初三各类高中招生考试数学试卷

合集下载

初三数学中招考试卷及答案

初三数学中招考试卷及答案

一、选择题(每题4分,共40分)1. 若实数a,b满足a+b=0,则a和b的关系是()A. a和b相等B. a和b互为相反数C. a和b都是正数D. a和b都是负数2. 下列各组数中,有最小数的一组是()A. 0.1,0.01,0.001B. -0.1,-0.01,-0.001C. 1,-1,0D. 100,-100,03. 已知一次函数y=kx+b(k≠0),下列说法正确的是()A. 当k>0时,函数的图象经过第一、二、四象限B. 当k<0时,函数的图象经过第一、二、三象限C. 当b>0时,函数的图象与y轴交于正半轴D. 当b<0时,函数的图象与y轴交于负半轴4. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (2,-3)B. (-2,-3)C. (-2,3)D. (2,3)5. 已知一元二次方程x^2-4x+3=0的解是x1和x2,则x1+x2的值是()A. 4B. 3C. 2D. 16. 下列函数中,是反比例函数的是()A. y=2x+1B. y=3/xC. y=x^2D. y=3x^27. 已知等腰三角形底边长为6,腰长为8,则其面积为()A. 24B. 32C. 36D. 408. 在平面直角坐标系中,点P(a,b)在第二象限,那么a和b的关系是()A. a>0,b>0B. a<0,b>0C. a>0,b<0D. a<0,b<09. 下列各式中,正确的是()A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^2 = a^2 - 2ab + b^2D. (a-b)^2 = a^2 + 2ab - b^210. 下列各式中,不是等差数列的是()A. 2,5,8,11,14B. 1,4,7,10,13C. 3,6,9,12,15D. 4,8,12,16,20二、填空题(每题5分,共25分)11. 若a=2,b=-3,则a+b的值为______。

2024年河南省中考数学试题含答案解析

2024年河南省中考数学试题含答案解析

2024年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1. 如图,数轴上点P 表示的数是( )A. 1−B. 0C. 1D. 2 【答案】A【解析】【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P 表示的数为1−,从而求解.【详解】解:根据题意可知点P 表示的数为1−,故选:A .2. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410×B. 105.78410×C. 115.78410×D. 120.578410× 【答案】C【解析】【分析】本题考查了用科学记数法表示绝对值较大的数,一般形式为10n a ×,其中110a ≤<,确定a 和n 的值是解题的关键.用科学记数法表示绝对值较大的数时,一般形式为10n a ×,其中110a ≤<,且n 比原来的整数位数少1,据此判断即可.【详解】解:5784亿11578400000000 5.78410=×.故选:C .3. 如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°【答案】B【解析】【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=°,AB CD ∥,∴150BAC ∠=∠=°,故选:B .4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为()A. B.C. D.【答案】A【解析】【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可. 从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5. 下列不等式中,与1x −>组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x −D. 3x >− 【答案】A【解析】【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x −>,可得1x <−,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意;故选:A6. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A 12 B. 1 C. 43 D. 2【答案】B【解析】【分析】本题考查了相似三角形判定与性质,平行四边形的性质等知识,利用平行四边形的性质、线段中点定义可得出14CE AC =,证明CEF CAB ∽△△,利用相似三角形的性质求解即可. 【详解】解∶∵四边形ABCD 是平行四边形,.的∴12OC AC =, ∵点E 为OC 的中点, ∴1124CE OC AC ==, ∵EF AB ∥,∴CEF CAB ∽△△, ∴EF CE AB AC =,即144EF =, ∴1EF =,故选:B .7. 计算3···a a a a个的结果是( ) A. 5aB. 6aC. 3a a +D. 3a a 【答案】D【解析】【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···a a a a a a a a == 个,故选D8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( ) A. 19 B. 16 C. 15 D. 13【答案】D【解析】【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种, ∴两次抽取的卡片图案相同的概率为3193=. 故选∶D .9. 如图,O 是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π【答案】C【解析】【分析】过D 作DE BC ⊥于E ,利用圆内接四边形的性质,等边三角形的性质求出120BDC ∠=°,利用弧、弦的关系证明BD CD =,利用三线合一性质求出12BE BC ==,1602BDE BDC ∠=∠=°,在Rt BDE △中,利用正弦定义求出BD ,最后利用扇形面积公式求解即可.【详解】解∶过D 作DE BC ⊥于E ,∵O 是边长为的等边三角形ABC 的外接圆,∴BC =,60A ∠=°,180∠+∠=°BDC A , ∴120BDC ∠=°,∵点D 是 BC的中点, ∴ BDCD =, ∴BD CD =,∴12BE BC ==,1602BDE BDC ∠=∠=°,∴4sin BE BD BDE ==∠, ∴21204163603ππS ⋅==阴影, 故选:C .【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A ,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多【答案】C【解析】 【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项:_______.【答案】m (答案不唯一)【解析】【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.【答案】9【解析】【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案:9.13. 若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为___________. 【答案】12##0.5【解析】【分析】本题考查一元二次方程根与判别式的关系.掌握一元二次方程()200ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根是解题关键.根据一元二次方程根与其判别式的关系可得:()21Δ1402c =−−×=,再求解即可. 【详解】解∶∵方程2102x x c −+=有两个相等的实数根, ∴()21Δ1402c =−−×=, ∴12c =, 故答案为:12.14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.【答案】()3,10【解析】【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=°,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,为则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=°, ∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20−,,点F 的坐标为()06,, ∴2AO =,6FO =,∴2BO AB AO a =−=−,在Rt BOF △中,222BO FO BF +=,∴()22226a a −+=,解得10a =,∴4FG OG OF =−=,8GE CD DG CE CE =−−=−,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE −+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15. 如图,在Rt ABC △中,90ACB ∠=°,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.【答案】 ①. 1+##1+②. 1−##1−+【解析】【分析】根据题意得出点D 在以点C 为圆心,1为半径的圆上,点E 在以AB 为直径的圆上,根据cos AE AB BAE =⋅∠,得出当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,根据当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,分别画出图形,求出结果即可.【详解】解:∵90ACB ∠=°,3CA CB ==, ∴190452BAC ABC ∠=∠=×°=°, ∵线段CD 绕点C 在平面内旋转,1CD =,∴点D 在以点C 为圆心,1为半径的圆上,∵BE AE ⊥, ∴90AEB ∠=°, ∴点E 在以AB 为直径的圆上,在Rt ABE △中,cos AE AB BAE =⋅∠,∵AB 为定值,∴当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,∴当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥,∴90ADE CDE ∠=∠=°,∴AD =∵ AC AC=, ∴45CED ABC ==°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =+=+,即AE 的最大值为1+;当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥,∴90CDE ∠=°,∴AD =∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =°−=°∠∠,∴18045CED CEA =°−=°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =−=−,即AE 的最小值为1−;故答案为:1+;1−.【点睛】本题主要考查了切线的性质,圆周角定理,圆内接四边形的性质,勾股定理,等腰三角形的性质,解直角三角形的相关计算,解题的关键是作出辅助线,熟练掌握相关的性质,找出AE 取最大值和最小值时,点D 的位置.三、解答题(本大题共8个小题,共75分)16. (1(01−; (2)化简:231124a a a + +÷ −− . 【答案】(1)9(2)2a +【解析】【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式1−101=−9=;(2)原式()()3212222a a a a a a −+ =+÷ −−+− ()()22121a a a a a +−+⋅−+ 2a =+.17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.5 8 2乙26 10 3根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1×−,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.【答案】(1)甲 29(2)甲(3)乙队员表现更好【解析】【分析】本题考查了折线统计图,统计表,中位数,加权平均数等知识,解题的关键是∶(1)根据折线统计图的波动判断得分更稳定的球员,根据中位数的定义求解即可;(2)根据平均每场得分以及得分的稳定性求解即可;(3)分别求出甲、乙的综合得分,然后判断即可.【小问1详解】解∶从比赛得分统计图可得,甲的得分上下波动幅度小于乙的的得分上下波动幅度,∴得分更稳定的队员是甲,乙的得分按照从小到大排序为14,20,28,30,32,32,最中间两个数为28,30,∴中位数为2830292+=, 故答案为∶乙,29;【小问2详解】解∶ 因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好;【小问3详解】解∶甲的综合得分为()26.518 1.52136.5×+×+×−=, 乙的综合得分为()26110 1.53138×+×+×−=, ∵36.538<,∴乙队员表现更好.18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.【答案】(1)6y x= (2)见解析 (3)92【解析】 【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是: (1)利用待定系数法求解即可;(2)分别求出1x =,2x =,6x =对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【小问1详解】 解:反比例函数k y x =的图象经过点()3,2A , ∴23k =, ∴6k =, ∴这个反比例函数的表达式为6y x =; 【小问2详解】解:当1x =时,6y =,当2x =时,3y =,当6x =时,1y =, ∴反比例函数6y x=的图象经过()1,6,()2,3,()6,1, 画图如下:【小问3详解】解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=, 解得32x =, ∴平移距离为39622−=. 故答案为:92. 19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E D C 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是: (1)根据作一个角等于已知角的方法作图即可;(2)先证明四边形CDBF 是平行四边形,然后利用直角三角形斜边中线的性质得出12CDBD AB ==,最后根据菱形的判定即可得证.【小问1详解】解:如图,;【小问2详解】证明:∵ECM A ∠=∠,∴CM AB ∥,∵∥B E D C ,∴四边形CDBF 是平行四边形,∵在Rt ABC △中,CD 是斜边AB 上的中线,∴12CD BD AB ==, ∴平行四边形CDBF 是菱形.20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30°,在点P 处看塑像顶部点A 的仰角APE ∠为60°,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈). 【答案】(1)见解析 (2)塑像AB 的高约为6.9m【解析】【分析】本题考查了圆周角定理,三角形外角的性质,解直角三角形的应用等知识,解题的关键是: (1)连接BM ,根据圆周角定理得出AMB APB ∠=∠,根据三角形外角的性质得出AMB ADB ∠>∠,然后等量代换即可得证;(2)在Rt AHP 中,利用正切的定义求出AH ,在Rt BHP △中,利用正切的定义求出BH ,即可求解.【小问1详解】证明:如图,连接BM .则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=°,6PH =. ∵tan AH APH PH∠=,∴tan 606AH PH ⋅° ∵30APB ∠=°,∴603030BPH APH APB ∠=∠−∠=°−°=°.在Rt BHP △中,tan BHBPH PH∠=,∴tan 306BH PH ⋅°.∴()4 1.73 6.9m ABAH BH =−=−≈×≈. 答:塑像AB 的高约为6.9m .21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A ,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品?【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A 种食品x 包,B 种食品y 包,根据“从这两种食品中摄入4600kJ 热量和70g 蛋白质”列方程组求解即可;(2)设选用A 种食品a 包,则选用B 种食品()7−a 包,根据“每份午餐中的蛋白质含量不低于90g ”列不等式求解即可.小问1详解】解:设选用A 种食品x 包,B 种食品y 包,根据题意,得7009004600,101570.x y x y += +=解方程组,得4,2.x y = =答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7−a 包,根据题意,得()1015790a a +−≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+−=−+. ∵2000−<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a −=−=.答:选用A 种食品3包,B 种食品4包.22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可; (2)把010v t =,20h =代入205h t v t =−+求解即可; (3)由(2),得2520h t t =−+,把15h =代入,求出t 的值,小问1详解】解:205h t v t =−+ 220051020v v t =−−+ , ∴当010v t =时,h 最大, 故答案为:010v ; 【小问2详解】解:根据题意,得 当010v t =时,20h =, ∴20005201010v v v −×+×=, ∴()020m /s v =(负值舍去);【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =−+,当15h =时,215520t t =−+,解方程,得11t =,23t =,∴两次间隔的时间为312s −=, 【∴小明的说法不正确.23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示). (3)拓展应用如图3,在Rt ABC △中,90B ∠=︒,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.【答案】(1)②④ (2)①ACD ACB ∠=∠.理由见解析;②2cos m n θ+(3 【解析】【分析】(1)根据邻等对补四边形的定义判断即可;(2)①延长CB 至点E ,使BE DC =,连接AE ,根据邻等对补四边形定义、补角的性质可得出ABE D ∠=∠,证明()SAS ABE ADC ≌,得出E ACD ∠=∠,AE AC =,根据等边对等角得出E ACB ∠=∠,即可得出结论;②过A 作AF EC ⊥于F ,根据三线合一性质可求出2m n CF +=,由①可得ACD ACB θ∠=∠=,在Rt AFC △中,根据余弦的定义求解即可;(3)分AB BM =,AN AB =,MN AN =,BM MN =四种情况讨论即可.【小问1详解】解:观察图知,图①和图③中不存在对角互补,图2和图4中存在对角互补且邻边相等,故图②和图④中四边形是邻等对补四边形,故答案为:②④;【小问2详解】解:①ACD ACB ∠=∠,理由:延长CB 至点E ,使BE DC =,连接AE ,∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=°,∵180ABC ABE ∠+∠=°,∴ABE D ∠=∠,∵AB AD =,∴()SAS ABE ADC ≌,∴E ACD ∠=∠,AE AC =,∴E ACB ∠=∠,∴ACD ACB ∠=∠;②过A 作AF EC ⊥于F ,∵AE AC =, ∴()()1112222m n CF CE BC BE BC DC +==+=+=, ∵2BCD θ∠=,∴ACD ACB θ∠=∠=,在Rt AFC △中,cos CF θAC=, ∴cos 2cos CF m n AC θθ+==; 【小问3详解】解:∵90B ∠=︒,3AB =,4BC =,∴5AC ,∵四边形ABMN 是邻等对补四边形,∴180ANM B ∠+∠=°,∴90ANM =°,当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H ,∴22218AM AB BM =+=,在Rt AMN 中222218MN AM AN AN =−=−,在Rt CMN 中()()22222435MN CM CN AN =−=−−−,∴()()22218435AN AN −=−−−,解得 4.2AN =, ∴45CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即45534NH CH ==, ∴1225NH =,1625CH =, ∴8425BH =,∴BN ; 当AN AB =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴BM NM =,故不符合题意,舍去;当AN MN =时,连接AM ,过N 作NH BC ⊥于H ,∵90MNC ABC ∠=∠=°,C C ∠=∠, ∴CMN CAB ∽△△, ∴CN MN BC AB =,即543CN CN −=,解得207CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即207534NH CH ==, ∴127NH =,167CH =, ∴127BH =,∴BN ; 当BM MN =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;综上,BN . 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,解直角三角形,勾股定理等知识,明确题意,理解新定义,添加合适辅助线,构造全等三角形、相似三角形是解题的关键.。

2024年中招考试数学试卷

2024年中招考试数学试卷

1. 下列哪个数是有理数?A. √2B. πC. 3/7 (答案)D. √32. 若直线y = kx + b经过第一、三、四象限,则k和b的取值范围是?A. k > 0, b > 0B. k < 0, b < 0C. k > 0, b < 0 (答案)D. k < 0, b > 03. 下列等式中,成立的是?A. |a + b| = |a| + |b|B. (a^2)^3 = a^5C. √(a^2) = aD. (ab)^2 = a^2b^2 (答案)4. 下列图形中,既是轴对称又是中心对称的是?A. 等边三角形B. 平行四边形C. 正五边形D. 圆(答案)5. 若二次函数y = ax^2 + bx + c的图象开口向上,且与x轴无交点,则下列结论正确的是?A. a > 0, b^2 - 4ac > 0B. a < 0, b^2 - 4ac < 0C. a > 0, b^2 - 4ac < 0 (答案)D. a < 0, b^2 - 4ac > 06. 下列不等式中,正确的是?A. 若a > b,则a^2 > b^2B. 若a > b,则|a| > |b|C. 若a > b > 0,则1/a < 1/b (答案)D. 若a > b > 0,则a^3 < b^37. 下列命题中,真命题是?A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形(答案)D. 对角线互相垂直且相等的四边形是正方形8. 若关于x的方程x^2 - 4x + m = 0有两个相等的实数根,则m的值为?A. 2B. 4 (答案)C. -2D. -49. 下列函数中,y随x增大而减小的是?A. y = x + 1B. y = x^2 (x > 0)C. y = 2^xD. y = -3x (答案)10. 下列各组数中,以它们为边长的线段能构成直角三角形的是?A. 1, 2, 3B. 2, 3, 4C. 3, 4, 5 (答案)D. 4, 5, 6。

中招考试数学试题及答案

中招考试数学试题及答案

中招考试数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 22/7D. 3.14答案:B2. 一个等腰三角形的底边长为6,高为4,其周长是多少?A. 16B. 18C. 20D. 22答案:C3. 以下哪个方程的解是x=1?A. x^2 - 2x + 1 = 0B. x^2 - x - 6 = 0C. x^2 + x - 6 = 0D. x^2 - 2x - 3 = 0答案:A4. 函数y=2x+3的图象与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)5. 一个数的平方是36,这个数是多少?A. 6B. ±6C. 36D. ±36答案:B6. 下列哪个图形是轴对称图形?A. 平行四边形B. 圆C. 任意三角形D. 不规则四边形答案:B7. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B8. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是多少?A. 60B. 48C. 120D. 180答案:A9. 一个等差数列的首项是2,公差是3,那么第5项是多少?B. 14C. 11D. 8答案:A10. 一个二次函数的顶点坐标是(2, -1),且开口向上,那么它的对称轴是?A. x=-2B. x=2C. x=1D. x=3答案:B二、填空题(每题3分,共15分)11. 一个直角三角形的两直角边长分别为3和4,那么斜边长是________。

答案:512. 一个数的立方是-8,那么这个数是________。

答案:-213. 函数y=-x+1与y轴的交点坐标是________。

答案:(0, 1)14. 一个正五边形的内角和是________。

答案:540°15. 一个等比数列的首项是1/2,公比是2,那么第4项是________。

2023年河南省中考数学真题(解析版)

2023年河南省中考数学真题(解析版)

2023年河南省普通高中招生考试试卷数学一、选择题1. 下列各数中,最小的数是( )A. -lB. 0C. 1D. 【答案】A【解析】【分析】根据实数的大小比较法则,比较即可解答.【详解】解:∵101-<<<,∴最小的数是-1.故选:A【点睛】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A. 74.5910´B. 845.910´C. 84.5910´D. 90.45910´【答案】C【解析】【分析】将一个数表示为10n a ´的形式,其中110a £<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【详解】解:4.59亿8459000000 4.9510==´.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,掌握形式为10n a ´,其中110a £<,确定a与n 的值是解题的关键.4. 如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为( )A. 30︒B. 50︒C. 60︒D. 80︒【答案】B【解析】【分析】根据对顶角相等可得180AOD ∠=∠=︒,再根据角和差关系可得答案.【详解】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简11a a a -+的结果是( )A 0 B. 1 C. a D. 2a -【答案】B【解析】的.【分析】根据同母的分式加法法则进行计算即可.【详解】解:11111a a a a a a a--++===,故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A ,B ,C 在O e 上,若55C ∠=︒,则AOB ∠的度数为( )A. 95︒B. 100︒C. 105︒D. 110︒【答案】D【解析】【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x 的一元二次方程280x mx +-=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】对于20(0)ax bx c a ++=¹,当0D >, 方程有两个不相等的实根,当Δ0=, 方程有两个相等的实根,Δ0<, 方程没有实根,根据原理作答即可.【详解】解:∵280x mx +-=,∴()2248320m m D =-´-=+>,所以原方程有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. 12 B. 13 C. 16 D. 19【答案】B【解析】【分析】先画树状图,再根据概率公式计算即可.【详解】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a 、b 的正负情况,再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0,由对称轴b x 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出a 、b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PB y PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A. 6B. 3C.D. 【答案】A【解析】【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==O 作OD AB ^,解直角三角形可得cos303AD AO =×︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC V 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==,∴30BAO ABO ∠=∠=︒,过点O 作OD AB ^,∴AD BD =,则cos303AD AO =×︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【解析】【分析】根据总共配发的数量=年级数量´每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组35,37x y x y +=ìí+=î的解为______.【答案】12x y =ìí=î【解析】【分析】利用加减消元法求解即可.【详解】解:3537x y x y +=ìí+=î①②由3´-①②得,88x =,解得1x =,把1x =代入①中得315y ´+=,解得2y =,故原方程组的解是12x y =ìí=î,故答案为:12x y =ìí=î.【点睛】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.【答案】280【解析】【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280´=棵,故答案为:280.【点睛】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,PA 与O e 相切于点A ,PO 交O e 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.【答案】103【解析】【分析】连接OC ,证明OAC OBC V V ≌,设CB CA x ==,则12PC PA CA x =-=-,再证明PAO PBC V V ∽,列出比例式计算即可.【详解】如图,连接OC ,∵PA 与O e 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =ìï=íï=î,∴OAC OBC V V ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC V V ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.【点睛】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【解析】分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD==,即:1ND AN ==,【∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:135---+;(2)化简:()()224x y x x y ---.【答案】(1)15;24y 【解析】【分析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.【详解】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.【点睛】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲78m 72s 甲乙8872s乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;<.(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】【分析】(1)根据中位数和方差概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.【小问1详解】由题意可得,787.52m +==,()()()()22222137748726757110s éù=´´-+´-+´-+-=ëû甲()()()()()()()222222221478721072679725777 4.210s éù=´-+-+´-+´-+-+´-+-=ëû乙,∴22s s <甲乙,故答案为:7.5;<;【小问2详解】∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;【小问3详解】还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点睛】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,ABC V 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.【答案】(1)见解析(2)见解析【解析】【分析】(1)利用角平分线的作图步骤作图即可;的(2)证明()SAS BAE DAE △≌△,即可得到结论.【小问1详解】解:如图所示,即为所求,【小问2详解】证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.【点睛】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数k y x =图象上的点)A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1(2)半径为2,圆心角为60︒(3)23p -【解析】【分析】(1)将)A 代入k y x=中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出AOD ∠的度数,最后结合菱形的性质求解;(3)先计算出AOCD S =菱形,再计算出扇形的面积,根据菱形的性质及结合k 的几何意义可求出FBO S =V 【小问1详解】解:将)A 代入k y x=中,得1=,解得:k =【小问2详解】解:Q 过点A 作OD 的垂线,垂足为G ,如下图:)A Q ,1,AG OG \==,2OA \==,\半径为2;12AG OA =Q ,∴1sin 2AG AOG OG ∠==,30AOG \∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC \∠=︒,\扇形AOC 的圆心角的度数:60︒;【小问3详解】解:2OD OG ==Q ,1AOCD S AG OD \=´=´=菱形221122663AOC S r p p p =´=´´=Q 扇形,如下图:由菱形OBEF 知,FHO BHO S S =V V ,2BHO k S ==V Q2FBO S \==V ,2233FBO AOCD AOC S S S S p p \=+-=+=V 阴影部分面积菱形扇形.【点睛】本题考查了反比例函数及k 的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握k 的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).【答案】树EG 的高度为9.1m 【解析】【分析】由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,易知EAF BAH ∠=∠,可得2tan tan 3EF EAF BAH AF ∠==∠=,进而求得22m 3EF =,利用EG EF FG =+即可求解.【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+»,答:树EG 的高度为9.1m .【点睛】本题考查解直角三角形的应用,得到EAF BAH ∠=∠是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算(2)400元 (3)当300400a £<或600800a £<时,活动二更合算【解析】【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a <<时,所需付款为a 元,当300600a £<时,所需付款为()80a -元,当600900a £<时,所需付款为()160a -元,然后根据题意列出不等式即可求解.【小问1详解】解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360´=元,活动二需付款:45080370-=元,∴活动一更合算;【小问2详解】设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,【小问3详解】这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a £<时,所需付款为:()80a -元,当600900a £<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a £<时,800.8a a -<,解得300400a £<,即:当300400a £<时,活动二更合算,③当600900a £<时,1600.8a a -<,解得600800a £<,即:当600800a £<时,活动二更合算,综上:当300400a £<或600800a £<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=,即可求得落地点到O 点的距离,即可判断谁更近.【小问1详解】解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;【小问2详解】∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±+(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y P 轴,作ABC V 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC V 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD a a ∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP b ∠=,请判断b 与a 的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60a =︒,AD =,15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.【答案】(1)180︒,8.(2)①2b a =,理由见解析;②2sin m a(3)或【解析】【分析】(1)观察图形可得222A B C △与ABC V 关于O 点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,进而可得22PAP BAD ∠=∠,即可得出结论;②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,得出32PP EF =,证明四边形EFDG 是矩形,则DG EF =,在Rt DAG △中,根据sin DG DAG DA∠=,即可求解;(3)分23P P AD ∥,23P P CD ∥,两种情况讨论,设AP x =,则12AP AP x ==,先求得1PP x =,勾股定理求得13PP ,进而表示出3PP ,根据由(2)②可得32sin PP AD a =,可得36PP =,进而建立方程,即可求解.【小问1详解】(1)∵ABC V 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC V 关于O 点中心对称,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=´=,即38AA =,333A B C △可以看作是ABC V 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.【小问2详解】①2b a =,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2b a =,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ^^^,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG a ∠=,AD m=∵sin DG DAG DA∠=,∴sin sin DG AD DAG m a =×∠=,∴3222sin PP EF DG m a===【小问3详解】解:设AP x =,则12AP AP x ==,依题意,12PP AD ^,当23P P AD ∥时,如图所示,过点P 作1PQ AP ^于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60a =︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则12PP =,在1APP V 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴13212PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,AQ x ==,在1Rt PQP V 中,11PQ AP AQ x x =-=,1PP x ====,∴3113PP PP PP x x =+=+=由(2)②可得32sin PP AD a =,∵AD =∴326PP =´=6x =,解得:x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则131212PP PP x ==,∵1PP x =,3PP x x x =+=,∵36PP =,6=,解得:x =,综上所述,AP 的长为或【点睛】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。

初中毕业和高中各类学校招生统一考试数学考试及答案

初中毕业和高中各类学校招生统一考试数学考试及答案

九年级和高中各类学校招生统一考试数学考试(新课标B 卷)(满分150分,考试时间120分钟)考生须知:1.答案一律填在答题卡上,否则以0分计算,交卷只交答题卡,本卷由考场统一处理,考生不得擅自带走;2.作图或画辅助线要用0.5毫米的黑色签字笔画好。

3.沉着冷静,不怕困难,展现自我,努力展示你的成果!第Ⅰ卷(共76分)一、选择题(本大题共12小题,每小题5分,共60分。

注:在每道题所给的四个选项中,只有一个选项符合题意)1.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是 (A )12x -<< (B )2x >或1x <- (C )2x > (D )1x <- 2.如图2(甲)为某物体的三视图:友情提醒:在三视图中,AB=BC=CD=DA=EI=IG=NZ=MZ=KY=YL ,60θ=,EF=GH=KN=LM=YZ现搬运工人小明要搬运此物块边长为a cm 物块ABCD 在地面上由起始位置沿直线l不滑行地翻滚,翻滚一周后,原来与地面接触的面ABCD 又落回到地面,则此时点B 起始位置翻滚一周后所经过的长度是(A )2313a π+ (B )3a (C )3a π(D )a π 数学试题 第1页(共7页) 3.在平面直角坐标系内存在A ,(,0)A b ,A 交x 轴于(0,0)O 、(20B b ,),在y 轴上存NAB C D 正视图 左视图 E F G H I俯视图K L MY Z 图2(甲) A B C D C B AD 图2(乙)在一动点C(C不与原点O重合),直线l始终过A、C,直线l交A于E、F,在半圆EF上存在一点动点D且D不与E、F重合,则DEAS∆的最大值为(A)22b(B)24b(C)2b(D)无法判断4.据悉,北京奥运会吉祥物已确定,为象征“文化味浓、吉祥如意”的五福娃(如下图):当“五福娃”在距离北京奥运会整整1000天的时刻訇然问世后,不仅售出的奥运会吉祥物的数目的纪录被改写,初步推算出的超过3亿美元的效益也宣告:北京奥运会,已经提前打赢了第一仗!奥运爱好者小明十分喜爱福娃,于是他各买了一只福娃,已知福娃的出售价为平均每只56元,福娃的进价y与进货个数x之间的函数关系为1399yx=(一般店家每次的进货个数最多为1399只),北京初步获得了3亿美元的效益,那么至少卖出了多少只福娃?友情提醒:1美元相当于8元人民币(A)大于12万只小于13万只(B)大于10万只小于12万只(C)大于13万只小于14万只(D)大于9万只小于10万只5.天气台预报明天下雨的概率为70%,则下列理解正确的是(A)明天30%的地区会下雨(B)明天30%的时间会下雨(C)明天出行不带雨伞一定会被淋湿(D)明天出行不带雨伞被淋湿的可能性很大6.如图3,在水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计)数学试题第2页(共7页)小明为了探究这个问题,将此情景画在了草稿纸上(如图4):友情提醒:小明所绘制的草图均为正视图图3友情提醒:圆锥的正视图是一个正三角形A运动过程:木棒顶端重A 点开始严圆锥的法线下滑,速度为v (木棒下滑为匀速)已知木棒与水平地面的夹角为θ,θ随木棒 的下滑而不断减小.θ的最大值为30°,若木棒长为23a 问:当木棒顶端重A 滑到B 这个过程中,木棒末端 的速度'v 为 (A )v (B )31v a - (C )3v (D )3v a7.甲、乙两班举行电脑汉字输入速度比赛,各选10名学生参加,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字(个) 132 133 134 135 136 137 众数 中位数 平均数 方差(s 2) 甲班学生(人) 1 0 1 5 2 1 135 135 135 1.6 乙班学生(人)14122请你填写上表中乙同学的相关数据: (A ) 134 134 135 1.9(C ) 134 134.5 135 1.88.下图形是轴对称图形的是(A ) (B ) (C ) (D )9.Rt △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边.那么c 等于 (A )cos sin a A b B + (B )sin sin a A b B + (C )sin sin a b A B + (D )cos sin a bA B+10.我们知道沿直线前进的自行车车轮上的点既随着自行车作向前的直线运动,又以车轴为圆心作圆周运动,如果我们仔细观察这个点的运动轨迹,会发现这个点在我们眼前划出了一道道优美的弧线。

数学中招考试题及答案

数学中招考试题及答案

数学中招考试题及答案数学中招考试是学生进入高中阶段的重要选拔考试之一,它不仅考察学生对初中数学知识的掌握程度,还考察学生的逻辑思维能力、空间想象能力和解决问题的能力。

以下是一份模拟的数学中招考试题及答案,供同学们参考练习。

# 数学中招考试题一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333...(循环小数)D. 1/32. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 以下哪个表达式的结果不是正数?A. (-2)^2B. |-3|C. -3D. √44. 一个数的平方根等于它本身,这个数可能是:A. 0B. 1C. -1D. 45. 函数y = 2x + 3的斜率是:A. 2B. 3C. 4D. 5二、填空题(每题3分,共15分)6. 一个圆的半径为5,它的面积是______。

7. 如果一个多项式f(x) = ax^2 + bx + c,且f(1) = 2,f(-1) = 0,那么a + b + c = ______。

8. 一个等差数列的前三项分别是2,5,8,那么第10项是______。

9. 一个长方体的长、宽、高分别是2,3,4,它的体积是______。

10. 如果一个角的正弦值是0.5,那么这个角的余弦值是______。

三、解答题(共70分)11. 解一元二次方程:x^2 - 5x + 6 = 0。

(10分)12. 证明:如果一个三角形的两边和这两边之间的夹角已知,那么这个三角形是唯一的。

(15分)13. 已知一个等比数列的前三项分别是2,6,18,求第5项。

(15分)14. 一个长方体的长、宽、高分别是a,b,c,求它的表面积和体积。

(15分)15. 利用勾股定理解决实际问题:一个直角三角形的斜边长为13,一条直角边长为5,求另一条直角边的长度。

(15分)# 答案一、选择题1. B(√2是无理数)2. A(根据勾股定理,3² + 4² = 5²)3. C(-3是负数)4. A(0的平方根是0)5. A(斜率k = 2)二、填空题6. 25π(圆的面积公式为πr²)7. 1(根据多项式的性质,f(1) = a + b + c = 2,f(-1) = a - b +c = 0,解得a + b + c = 1)8. 35(等差数列的通项公式为an = a1 + (n-1)d,其中d = 5 - 2 = 3)9. 24(长方体的体积公式为V = abc)10. ±√3/2(根据同角三角函数基本关系式,cosθ = ±√(1 -sin²θ))三、解答题11. 解:(x - 2)(x - 3) = 0,得到x₁ = 2,x₂ = 3。

初三数学中招试卷及答案

初三数学中招试卷及答案

一、选择题(每题3分,共30分)1. 下列数中,是负数的是()A. -2/3B. 0.8C. 2.5D. -32. 下列各数中,有理数是()A. √16B. √-1C. πD. 0.1010010001…3. 下列各数中,无理数是()A. √4B. √9/4C. √-9D. 2/34. 下列各数中,整数是()A. -2/3B. 0.8C. 2.5D. -35. 下列各数中,正数是()A. -2/3B. 0.8C. 2.5D. -36. 下列各数中,有理数是()A. √16B. √-1C. πD. 2/37. 下列各数中,无理数是()A. √4B. √9/4C. √-9D. π8. 下列各数中,整数是()A. -2/3B. 0.8C. 2.5D. -39. 下列各数中,正数是()A. -2/3B. 0.8C. 2.5D. -310. 下列各数中,有理数是()A. √16B. √-1C. πD. 2/3二、填空题(每题3分,共30分)11. 2的平方根是_________。

12. -3的相反数是_________。

13. 0.5的倒数是_________。

14. (-2)×(-3)=_________。

15. (-2)÷(-3)=_________。

16. 5的平方根是_________。

17. 0.1的平方是_________。

18. 4的立方根是_________。

19. 3的立方是_________。

20. 0.001的平方根是_________。

三、解答题(每题10分,共30分)21. 简化下列各数:(1)√81(2)√-25(3)√(16/25)22. 计算下列各式的值:(1)(-3)×(-4)+2×3(2)5÷(-2)+(-3)×2(3)√9-√423. 已知:a=2,b=-3,求以下代数式的值:(1)a²+b²(2)a²-b²(3)a²×b²四、应用题(每题10分,共20分)24. 甲、乙两地相距100千米,一辆汽车从甲地开往乙地,每小时行驶60千米,另一辆汽车从乙地开往甲地,每小时行驶80千米,两车同时出发,几小时后两车相遇?25. 小明家养了5只鸡和3只鸭,共重20千克,已知鸡的重量是鸭的重量的2倍,求一只鸡和一只鸭各重多少千克?答案:一、选择题:1. A2. D3. C4. D5. C6. A7. D8. D9. C 10. A二、填空题:11. ±3 12. 3 13. 2 14. 6 15. 1/2 16. ±2.236 17. 0.01 18. 2 19.27 20. ±0.0316三、解答题:21. (1)9 (2)-5 (3)4/522. (1)-6 (2)-5 (3)523. (1)13 (2)-5 (3)4四、应用题:24. 两车相遇时间为1小时。

初中毕业生学业暨高中招生考试数学试卷及答案

初中毕业生学业暨高中招生考试数学试卷及答案

九年级生学业暨高中招生考试一、选择题:1.3的倒数是( )A.-3B.3C.13 D.13- 2.计算232(3)x x ⋅-的结果是( )A.56x -B.56xC.62x -D.62x3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D. 无法确定 4.使分式24xx -有意义的x 的取值范围是( ) A. 2x = B.2x ≠ C.2x =- D.2x ≠-5.不等式组2030x x ->⎧⎨-<⎩的解集是( )A.2x >B.3x <C.23x <<D.无解 6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于( )A.80°B. 50°C. 40°D. 20°7.(课改)如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是.( ) A.3 B.4 C. 5 D. 6 (非课改)分式方程1421x x x -=+-的解是( ) A.127,1x x == B. 127,1x x ==- C. 127,1x x =-=- D. 127,1x x =-=8.观察市统计局公布的“十五”时期重庆市农村居民人均 收入每年比上一年增长率的统计图,下列说法正确的是( )A.农村居民人均收入低于B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时D.农村居民人均收入每年比上一年的增 长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:O CFGDE俯视图左视图主视图20052004200320022001质量(克/袋) 销售价(元/袋) 包装成本费用(元/袋) 甲 400 4.8 0.5 乙 300 3.6 0.4 丙2002.50.3春节期间,这三种不同的包装的土特产都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大是( )A.甲B. 乙C.丙D. 不能确定10.(课改)现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A.118 B.112 C.19 D.16(非课改)已知αβ、是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A. 3或-1B.3C. 1D. –3或1二、填空题:11.重庆市某天的最高气温是17℃,最低气温是5℃,那么当天的最大温差是 ℃. 12.分解因式:24x -=13.如图,已知直线12l l ∥,∠1=40°,那么∠2= 度. 14.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为 .15.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为 立方米. 16.(课改区)如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是 (非课改)化简:(232)23-+-=17.如图所示,A 、B 是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.18.按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是 . 19.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是 20.如图,△ABC 内接于⊙O ,∠A 所对弧的度数为120°. ∠ABC 、∠ACB 的角平分线分别交于AC 、AB 于点D 、E ,CE 、BD 相交于点 F.以下四个结论:①1cos 2BFE ∠=;②BC BD =;③EF FD =;④2BF DF =.其中结论一定正确的序号数是 三、解答题:(本大题6个小题,共60分) 21.(每小题5分,共10分)(1)计算:12tan 60(51)3--︒+-+-;(2)解方程组:2328y xy x =⎧⎨+=⎩22.如图,A 、D 、F 、B 在同一直线上,AD=BF,AE=BC,且 AE ∥BC.求证:(1)△AEF ≌△BCD ;(2) EF ∥CD.23.(10分)在暑期社会实践活动中,小明所在小组的同学与一 家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示: 若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有 套,B 型玩具有 套,C 型玩具有 套. (2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为 ,每人每小时能组装C 型玩具 套.FDE ACBBC FD A E82a-2aCB A 项目套/小时↑→C 型25%B 型A 型55%24.(10分)农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?25.如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2.(1) 求证:DC=BC;(2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形状,并证明你的结论;(3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.26.机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?四、解大题:27.已知:m n 、是方程2650x x -+=的两个实数根,且m n <,抛物线2y x bx c =-++的图像经过点A(,0m )、B(0n ,).EB FCD A(1) 求这个抛物线的解析式;(2) 设(1)中抛物线与x 轴的另一交点为C,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线2y ax bx c =++(0)a ≠的顶点坐标为(24(,)24b ac b a a--) (3) P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.28.如图28-1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图28-2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P. (1) 当11AC D ∆平移到如图28-3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;(2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3) 对于(2)中的结论是否存在这样的x 的值;若不存在,请说明理由.CB D A 28-1图P E F A D 1B C 1D 2C 228-3图 C 2D 2C 1B D 1A 28-2图答案:一选择题:1—5 CAABC 6—10 DBDCB二、填空题:11.12;12.(2)(2)x x +-;13.40;14.2π;15.4310⨯;16.(课改)42x y =-⎧⎨=-⎩,(非课改)17. 如图,18.150;19.12y x =-;20.①②.三.21.(1)32;(2)12x y =⎧⎨=⎩ 22.(1)因为AE ∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD 又因AE=BC,所以△AEF ≌△BCD.(2)因为△AEF ≌△BCD,所以∠EFA=∠CDB.所以EF ∥CD. 23.(1) 132,48,60,(2) 4,6, 24.(1)由题意,得1.62120%=-(元); (2)设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克. 25.(1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2.又tan ∠ADC=2,所以212DM ==.即DC=BC. (2)等腰三角形.证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC所以,,CE CF ECD BCF =∠=∠.所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=︒ 即△ECF 是等腰直角三角形.(3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=︒,又45CEF ∠=︒,所以90BEF ∠=︒. 所以3BF k ==所以1sin 33k BFE k ∠==. 28-2图26.(1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --= 解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.27.(1)解方程2650,x x -+=得125,1x x == 由m n <,有1,5m n ==所以点A 、B 的坐标分别为A (1,0),B (0,5). 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++.得105b c c -++=⎧⎨=⎩解这个方程组,得45b c =-⎧⎨=⎩所以,抛物线的解析式为245y x x =--+(2)由245y x x =--+,令0y =,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9). 过D 作x 轴的垂线交x 轴于M.则1279(52)22DMC S ∆=⨯⨯-=12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯=所以,2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形.(3)设P 点的坐标为(,0a )因为线段BC 过B 、C 两点,所以BC 所在的值线方程为5y x =+. 那么,PH 与直线BC 的交点坐标为(,5)E a a +,PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.由题意,得①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+ 解这个方程,得32a =-或5a =-(舍去)②23EH EP =,即22(45)(5)(5)3a a a a --+-+=+解这个方程,得23a =-或5a =-(舍去)P 点的坐标为3(,0)2-或2(,0)3-.28.(1)12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠. 又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠ 所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =(2)因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB = 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=- 又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==. 所以234,55PC x PF x == ,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=---所以21824(05)255y x x x =-+≤≤ (3) 存在.当14ABC y S ∆=时,即218246255x x -+=整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原ABC ∆面积的14.。

初三各类高中招生考试数学试卷

初三各类高中招生考试数学试卷

初三各类高中招生考试数学试卷一、选择题1.2的相反数是 ( ) A .2B .-2C .21D .22.y=(x -1)2+2的对称轴是直线 ( ) A .x=-1 B .x=1 C .y=-1D .y=13.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )A .1:1B .1:2C .1:3D .1:44.右图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是( )A .60°B .80°C .120°D .150°5.函数11+=x y 中自变量x 的取值范围是 ( ) A .x ≠-1B .x>-1C .x ≠1D .x ≠0 6.下列计算正确的是 ( ) A .a 2²a 3=a 6B .a 3÷a=a 3C .(a 2)3=a 6D .(3a 2)4=9a 47.在下列图形中,既是中心对称图形又是轴对称图形的是 ( ) A .等腰三角形 B .圆 C .梯形 D .平行四边形 8.右边给出的是2004年3月份的日历表,任意 圈出一竖列上相邻的三个数,请你运用方程思想来研 究,发现这三个数的和不可能是( )A .69B .54C .27D .409.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( )A .7cmB .16cmC .21cmD .27cm10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是( )A B C D11.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是( ) A .-3或1B .-3C .1D .312.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

初三数学招生试卷

初三数学招生试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()。

A. √16B. πC. √-1D. 0.1010010001…(无限循环小数)2. 已知x² - 5x + 6 = 0,则x的值为()。

A. 2 或 3B. 1 或 4C. 3 或 2D. 1 或 33. 在直角坐标系中,点A(-2,3)关于原点的对称点是()。

A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)4. 下列函数中,是反比例函数的是()。

A. y = 2x + 3B. y = x²C. y = 1/xD. y = 3x - 55. 一个等腰三角形的底边长为10cm,腰长为15cm,则这个三角形的面积为()。

A. 75cm²B. 100cm²C. 125cm²D. 150cm²6. 在梯形ABCD中,AD∥BC,AD=8cm,BC=12cm,AB=CD=5cm,则梯形的高为()。

A. 4cmB. 5cmC. 6cmD. 7cm7. 已知sinα = 1/2,则cosα的值为()。

A. √3/2B. -√3/2C. 1/2D. -1/28. 下列命题中,正确的是()。

A. 平行四边形的对角线互相垂直B. 等腰三角形的底角相等C. 对角线互相平分的四边形是平行四边形D. 相邻角互补的四边形是平行四边形9. 一个正方体的表面积为96cm²,则它的体积为()。

A. 64cm³B. 36cm³C. 81cm³D. 144cm³10. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()。

A. 45°B. 60°C. 75°D. 90°二、填空题(每题5分,共50分)11. 若x + 3 = 0,则x = ________。

12. 已知等腰三角形底边长为8cm,腰长为10cm,则底角为 ________ 度。

2024初升高自主招生数学试卷(一)及参考答案

2024初升高自主招生数学试卷(一)及参考答案

—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。

初三中招数学试题及答案

初三中招数学试题及答案

初三中招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 14D. 16答案:B3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 下列哪个方程是一元二次方程?A. x+2=0B. x²-4x+4=0C. x²-2xy+y²=0D. 3x-2=5答案:B5. 一个数的平方根是2,那么这个数是?A. 4B. -4C. 2D. -2答案:A6. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 一个正多边形的内角和是900°,那么这个多边形的边数是多少?A. 5C. 7D. 8答案:C8. 下列哪个选项是不等式?A. 2x+3=7B. 3x-5>0C. 4x+2=10D. 5x-3<0答案:B9. 一个等差数列的首项是2,公差是3,那么第5项是多少?A. 14B. 17C. 20答案:A10. 一个二次函数y=ax²+bx+c的顶点坐标是(-2, 3),那么a的值是多少?A. 1B. -1C. 2D. -2答案:B二、填空题(每题3分,共30分)11. 一个数的立方根是-2,那么这个数是______。

答案:-812. 一个直角三角形的两条直角边长分别是6和8,那么斜边长是______。

答案:1013. 函数y=x²-6x+8的顶点坐标是______。

答案:(3, -1)14. 一个等比数列的首项是2,公比是3,那么第4项是______。

答案:16215. 一个圆的直径是10,那么这个圆的周长是______。

答案:31.416. 一个二次函数y=ax²+bx+c的图象开口向上,那么a的值是______。

初三数学中招考试卷

初三数学中招考试卷

一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1.5D. 02. 已知a、b是实数,且a + b = 0,那么a与b的关系是()A. a > bB. a < bC. a = bD. 无法确定3. 下列函数中,自变量x的取值范围正确的是()A. y = 2x + 3,x ∈ RB. y = √(x - 1),x ≥ 1C. y = x² - 4,x ∈ RD. y = 1/x,x ≠ 04. 下列图形中,属于平行四边形的是()A. 矩形B. 正方形C. 菱形D. 以上都是5. 已知等腰三角形ABC中,AB = AC,且∠BAC = 40°,则∠ABC的度数是()A. 40°B. 50°C. 60°D. 70°6. 若一个数的平方等于4,则这个数是()A. ±2B. ±3C. ±4D. ±57. 下列代数式中,同类项的是()A. 3x²yB. 4xy²C. 2x² + 3xyD. 5xy + 7x²8. 已知一次函数y = kx + b中,k和b都是实数,且k ≠ 0,下列结论正确的是()A. 当k > 0时,函数图像是一条直线,且随着x增大,y增大B. 当k < 0时,函数图像是一条直线,且随着x增大,y减小C. 当k = 0时,函数图像是一条水平线D. 当b = 0时,函数图像是一条通过原点的直线9. 在平面直角坐标系中,点P(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)10. 下列各式中,正确的是()A. 3a²b³ = 3ab²B. 2a²b = 2ab²C. 3a²b³ = 3ab²D. 2a²b = 2ab³二、填空题(每题5分,共20分)11. 若a² = 9,则a = _______。

中考中招数学试卷及答案

中考中招数学试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-16C. √25D. √02. 已知a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. -a + b > 0D. -a - b < 03. 下列函数中,一次函数是()A. y = 2x^2 + 3B. y = 3x - 5C. y = x^3 + 2D. y = 5/x4. 在直角坐标系中,点P的坐标是(3,-2),点Q关于y轴的对称点的坐标是()A.(-3,-2)B.(3,2)C.(-3,2)D.(3,-2)5. 已知等腰三角形ABC中,AB = AC,BC = 8cm,则底边BC上的高AD的长是()A. 4cmB. 6cmC. 8cmD. 10cm6. 一个正方体的表面积是96cm²,则它的体积是()A. 64cm³B. 72cm³C. 96cm³D. 128cm³7. 在平面直角坐标系中,点M的坐标是(-2,3),点N的坐标是(4,-1),则MN的长是()A. 5B. 6C. 7D. 88. 下列图形中,轴对称图形是()A. 正方形B. 等腰梯形C. 长方形D. 平行四边形9. 已知一元二次方程x² - 5x + 6 = 0,则方程的解是()A. x₁ = 2,x₂ = 3B. x₁ = 3,x₂ = 2C. x₁ = -2,x₂ = -3D. x₁ = -3,x₂ = -210. 下列命题中,正确的是()A. 平行四边形一定是矩形B. 等腰三角形一定是等边三角形C. 对角线互相平分的四边形一定是平行四边形D. 对角线相等的三角形一定是等腰三角形二、填空题(每题4分,共20分)11. √81的值是______。

12. 2x - 3 = 7的解是x = ______。

各类高中招生考试数学试题1-初中三年级数学试题练习、期中期末试卷-初中数学试卷

各类高中招生考试数学试题1-初中三年级数学试题练习、期中期末试卷-初中数学试卷

各类高中招生考试数学试题1-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载各类高中招生考试数学试题满分120分,考试时间100分钟一、选择题(本题有15个小题,每小题3分,共45分)下面每小题给出的四个选项中,只有一个是正确的.1.下列各组数中互为相反数的是().(A)与(B)与2(C)与(D)与2.下列各式中计算正确的是().(A)(B)(C)(D)3.用配方法将二次三项式变形的结果是().(A)(B)(C)(D)4.在时刻8∶30,时钟上的时针和分针之间的夹角为().(A)85°(B)75°(C)70°(D)60°5.1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;此时,若某电视塔的影长为100米,则此电视塔的高度应是().(A)80米(B)85米(C)120米(D)125米6.已知2是关于x的方程的一个解,则的值是().(A)3(B)4(C)5(D)67.如果直角三角形的三条边为2,4,a,那么a的取值可以有().(A)0个(B)1个(C)2个(D)3个8.不等式组的解在数轴上可表示为().(A)(B)(C)(D)9.过∶O内一点M的最长的弦长为6cm,最短的弦长为4cm.则OM的长为().(A)cm(B)cm(C)2cm(D)3cm10.已知正比例函数的图象上两点、,当时,有,那么m的取值范围是().(A)(B)(C)(D)11.在∶ABC中,∶A、∶B都是锐角,且,,则∶ABC三个角的大小关系是().(A)∶C&gt;∶A&gt;∶B(B)∶B&gt;∶C&gt;∶A(C)∶A&gt;∶B&gt;∶C (D)∶C&gt;∶B&gt;∶A12.用反证法证明:“三角形中必有一个内角不小于60°”,先应当假设这个三角形中().(A)有一个内角小于60°(B)每一个内角都小于60°(C)有一个内角大于60°(D)每一个内角都大于60°13.下列函数关系中,可以看作二次函数模型的是().(A)在一定的距离内汽车的行驶速度与行驶时间的关系(B)我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系(C)竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)(D)圆的周长与圆的半径之间的关系14.如图,∶AOP=∶BOP=15°,PC∶OA,PD∶OA,若PC=4,则PD等于().(A)4(B)3(C)2(D)115.为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是().(A)19.5(B)20.5(C)21.5(D)25.5二、填空题(本题有5个小题,每小题4分,共20分)16.的因式分解的结果是____________________.17.当图中的∶1和∶2满足________________时,能使OA∶OB(只需填上一个条件即可).18.已知二次函数与一次函数的图象相交于点(如图所示),则能使成立的x的取值范围是____________________.19.圆锥可以看成是直角三角形以它的一条直角边所在的直线为轴,其余各边旋转一周而成的面所围成的几何体,那么圆台可以看成是___________________________所在的直线为轴,其余各边旋转一周而成的面所围成的几何体;如果将一个半圆以它的直径所在的直线为轴旋转一周,所得的几何体应该是___________.20.对于反比例函数与二次函数,请说出它们的两个相同点①_________________________,②__________________________;再说出它们的两个不同点①_________________________,②__________________________.三、解答题(本题有6个小题,共55分).解答应写出文字说明,证明过程或推演步骤.21.(本小题满分7分)当时,求代数式的值.22.(本小题满分8分)如图,小王在陆地上从A地经B地到达C地总行程是14千米,这里的∶ABC为直角,且∶BAC的正切值为0.75.那么小王乘海轮从A地直接到C地的最短距离是多少千米?23.(本小题满分8分)已知等腰梯形ABCD,E为梯形内一点,且EA=ED.求证:EB=EC.24.(本小题满分10分)已知某二次项系数为1的一元二次方程的两个实数根为p、q,且满足关系式,试求这个一元二次方程.25.(本小题满分10分)如图,∶O1与∶O2外切于点C,∶O1与∶O2的连心线与外公切线相交于点P,外公切线与两圆的切点分别为A、B,且AC=4,BC=5.(1)求线段AB的长;(2)证明:.26.(本小题满分12分)已知二次函数.(1)证明:不论a取何值,抛物线的顶点Q总在x轴的下方;(2)设抛物线与y轴交于点C,如果过点C且平行于x轴的直线与该抛物线有两个不同的交点,并设另一个交点为点D,问:∶QCD能否是等边三角形?若能,请求出相应的二次函数解析式;若不能,请说明理由;(3)在第(2)题的已知条件下,又设抛物线与x轴的交点之一为点A,则能使∶ACD的面积等于的抛物线有几条?请证明你的结论.欢迎下载使用,分享让人快乐。

初三升高中的数学试卷

初三升高中的数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √9B. 2.5C. √4D. √22. 已知a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. -a + b < 0D. -a - b > 03. 若函数f(x) = x² - 2x + 1的图像是()A. 抛物线开口向上B. 抛物线开口向下C. 直线D. 圆4. 在直角坐标系中,点A(2, 3)关于y轴的对称点是()A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)5. 下列等式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab + b²6. 下列函数中,是反比例函数的是()A. y = x + 1B. y = 2xC. y = 1/xD. y = x²7. 已知等差数列{an}的前三项分别是2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 48. 在三角形ABC中,∠A = 90°,AB = 6cm,AC = 8cm,则BC的长度是()A. 10cmB. 14cmC. 15cmD. 16cm9. 下列关于圆的定理中,错误的是()A. 圆的直径是圆中最长的弦B. 圆心到圆上任意一点的距离都相等C. 相等半径的圆面积相等D. 相等直径的圆面积相等10. 下列方程中,解为x = 2的是()A. 2x + 3 = 7B. 2x - 3 = 7C. 2x + 3 = 7xD. 2x - 3 = 7x二、填空题(每题5分,共50分)1. 2的平方根是________,3的立方根是________。

中招考试题及答案数学

中招考试题及答案数学

中招考试题及答案数学一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且满足a²+b²=c²,那么这个三角形是直角三角形。

A. 正确B. 错误答案:A2. 已知函数y=2x+3,当x=1时,y的值为5。

A. 正确B. 错误答案:A3. 等腰三角形的两个底角相等。

A. 正确B. 错误答案:A4. 一个数的相反数是它本身,这个数是0。

A. 正确B. 错误答案:A5. 圆的周长和它的半径成正比例。

A. 正确B. 错误答案:A6. 一个数的绝对值总是非负数。

A. 正确B. 错误答案:A7. 两条平行线被第三条直线所截,同位角相等。

A. 正确B. 错误答案:A8. 一个数的立方根只有一个。

A. 正确B. 错误答案:A9. 一个数的平方总是非负数。

A. 正确B. 错误答案:A10. 任何数的零次幂都等于1。

A. 正确B. 错误答案:B二、填空题(每题3分,共30分)1. 若一个数的平方是25,则这个数是____或____。

答案:5或-52. 一个等差数列的首项是2,公差是3,那么它的第五项是____。

答案:173. 一个圆的半径是5厘米,那么它的面积是____平方厘米。

答案:78.54. 若一个三角形的内角和为180°,那么一个等边三角形的每个内角是____°。

答案:605. 一个数的绝对值是5,那么这个数是____或____。

答案:5或-56. 一个数的立方根是2,那么这个数是____。

答案:87. 一个数的相反数是-7,那么这个数是____。

答案:78. 一个数的平方是36,那么这个数是____或____。

答案:6或-69. 一个等腰三角形的底角是45°,那么它的顶角是____°。

答案:9010. 一个数的平方根是3,那么这个数是____。

答案:9三、解答题(每题20分,共40分)1. 已知直角三角形的两条直角边分别是3和4,求斜边的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三各类高中招生考试数学试卷
一、选择题
1.2的相反数是 ( ) A .2
B .-2
C .
2
1
D .2
2.y=(x -1)2+2的对称轴是直线 ( ) A .x=-1 B .x=1 C .y=-1
D .y=1
3.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )
A .1:1
B .1:2
C .1:3
D .1:4
4.右图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是( )
A .60°
B .80°
C .120°
D .150°
5.函数1
1
+=
x y 中自变量x 的取值范围是 ( ) A .x ≠-1
B .x>-1
C .x ≠1
D .x ≠0 6.下列计算正确的是 ( ) A .a 2·a 3=a 6
B .a 3÷a=a 3
C .(a 2)3=a 6
D .(3a 2)4=9a 4
7.在下列图形中,既是中心对称图形又是轴对称图形的是 ( ) A .等腰三角形 B .圆 C .梯形 D .平行四边形 8.右边给出的是2004年3月份的日历表,任意 圈出一竖列上相邻的三个数,请你运用方程思想来研 究,发现这三个数的和不可能是( )
A .69
B .54
C .27
D .40
9.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( )
A .7cm
B .16cm
C .21cm
D .27cm
10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是
行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )
A B C D
11.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是( ) A .-3或1
B .-3
C .1
D .3
12.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。

在此案中能肯定的作案对象是( )
A .嫌疑犯A
B .嫌疑犯B
C .嫌疑犯C
D .嫌疑犯A 和C
二、填空题
13.写出一个3到4之间的无理数 。

14.分解因式:a 3-a= 。

15.如图,在甲、乙两地之间修一条笔直的公路, 从甲地测得公路的走向是北偏东48°。

甲、乙两地间 同时开工,若干天后,公路准确接通,则乙地所修公 路的走向是南偏西 度。

16.请写出一个开口向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。

17.亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm ,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。

请你帮他计算这块铁皮的半径为 cm 。

三、解答题(本题有5小题,共42分)
18.(本题6分)解方程:11
3
162
=---x x
19. (本题8分)某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频率分布直方图。

请回答:
(1)该中学参加本次数学竞赛的有多少名同学?
(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?
(3)图中还提供了其它信息,例如该中学没有获得满分的同学等等。

请再写出两条信息。

22、有一个未知圆心的圆形工件.现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法.
21、已知正比例函数y=kx 与反比例函数y=3
x
的图象都过A (m,,1)点,求此正比例函数解析式及另一个交点的坐标.
22、如图,⊙O 1与⊙O 2外切于点P ,外公切线AB 切⊙O 1于点A ,切⊙O 2于点B , (1)求证: AP ⊥BP ;
(2)若⊙O 1与⊙O 2的半径分别为r 和R ,求证:R r
BP
AP =2
2; (3)延长AP 交⊙O 2于C ,连结BC ,若3:2:=R r ,求C ∠tan 的值;
23、某小型开关厂今年准备投入一定的经费用于现有生产设备的改造以提高经济效益.通过测算:今年开关的年产量y (万只)与投入的改造经费x (万元)之间满足y -3与1+x 成反比例,且当改造经费投入1万元时,今年的年产量是2万只. (1) 求年产量y (万只)与改造经费x (万元)之间的函数解析式.(不要求写出x 的取值
范围)
(2) 已知每生产1万只开关所需要的材料费是8万元.除材料费外,今年在生产中,全年
还需支付出2万元的固定费用.
① 求平均每只开关所需的生产费用为多少元.(用含y 的代数式表示)
(生产费用=固定费用+材料费)
② 如果将每只开关的销售价定位“平均每只开关的生产费用的1.5倍”与“平均每
只开关所占改造费用的一半”之和,那么今年生产的开关正好销完.问今年需投
入多少改造经费,才能使今年的销售利润为9.5万元? (销售利润=销售收入-生产费用-改造费用) 24、如图,AB 是⊙O 的直径,BC 是⊙O 的弦,⊙O 的割线PDE 垂直AB 于点F ,交BC 于点G ,连结PC ,∠BAC=∠BCP 求解下列问题:
(1)求证:CP 是⊙O 的切线。

(2)当∠ABC=30°,BG=32,CG=34时,求以PD 、PE 的长为两根的一元二次方程。

(3)若(1)的条件不变,当点C 在劣弧AD 上运动时,应再具备什么条件可使结论BG 2
=BF ·BO 成立?试写出你的猜想,并说明理由。

祝贺你做完了考题,请再仔细检查一遍,看看有没有错的、..........................漏的,别留下什么遗憾哦!............
参考答案
一、 选择题(每题4分,共48分)
1~5题 B B D C A 6~10题 C B D C C 11~12题 C A 二、 填空题(每题5分,共30分)
13.π或10等
14. a(a +1)(a -1)
15.48
16. y=(x -2)2
+3等 17.6
三、解答题
18. 解:6-3(x +1)=x 2-1
x 2+3x -4=0
(x +4)(x -1)=0 x 1=-4,x 2=1
经检验x=1是增根,应舍去 ∴原方程的解为x=-4
19. (1)4+6+8+7+5+2=32人
(2)90分以上人数:7+5+2=14人
%75.434375.032
14
== (3)该中学参赛同学的成绩均不低于60分。

成绩在80—90分数的人数最多。

20略
21、∵y=3x 图象过A (m ,1)点,则1=3
m ,∴m=3,即A (3,1).将A (3,1)代入
y=kx ,得k=13,∴正比例函数解析式为y=13x .又13
x=3
x ∴x=±3.当x=3时,y=1;当x=
-3时,y=-1.∴另一交点为(-3,-1). 22.(1)作公切线
如图,C 为线段AB 上一点,以BC 为直径作⊙O,再以AO 为直径作⊙M 交⊙O 于D 、E ,过点B 作AB 的垂线交AD 的延长线于F ,连结CD 。

与AD 的长是关于x 的方程0
)51(22=++-k x x (1求证:AD 是⊙O 的切线;②求线段DF 的长;③求sin ∠的值。

(2)当点C 是线段AB 上的一动点(点A 、B 除外),
AB
AC
为何值时,△ACD 是等腰三角形。

B
F 
23、(1)10 (2)55 (3)略
(4)经观察所描各点,它们在二次函数的图象上。

设:此函数的解析式为c bn an S ++=2
由题意得:
⎪⎩⎪
⎨⎧=++=++=++6
393241c b a c b a c b a 解得:⎪⎪⎪⎩
⎪⎪
⎪⎨⎧===0
2121c b a
所以此函数的解析式为n n S 2
1212+= 24.(1) 连结OC ,证∠OCP=90°即可 (2)∵∠B=30° ∴∠A=∠BGP=60°
∴∠BCP=∠BGP=60° ∴ΔCPG 是正三角形. ∴PG=CP=34
∵PC 切⊙O 于C
∴PC 2=PD ·PE=48)34(2=
又∵BC=36 ∴AB=6 FD=33 EG=3 ∴PD=23
∴PD+PE=3103832=+
∴以PD、PE为两根的一元二次方程为x2-48x+103=0
(3)当G为BC中点,OG⊥BC,OG∥AC或∠BOG=∠BAC…时,结论BG2=BF·BO 成立。

要让此结论成立,只要证明ΔBFG∽ΔBGO即可,凡是能使ΔBFG∽ΔBGO 的条件都可以。

相关文档
最新文档