现代加工技术之激光加工论文--要点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南通大学
Nan Tong University
激光加工技术
院系:
专业:自动化
班级:
学号:
姓名:
摘要:激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。

用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。

激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。

关键词:加工原理、发展前景、强化处理、微细加工、发展前景。

Abstract: Laser processing refers to the use of a laser beam projected onto the surface of the material produced by thermal effect to complete the process, including laser welding, laser cutting, surface modification, laser marking, laser drilling and micro-processing. Using a laser beam on a variety of materials processing, such as drilling, cutting, dicing, welding, heat treatment and so on. Laser can adapt to any material manufacturing, especially in some of the special requirements of precision and, in particular, special occasions and material manufacturing plays an irreplaceable role
Key words: processing principle, the prospects for the development and strengthening treatment, micro-machining
激光加工技术
回顾20世纪对人类社会产生重大影响的科技发明,激光器的诞生无疑是一个极为耀眼的亮点,激光以其无与伦比的技术优势正继微电子技术之后,推动人类科学技术进入新的发展阶段。

发达国家为了在全球竞争环境中占据世界信息技术的制高点,赢得主动权,纷纷加紧实施激光产业发展计划,如美国的“激光核聚变计划”,德国的“激光2001行动计划”,英国实施“阿维尔计划”,日本启动“激光研究五年计划”等。

这些项目的实施,有效推动了全球激光产业进入高速发展
阶段。

一激光加工技术的工作原理
激光加工利用高功率密度的激光束照射工件,使材料熔化气化而进行穿孔、切割和焊接等的特种加工。

早期的激光加工由于功率较小,大多用于打小孔和微型焊接。

到20世纪70年代,随着大功率二氧化碳激光器、
气体激光器加工原理
高重复频率钇铝石榴石激光器的出现,以及对激光加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。

数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。

各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。

固体激光器加工原理
从激光器输出的高强度激光经过透镜聚焦到工件上,其焦点处的功率密度高达10(~10(瓦/厘米(,温度高达1万摄氏度以上,任何材料都会瞬时熔化、气化。

激光加工就是利用这种光能的热效应对材料进行焊接、打孔和切割等加工的。

通常用于加工的激光器主要是固体激光器和气体激光器。

二激光加工的原理及其特点
激光具有的宝贵特性决定了激光在加工领域存在的优势:
1、光点小,能量集中,热影响区小;
2、不接触加工工件,对工件无污染;
3、不受电磁干扰,与电子束加工相比应用更方便;
4、激光束易于聚焦、导向,便于自动化控制。

5、范围广泛:几乎可对任何材料进行雕刻切割。

6、安全可靠:采用非接触式加工,不会对材料造成机械挤压或机械应力。

7、精确细致:加工精度可达到0.1mm
8、效果一致:保证同一批次的加工效果几乎完全一致。

9、高速快捷:可立即根据电脑输出的图样进行高速雕刻和切割,且激光切割的速度与线切割的速度相比要快很多。

10、成本低廉:不受加工数量的限制,对于小批量加工服务,激光加工更加便宜。

11、切割缝细小:激光切割的割缝一般在0.1-0.2mm。

12、切割面光滑:激光切割的切割面无毛刺。

13、热变形小:激光加工的激光割缝细、速度快、能量集中,因此传到被切割材料上的热量小,引起材料的变形也非常小。

14、适合大件产品的加工:大件产品的模具制造费用很高,激光加工不需任何模具制造,而且激光加工完全避免材料冲剪时形成的塌边,可以大幅度地降低企业的生产成本提高产品的档次。

15、节省材料:激光加工采用电脑编程,可以把不同形状的产品进行材料的套裁,最大限度地提高材料的利用率,大大降低了企业材料成本
三激光加工技术的应用
激光打孔技术
激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现
激光打孔机
代制造领域的关键技术之一。

在激光出现之前,只能用硬度较大的物质在硬度较小的物质上打孔。

这样要在硬度最大的金刚石上打孔,就成了极其困难的事。

激光出现后,这一类的操作既快又安全。

但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。

激光切割、划片与刻字在造船、汽车制造等工业中,常使用百瓦至万瓦级的连续CO2激光器对大工件进行切割,既能保证精确的空间曲线形状,又有较高的加工效率。

对小工件的
切割常用中、小功率固体激光器或CO2激光器。

在微电子学中,常用激光切划硅片或切窄缝,速度快、热影响区小。

用激光可对流水线上的工件刻字或打标记,并不影响流水线的速度,刻划出的字符可永久保持(图2)。

激光微调采用中、小功率激光器除去电子元器件上的部分材料,以达到改变电参数(如电阻值、电容量和谐振频率等)的目的。

激光微调精度高、速度快,适于大规模生产。

利用类似原理可以修复有缺陷的集成电路的掩模,修补集成电路存储器以提高成品率,还可以对陀螺进行精确的动平衡调节(图3)。

激光焊接激光焊接是激光材料加工技术应用的重要方面之一,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等参数,使工件熔化,形成特定的熔池。

由于其独特的优点,已成功地应用于微、小型零件焊接中。

高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。

获得了以小孔效应为理论基础的深熔接,在机械、汽车、钢铁等工业部门获得了日益广泛的应用。

激光焊接金刚石
与其它焊接技术比较,激光焊接的主要优点是:激光
焊接速度快、深度大、变形小。

能在室温或特殊的条
件下进行焊接,焊接设备装置简单。

例如,激光通过
电磁场,光束不会偏移;激光在空气及某种气体环境
中均能施焊,并能通过玻璃或对光束透明的材料进行
焊接。

激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。

可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。

便如,将铜和钽两种性质截然不同的材料焊接在一起,合格率几乎达百分之百。

也可进行微型焊接。

激光束经聚焦后可获得很小的光斑,且能精密定位,可应用于大批量自动化生产的微、小型元件的组焊中,例如,集成电路引线、钟表游丝、显像管电子枪组装等由于采用了激光焊,不仅生产效率大、高,且热影响区小,焊点无污染,大大提高了焊接的质
量。

激光热处理激光热处理是利用高功率密度的激光
束对金属进行表面处理的方法,它可以对金属实现相
变硬化(或称作表面淬火、表面非晶化、表面重熔粹
火)、表面合金化等表面改性处理,产生用其大表面
淬火达不到的表面成分、组织、性能的改变。

经激光
处理后,铸铁表面硬度可以达到HRC60度以上,中碳
及高碳的碳钢,表面硬度可达HRC70度以上,从而提
高起抗磨性,耐腐蚀,抗氧化等性能,延长其使用寿
命。

激光热处理
激光熔覆技术
利用激光高功率密度,由激光加工系统在数控控制下,在基材表面指定部位形成一层很薄的微熔层,同时添加特定成分的自熔合金粉,如镍基、钴基和铁基合金等,使它们以熔融状态均匀地铺展在零件表层并达到预定厚度,与微熔的基体金属材料形成良好的冶金结合,并且相互间只有很小的稀释度,在随后的快速凝固过程中,在零件表面形成与基材完全不同的、具有预定特殊性能的功能熔覆材料层,从而可以完全改变材料表面性能,可以使价廉的材料表面获得极高的耐磨、耐蚀、耐高温等性能。

该工艺可以修复材料表面的孔洞和裂纹,可以恢复已磨损零件的几何尺寸和性能。

曲轴激光熔覆
激光快速成形技术
激光快速成形技术集成了激光技术、CAD/CAM技术和材料技术的最新成果,根据零件的CAD模型,用激光束将光敏聚合材料逐层固化,精确堆积成样件,不需要模具和刀具即可快速精确地制造形状复杂的零件,该技术已在航空航天、电子、汽车等工业领域得到广泛应用。

微细加工激光微细加工技术最成功的应用是在20世纪后半叶发展起来的微电子学领域。

激光微细加工作为微电子集成工艺中的单元微加工技术之一,现已形成固定模式并投入规模化生产中。

除此之外,能突显其优势的领域还有精密光学仪器的制造、高密度信息的写入存储、生物细胞组织的医疗等。

选择适当波长的激光,通过各种优化工艺和逼近衍射极限的聚焦系统,获得高质量光束、高稳定性、微小尺寸焦斑的输出。

利用其锋芒尖利的“光刀”特性,进行高密微痕的刻制、高密信息的直写;也可利用其光阱的“力”效应,进行微小透明球状物的夹持操作。

例如,高精密光栅的刻制(精密光刻);通过CAD/CAM软件进行仿真图案(或文字)和控制,实现高保真打标;利用光阱的“束缚力”,对生物细胞执行移动操作(生物光镊)。

值得一提的是,高密度信息的激光记录和微细机械零部件的光制造。

无论是数字记录或是扫描记录,还是图像与文字的模拟记录,激光记录方法(光刻)都具有特别的优势并取得了重要突破,以数字记录为例:①信息记录密度高(107~108bit/cm2以上),刻录槽宽0.7μm、深0.1μm,比磁记录密度提高两个数量级以上;②记录、检索、读出速度快,单波道达50Mbit/s,多波道可达320Mbit/s;信息的检索和读出速度远远小于1秒;③成本低、使用寿命长。

在微细机械零部件的光制造方面,最近几年国外已将其列为攻关项目,成为未来高新技术前期研究的热点。

日本采用激光技术,制造出微米量级的三维“纳米牛”,这说明日本在微纳量级的三维激光微成型机制上已经取得了巨大的进展。

北京工业大学激光工程研究院应用准分子激光,通过掩模方法,已经加工出10齿/50μm和108齿/500μm的微型齿轮。

该机床既有编码器半闭环损制,还有激光全息式直线移动的全闭环控制。

反馈指令的大小直接影响到伺服跟踪误差,编码器与电机直联具有每周6400万个脉冲的分辨率,每个脉冲相当于坐标轴移动0.2nm。

编码器反馈单位为1/3nm,故跟踪误差在±1/3nm以内。

直线尺的分辨率为1nm,跟踪误差约在±3nm以内。

为了消除电机编码器和直线检测元件本身的误差对反馈的影响,还应用高精度螺距误差补偿技术,开发了有50万点的高密度误差值自动设置的补偿方法。

螺距误差补偿值用0.3nm分辨率的激光干涉仪测出。

为了降低伺服系统的摩擦,对导轨、丝杠螺母副以及丝杠和伺服电机转子的推力轴承和径向轴承均采用气体静压支承结构(图2)。

伺服电机的若采和定子用空气冷却,使运行时由发热引起的温升控制在抗0.1℃下。

为了防止丝杠转动时的根摆影响到滑鞍运动的平稳性,所用的空气静压螺母不直接固定在滑鞍上。

而是通过其两端的与床鞍桥板联接的叉形气垫支承块来传递轴向运动,而其他方向均无约束,从而消除了丝杠偏摆的影响。

螺母及两个叉形气垫支承块均由气体静压支承在导轨上被引导作轴向运动(图3)。

2. 微细加工工艺
(l)微细机械加工工艺凸形(外)表面的微细切削大多采用单晶金刚石车刀或铣刀。

刀尖半径约为100μm。

图4为单晶金刚石立铣刀的刀头形状,当刀具回转时,金刚石刀片形成一个45°圆锥的切削面。

凹形(内)表面的微细切削时,最小的可加工尺寸受刀具尺寸的限制,如钻孔用麻花钻可加工小至50μm的孔,更小的孔则无麻花钻商品,可采用扁钻。

微细加工中俯—个关键问题是刀具安装后的姿态及其与主轴轴线的同轴度是否与坐标系一致,否则很难保证微小的切除量。

为此可在同一台机床上制作刀具后进行加工,使刀具的制作和微细加工采用同一工作条件,避免装夹的误差。

如果在机床上采用线放电磨削制作铣刀,可以用它铣出50μm宽的槽。

在图1微型超精密机床上,用上述工艺方法加工一个直径为1mm,高度为30μm 的微型雕面像,用金刚石立铣刀加工无氧铜,刀具转速5000r/min,进刀速度粗加工为20mm/min,精加工为5mm/min,吃刀量2μm,最好的表面粗糙度可达到Ramax50nm。

(2)微细电加工工艺微型轴和异形截面杆(图5)的加工可采用线放电磨削法(WEDG)加工。

它的独特的放电回路使放能仅为一般电火花加工的1/100。

图6为WEDG加工微型轴的原理,电极线沿着导丝器中的槽以5~10mm/min的低速滑动,就能加工出圆柱形的轴。

如导丝器通过数字控制作相应的运动,就能加工出如图5所示的各种形状的杆件。

如需获得更为光滑的表面,则可以在WEDG加工后,再采用线电化磨削法(WECG),它是用去离子水在低电流下去除极薄的表面层。

微细电火花加工(MEDM)所用的机床如日本松下电气产业公司的MG-ED71,它的定位控制的分辩率为0.1μm,最小加工孔径达5μm,表面粗糙度达0.1μm。

加工节径300μm、厚100μm的9齿不锈钢齿轮时,先用φ24μm的电极连续打孔加工出粗轮廓,再用φ31mm电极按齿形曲线扫描出轮廓,精度达±3μm。

也可用它加工微型阶梯轴,最小直径为30μm,加工的键槽截面为10μm×10μm。

加工微小零件的电极应在同一台电加工机床上制作,否则由于电极的连接和安装误差很难加工出小于直径100μm微型孔。

如在微细电火花机床上加工电极或超声加工工具,就可加工出5~10μm微型孔。

图7示出在一台冲模机上用WEDG 法制作出电火花加工所用的电极,以此做出凹模,并用与做电极相似的方法做出凸模,即成为一套冲模,生产出所需的微型零件。

微细电加工与微细机械加工相比虽材料切除率较低,但加工尺寸能更细小,孔的长径比更大可达5~10,尤其对于微细的复杂凹形内腔加工更有其优越性。

四激光加工的发展趋势
1.数控化和综合化
把激光器与计算机数控技术、先进的光学系统以及高精度和自动化的工件定位相结合,形成研制和生产加工中心,已成为激光加工发展的一个重要趋势。

2.小型化和组合化
国外已把激光切割和模具冲压两种加工方法组合在一台机床上,制成激光冲床,它兼有激光切割的多功能性和冲压加工的高速高效的特点,可完成切割复杂外形、打孔、打标、划线等加工。

3.高频度和高可靠性
目前,国外YAG激光器的重复频度已达2000次/秒,二极管阵列泵浦的Nd:YAG激光器的平均维修时间已从原来的几百小时提高到1~2万小时。

4.采用激元激光器进行金属加工
这是国外激光加工的一个新课题。

激元激光器能发射出波长157~350纳米的紫外激光, 大多数金属对这种激光的反射率很低, 吸收率相应很高, 因此, 这种激光器在金属加工领域有很大的应用价值。

[
五结束语
随着我国激光加工技术的日益普及和应用,越来越多的传统加工方式已逐渐被性能无比优越的激光加工所取代,激光加工已经成为国际工业制造业的新型加工手段激光加工技术的发展和应用在我国已经形成了独立的产业领域。

极大地推动了激光产业和上下游产业的迅猛发展。

它与现代数控技术相结合构成的高效自动化加工设备,可以突破许多传统制造方法无法实现的技术瓶颈,在能源、交通运输、钢铁冶金、船舶与汽车制造、
电子电气工业、航空航天等国民经济支柱产业发挥了不可替代的作用。

六参考文献:
【1】·张辽远,现代加工技术。

北京:机械工业出版社,2008.7
【2】·宋威廉,激光加工技术的发展。

北京:机械工业出版社,2008.3
【3】·曾智江朱三根,微细技工技术的研究。

北京:高等教育出版社,2007.12 【4】·孟永刚,激光加工技术。

北京:国防工业出版社,2008.01。

相关文档
最新文档