管于,所以不得不采用变压器耦合输出。
变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。
“还是胆机规声”,这种看法的确事出有因。
二、晶体管功放的发展和互调失真
随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的OCL电路或OTL电路(图一)。
最初的大功率PNP管是锗管,而NPN管是硅管,两者的特性差别非常显着,电路的对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管Q1与一只大功率的NPN硅管Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。
到了六十年代末,大功率的PNP硅管商品化的时候,互补对称电路才得到广泛的应用。
元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。
在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如JBL的SA600,Marantz互补对称电路MOdel15等等。
尽管电子管的拥护者仍大量存在,人们毕竟能够比较公正地看待晶体管放大器了,认为晶体管机频响宽阔,层次细腻,与电子管机比较起来有一种独特的舱力,而不是简单的谁取代谁的问题。
瞬态互调失真的提出是认识上的一次飞跃七十年代,功率放大器的发展史中出现了一件最引人注目的事情,这就是瞬态互调失真(Transientlntermodulation)及其测量方法的提出。
1963年,芬兰Helvar工厂的一名工程师在制作一台晶体管扩音机时,由于接线失误,使电路的负反馈量减少了,后来却意外地发现负反馈量减少后的音质非常好,客观技术指标较差,而更正错误以后的线路尽管技术指标提高了,音质反而比误接时明显下降。
这一现象引起了当时同一工厂的Mr.Otala的重视,之后,他对此进行了悉心研究,于1970年首先发表丁关于晶体管功率放大器瞬态互调失真(TIM)的论文。
至1971年,Otala博士及其研究小组就TIM失真理论发表的论文已经超过20篇,引起了电声界准互补电路人士的广泛反响。
瞬态互调失真的大意是这样的:
在直接耦合的晶体管放大电路中,为了得到很小的谐波失真度和宽阔平坦的频率响应,通常对整体电路施加深达40dB一60dB的负反馈,倘若在加负反馈前放大器的开环失
真为10%,那么加上40dB的负反馈后,失真即可降低至0.1%,这是电子管功效难以做到的。
晶体管功放由于要施加40dB。
60dB的负反馈,所以对一台增益要求为26dB的放大器,它的开环增益就要达到66、86dB。
如此高的增益之下引入深度负反馈,电路势必会产生自激振荡,因而需要进行相位补偿,一般是在推动级晶体管的集电极——基极之间接接一个小电容C,破坏自激振荡的相位条件,形成所谓“滞后补偿”,
当放大器输入端输入持续时间非常短的过渡性脉冲时,由于电容C需要充电时间,所以推动管集电极电压要经过一段时间延迟方能达到最大值,见图四。
显然,在电容C充、放电期间,输出电压V。
将达不到应有的电压值,输入级也不可能得到应有的反馈电压Vf,因而,在过渡脉冲通过输入级的瞬间,输入级将处于负.反馈失控状态,致使输入级严重过载,输出将严重削波引起过渡脉冲瞬时失真(图五)。
如果过渡脉冲波形上还叠加有正弦信号,输出端还会得到很多输入信号频谱不存在的互调频率成份,这就是TIM失真。
TIM失真和音乐信号也有密切关系,音量大、频率高的节目信号容易诱发TIM失真。
严重的TIM失真反映在听感上类似高频交选失真,而较弱的TIM失真给人以“金属声”的不快感觉,导致音质劣化。
至今,音响界对于TIM失真都还有争议,但这毕竟是人们认识的深化,它使后来放大器的设计思想发生了根本性的变化,即更加注重放大器的动态性能而不是仅仅满足于静态技术指标的提高。
三、功放输入级——差动与共射-共基
对称和平衡是电路发展的方向对称和平衡也许是世上事物完美的标志之一。
音乐讲究各声部之间的乎衡与统一,美术以色彩搭配均衡、和谐为美,在服装设计中,常常采取看似不对称的设计,其实质也是为了取得视觉上的均衡。
上面所说的都是艺术,对称和平衡给人一种安定、完美的感觉。
有意思的是,在功率放大器中,对称和平衡也有类似的效果。
最初采用对称设计的例子要算互补对称电路了,一上一下的两只异极性晶体管作推挽输出,不仅可以免除笨重的输出变压器,而且电路的偶次谐波失真在推挽的过程中被抵消了,保真度有了很大提高。
稍后,人们从运算放大器的设计中得到启迪,将左右对称的差动式电路用于功率放木器的输入级,电路的稳定性和线性都得到改善,这时的电路结构如图六所示,这一结构直至今天都还有人采用。
如果以现代的眼光来审评,这一电路是显得过时了一点。
电路的主要缺陷在于电压推动级,因为Q1承担了提供电压增益的主要任务,必然是开环失真很大,频带狭窄。
此图六典型的OCL放大器外,单管放大的过载能力也很差,这一系列的缺点是不利于电路的动态性能的。
围绕着改进电压推动级的性能,人们相继提出了多种结构,共射——共基电路就是一个典型的例子。
共射——共基电路又叫“猩尔曼”电路,它原先是高频电路中广为采用的结构,但用于音频电路中同样可以发挥出色的性能。
首先是它的宽频响,由于共基放大管Qs非常低的输入阻抗,使Q,丧失了电压增益,弥勒效应的影响就非常微弱。
宽频响的推动级拉开了与输入级极点的距离,相位补偿变得很’容易,而且电容C的容量可以大大减小,这对于改善TIM失真是很有利的。
第二个优点是电路的高度线性:共基极电路的输出特性也可以清楚地显示出这一点,有人作过测试,共射一共基电路的失真度比单管共射电路要低一个数量级。
依然是一种不平衡的设计,这一限制来源于输入级。
如果把输入级变动一下,从互补推挽的Q:和Qg的集电极输出信号,那么电压推动级就可以在图七的基础上再增加一组NPN管构成的共射一共基电路,做到推挽输出,这时电路也就非常对称平衡了,几乎达到了完美的程度。
当今许多最先进的功率放大器采用的也是这种电路结构。
图八是另一种电压推动级的形式,其输入信号来自图六中的Ql和Qs,当然此时Qz必须加上集电极负载电阻。
电压推动级也采用对称的差动放大,这不仅可以改善输入级的平衡性,提高放大能力和共模抑制比,而且同样可以降低推动级的失真,因为差动式放大电路当输入在一定的范围内时具有线性的传输特性,有的电路还在Qn、Qz的发射极串人负反馈反阻,更加扩大了线性范围。
Q2和Qd构成镜像电流源,把Q,的集电极电流转移到Qz上,所以尽管是单端输出,电流推动能力却比原来增大了一倍。
PIONEER的M22K功率放大器就是采用的这种电路结构,取得了非常好的效果。
对称和平衡不仅体现在电路的结构上,还表现于元器件的参数上。
差动电路是集成运放中广泛采用的结构,其性能是建立在两只差分管Hrs和Vss精确匹配的基础之上。
同样,推挽电路中,如果两只异极性的晶体管特性不一致时,对波形的两个半周就不能做到一视同仁地放大,这将增力D电路的失真度。
随着节目源的变化,音乐中包含大量瞬变、高能量的成份,要完美地重现这些细节,就要求放大器具有良好的动态响应,对晶体管配对的要求就不仅是静态的HrR和VBE匹配,而且在动态时也要高度匹配,这无疑对元器件参数的平衡提出了更苛刻的要求。
幸运的是,半导体技术的进步为我们提供了这种可能,各种各样的差分对管、晶体管阵列陈出不穷,单个的晶体管一致性也得到较大提高。
正是这些优质的元器件,让对称电路设计的优点得以充分体现,今天看到一台全无负反馈的电路也不会觉得惊讶,因为已经有足够好的开环性能了,又何必为了几个仪器上的数据去牺牲放大电路的动态响应呢?
四、放大器的电源与甲类放大器
极端重视电源的现代放大器“放大器不过是电源的调制器”,这句话道出了放大的实质。
既然如此,又有什么理由不引起对电源的高度重视呢。
电源部份作为推动扬声器发声的源泉,再也不应象过去那样随便找个整流电源接上了事。
对电源的要求有两个方面,即纹波噪声小,输出能力强。
噪声小比较容易办到,只要加大滤波电容器的容量就可以,但是要做到输出能力强却不简单。
首先要加大电源变压器的容量,这是过去一些放大器生产厂所不乐意的,因为加大电源变压器容量会使成本大量增加,整机的重量和体积也会加大;但现在听小喇叭的人越来越多,这些小喇叭大多效率很低,有些名牌音箱如CelestionSI一6O0或Ro3ersLS3/5a,十分大食难推,再加上现代节目信号中常常出现一些炮弹爆炸,锣鼓敲击的声音,对放大器是一个极为严峻的考验,同样两台100W的放大器,一台可能让你感觉到大炮地动山摇的震撼力,而另一台可能象是破鼓在“咐咐”作响。
目前主流功放的应用:
按照使用元器件的不同,功放又有“胆机”[电子管功放],“石机”[晶体管功放],“IC功放”[集成电路功放]。
近年来由于新技术,新概念在胆机中的使用,使得电子管这个古老的真空器件又大放异彩,它的优美的声音,令许多烧友拜倒。
资深的发烧友几乎都有一台。
“IC功放”由于他的音色比不上上两种功放所以在HI-FI功放中很少看到他的影子。
功放大体上可分为三大类“专业功放”“民用功放”“特殊功放”。
“专业功放”一般用于会议,演出,厅,堂,场,馆的扩音。
设计上以输出功率大,保护电路完善,良好的散热为主。
大多数“专业功放”的音色用于HI-FI重放时,声音干硬不耐听。
“民用功放”详细分类又有“HI-FI功放”“AV功放”“KALAOK功放”以及把各种常用功能集于一体的所谓“综合功放”。
“HI-FI功放”就是我们发烧友的功放了,它的输出功率一般大都在2X150瓦以下。
设计上以“音色优美,高度保真”为宗旨。
各种高新技术集中体现在这种功放上。
价格也从千余元到几十万元不等。
“HI-FI功放”又分“分体式”[把前级放大器独立出来],和“合并式”[把前级和后机做成一体]。
一般的讲,在同档次的机型中“分体式”在信噪比,声道分割度等指标上高于“合并机”[不是绝对的]。
且易于通过信号线较音。
合并式机则有使用方便,相对造价低的优点,平价合并机输出功率一般大都设计在2X100W以下,也有不少厂家生产2X100W以上的高档合并机。
“AV”功放是近年脱缰而出的一匹黑马,随着大屏幕电视,多种图象载体的普及,人们对“坐在家里看电影”的需求日益高涨,于是集各种影音功能于一体的多功能功放应运而生。
“AV”是英文AODIOVIDIO即音频,视频的打头字母缩写。
“AV功放”从诞生到现在,经历了杜比环绕,杜比定向逻辑,AC-3,DTS的进程,AV功放的与普通功放的区别,在于AV功放有AV选择杜比定向逻辑解码器,AC-3,DTS解码器,和五声道功率放大器。
以及画龙点睛的数字声场[DSP]电路,为各种节目播放提供不同的声场效果。
但是由于AV功放在电路的信号流通环节上,经过了太多而且复杂的处理电路,使声音的纯净度”受到了过多的“染色”,所以用AV功放兼容HI-FI重放时效果不理想。
这也是很多HI-FI发烧友对AV功放不肖一顾的原因。
“KALAOK功放”也是近年发展起来的一种功放。
它与一般功放的区别在于“KALAOK功放”有混响器从过去的BBD模拟混响发展到现在的DIGETAL数字混响],变调器,话筒放大器。
近年来一些厂家为了市场的需求,把包括AV功放,KALAOK功放在内的各种功能组合成一体即所谓“综合功放”,这是一种大杂烩功放,什么都有,什么也做不好,是一种面向农村的抵挡功放。
“特殊功放”顾名思义就是使用在特殊场合的功放,例如警报器,车用低压功放等等,在此不再介绍。
功放的主要性能指标:
功放的主要性能指标有输出功率,频率响应,失真度,信噪比,输出阻抗,阻尼系数等。
输出功率:单位为W,由于各厂家的测量方法不一样,所以出现了一些名目不同的叫法。
例如额定输出功率,最大输出功率,音乐输出功率,峰值音乐输出功率。
音乐功率:是指输出失真度不超过规定值的条件下,功放对音乐信号的瞬间最大输出功率。
峰值功率:是指在不失真条件下,将功放音量调至最大时,功放所能输出的最大音乐功率。
额定输出功率:当谐波失真度为10%时的平均输出功率。
也称做最大有用功率。
通常来说,峰值功率大于音乐功率,音乐功率大于额定功率,一般的讲峰值功率是额定功率的58倍。
频率响应:表示功放的频率范围,和频率范围内的不均匀度。
频响曲线的平直与否一般用分贝[db]表示。
家用HI-FI功放的频响一般为20HZ20KHZ正负1db.这个范围越宽越好。
一些极品功放的频响已经做到0100KHZ。
失真度:理想的功放应该是把输入的讯号放大后,毫无改变的忠实还原出来。
但是由于各种原因经功放放大后的信号与输入信号相比较,往往产生了不同程度的畸变,这个畸变就是失真。
用百分比表示,其数值越小越好。
HI-FI功放的总失真在0。
03%0。
05%之间。
功放的失真有谐波失真,互调失真,交叉失真,削波失真,瞬态失真,瞬态互调失真等。
信噪比:是指功放输出的各种噪声电平与信号电平之比,用db表示,这个数值越大越好。
一般家用HI-FI功放的信噪比在60db以上。
输出阻抗:对扬声器所呈现的等效内阻,称做输出阻抗。