基于生物量的油菜越冬前植株叶片空间形态结构模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于生物量的油菜越冬前植株叶片空间形态结构模型
张伟欣 1,2 曹宏鑫 2,* 朱 艳 1,* 刘 岩 2 张文宇 2 陈昱利 2 傅坤亚 1,2
1 南京农业大学农学院, 江苏南京 210095; 2 江苏省农业科学院农业经济与信息研究所 / 数字农业工程技术研究中心, 江苏南京 210014
摘 要: 油菜越冬前的形态建成是油菜苗后期乃至整个生长中、后期的物质基础, 叶片是该期最重要的营养器官。 为了明确油菜植株的形态结构要素与器官生物量的关系, 以 3 个甘蓝型油菜品种为材料, 于 2011—2013 年分别设置 品种和肥料试验、品种、肥料和密度试验、品种试验, 越冬前测定油菜植株不同叶位叶片形态指标, 分析油菜主茎叶 片形态参数与叶片干物重的关系, 构建了基于生物量的油菜越冬前植株叶片空间形态结构模型。建模后以独立试验 数据检验, 除短柄长、叶切角和叶弦角、不施肥品种叶片干物重分配系数值(partitioning coefficient of leaf blade dry weight, CPLB)误差较大外, 油菜越冬前植株叶片空间形态结构模型观察值与模拟值一致性较好, 所建模型可靠性较 高, 具有一定的解释性。 关键词: 油菜; 叶片; 生物量; 形态结构; 模型
值。以生物量为基础将油菜生长模型和形态结构模 型结合, 是建立功能-结构油菜模型的重要方法之 一。随着作物模型的发展, 国内外有关油菜作物模 拟研究得到广泛关注。Kiniry 等基于 EPIC 模型[2]构 建 了 EPR95[3] 油 菜 生 长 模 型 , Peterson 等 [4] 利 用 DAISY (differential algebra for identifiability of systems)建立了评价油菜生长发育的 DAR95 (DAISYRape)[5]模型, Habekotte[6]借鉴 LINTUL (light interception and utilization simulator) 建立了 LINTULBRASNAP 模型[7], Gabrielle 等[8]基于 CERES (cropenvironment resource synthesis)建立了油菜 CERESRape 模型, Robertson 等[9]把 APSIM (agricultural production system simulator)应用于油菜, 形成了油 菜生长发育模拟模型 APSIM-Canola; Zhang 等[10]、刘 洪等[11]、廖桂平等[12-13]、刘铁梅等[14]、胡立勇等[15]、 曹 宏 鑫 等 [16] 和 汤 亮 等 [17] 都 分 别 建 立 了 油 菜 生 长 模 型。与生长模型相比, 国内外关于油菜形态结构模 型的研究报道较少。Groer 等[18]和 Müller 等[19]以油 菜为对象, 将生长模型 LEAFC3-N 与 FSPMs (functional-structural plant model)结合, 建立了油菜功能结构模型。该模型可根据输入的气象参数计算每张 叶片碳同化, 使形态结构模型可响应环境变化, 但 这 种 响 应 以 叶 面 积 为 纽 带 。 Jullien 等 [20] 利 用 GreenLab 建立了基于“源-库”关系的油菜分枝与花 扩展模型, 但尚未涉及油菜植株的其他器官。廖桂 平等[21]和欧中斌[22]分别采用基于参数 L-系统, 以油 菜花朵和花序为对象, 建立了油菜花朵、花序的生 长可视化模型。岳延滨等[23]综合油菜各器官形态生
作物学报 ACTA AGRONOMICA SINICA 2015, 41(2): 318328 ISSN 0496-3490; CODEN TSHPA9
DOI: 10.3724/SP.J.1006.2015.00318
/ E-mail: xbzw@
Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant
ZHANG Wei-Xin1,2, CAO Hong-Xin2,*, ZHU Yan1,*, LIU Yan2, ZHANG Wen-Yu2, CHEN Yu-Li2, and FU Kun-Ya1,2
1 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Agricultural Economy and Information / Engineering Research Center for Digital Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
Abstract: Rapeseed morphogenesis at pre-overwintering stage is the basis of growth and development of rapeseed in whole growth stage, and the leaf blades are important vegetative organ in this stage. To quantify the relationships between rapeseed plant architecture indices and the corresponding organ biomass, we used three cultivars including (V1) Ningyou 18 (conventional variety), (V2) Ningyou 16 (conventional variety), and (V3) Ningza 19 (hybrid variety) in the field experiments, and designed treatment of variety-fertilizer, variety-fertilizer-density, and variety tests in 2011–2012 and 2012–2013, with three fertilizer levels of no fertilizer, normal fertilizer (N, P2O5, K2O are 90 kg ha–1), and high fertilizer (N, P2O5, K2O are 180 kg ha–1), and three density levels of D1 (6×104 plant ha–1), D2 (1.2×105 plant ha–1), and D3 (1.8×105 plant ha–1). Morphological indices were determined at pre-overwintering stage, the biomass-based rapeseed aboveground structure model was established with morphological indices, and the relationships between leaf blade indices and leaf blade biomass were analyzed. The models were verified using independent experiment data in 2011–2012, and 2012–2013, showing that the simulated values from the rapeseed plant leaf space morphological structure models, such as leaf blade length, leaf blade width, leaf blade bowstring length, leaf blade petiole length, and leaf blade angle from 2011 to 2012 were goodness of fit to observed values, and their da values and RMSE values were –0.231 cm, 2.102 cm (n=63); –0.273 cm, 0.484 cm (n=63); –0.343 cm, 1.963 cm (n=63); 0.412 cm, 2.095 cm (n=36); –0.635 cm, 1.006 cm (n=27); 4.421°, 14.734° (n=63); 6.642°, 21.817° (n=63), respectively. The correlation between observation and simulation in the morphological indices were significant at P<0.001, but the dap values were less than 5% for the leaf blade length and the leaf blade bowstring length, which indicated that these models’ accuracy is high. The simulated values of the models had better consistency and better reliability with the observed values at pre-overwintering stage except for petiole length of the short-petiole leaves, leaf tangent angle, leaf bowstring angle, and the CPLB (partitioning coefficient of blade dry weight) under the condition of no fertilizer.
本研究由国家自然科学基金项目(31171455, 31201127, 31471415), 国家公益性行业(气象)科研专项(GYHY201106027), 江苏省科技支 撑计划课题(BE2012386-1)和江苏省农业科技自主创新资金项目(CX(14)2114) 资助。 * 通讯作者(ohongxin@; 朱艳, E-mail: yanzhu@ 第一作者联系方式: E-mail: nkyzwx@ Received(收稿日期): 2014-06-16; Accepted(接受日期): 2014-09-30; Published online(网络出版日期): 2014-11-11. URL: /kcms/detail/11.1809.S.20141111.1558.017.html
第2期
张伟欣等: 基于生物量的油菜越冬前植株叶片空间形态结构模型
319
Keywords: Rapeseed (Brassica napus L.); Leaf blade; Biomass; Morphological structure; Model
油菜是世界四大油料作物之一, 在世界各地都 有大面积种植, 常年种植面积约 2.43 亿公顷[1]。功 能-结构油菜模型研究对油菜育种中的株型选择及 油菜栽培中的株型调控都具有重要的理论和应用价
相关文档
最新文档