苏科初二数学下学期期末测试题及答案(共五套) 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科初二数学下学期期末测试题及答案(共五套) 百度文库
一、选择题
1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,
AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有
A.1组B.2组C.3组D.4组
2.某市决定从桂花、菊花、月季花中随机选取一种作为市花,选到月季花的概率是( )
A.1
3
B.
1
2
C.1 D.0
3.下列调查中,适宜采用普查方式的是()
A.对全国中学生使用手机情况的调查
B.对五一节期间来花果山游览的游客的满意度调查
C.环保部门对长江水域水质情况的调查
D.对本校某班学生阅读课外书籍情况的调查
4.如图,将△ABC沿着它的中位线DE折叠后,点A落到点A’,若∠C=120°,∠A=
26°,则∠A′DB的度数是()
A.120°B.112°C.110°D.100°
5.小明和同学做“抛掷质地均匀的硬币试验”,获得的数据如表:
若抛掷硬币的次数为3000,则“正面朝上”的频数最接近()
A.1000 B.1500 C.2000 D.2500
6.下列调查中,适宜采用普查方式的是()
A.一批电池的使用寿命B.全班同学的身高情况
C.一批食品中防腐剂的含量D.全市中小学生最喜爱的数学家
7.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:
抛掷次数100200300400500正面朝上的频数5398156202244
若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()
A.20 B.300 C.500 D.800
8.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD
面积的最大值是()
A.15B.16C.19D.20
9.如图,在周长为20cm的平行四边形ABCD中,AB≠AD,AC和BD相交于点O,OE⊥BD交AD于E,则ΔABE的周长为()
A.4cm B.6cm C.8cm D.10cm
10.已知关于x的分式方程2
2
x m
x
+
-
=3的解是5,则m的值为()
A.3 B.﹣2 C.﹣1 D.8
二、填空题
11.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x 的取值范围是__________.
12.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.
13.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是_______.
14.为估算湖里有多少条鱼,先捕上100条做了标记,然后再放回湖里,过一段时间(鱼群完全混合)后,再捕上200条鱼,发现其中带标记的鱼有20条,那么湖里大约有______条鱼.
15.在平行四边形ABCD中,对角线AC与BD相交于点O.要使四边形ABCD是正方形,还需添加一组条件.下面给出了五组条件:①AB=AD,且AC=BD;②AB⊥AD,且
AC⊥BD;③AB⊥AD,且AB=AD;④AB=BD,且AB⊥BD;⑤OB=OC,且OB⊥OC.其中正确的是_____(填写序号).
16.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=___.
17.当a<0时,化简|2a﹣2a|结果是_____.
18.如图是某市连续5天的天气情况,最大的日温差是________℃.
19.已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__________.
20.如图,在平面直角坐标系中,四边形OBCD是菱形,OB=OD=2,∠BOD=60°,将菱形OBCD绕点O旋转任意角度,得到菱形OB1C1D1,则点C1的纵坐标的最小值为_____.
三、解答题
21.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:
(1)求参加这次问卷调查的学生人数;
(2)补全条形统计图;
(3)若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.
22.如图,在▱ABCD中,BE=DF.求证:AE=CF.
23.用适当的方法解方程:
(1)x2﹣4x﹣5=0;
(2)y(y﹣7)=14﹣2y;
(3)2x2﹣3x﹣1=0.
24.如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.
(1)求证:FG=FH;
(2)当∠A为多少度时,FG⊥FH?并说明理由.
25.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.
(1)求证BE=DE;
(2)判断DF与ON的位置关系,并说明理由;
(3)△BEF的周长为.
26.定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C=90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若AB=AD,BC=DC,则四边形ABCD是“准菱形”.
(1)如图,在边长为1的正方形网格中,A、B、C在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:D、D′在格点上);
(2)下列说法正确的有;(填写所有正确结论的序号)
①一组对边平行的“准矩形”是矩形;②一组对边相等的“准矩形”是矩形;
③一组对边相等的“准菱形”是菱形;④一组对边平行的“准菱形”是菱形.
(3)如图⑤,在△ABC中,∠ABC=90°,以AC为一边向外作“准菱形”ACEF,且AC=EC,AF=EF,AE、CF交于点D.
①若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;
②在①的条件下,连接BD,若BD=,∠ACB=15°,∠ACD=30°,请直接写出四边形ACEF的面积.
27.如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC、BD交于点O,AC平分
∠BAD.求证:四边形ABCD为菱形.
28.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,
(1)试说明△ABC是等腰三角形;
S=160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A (2)已知ABC
运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),
①若△DMN的边与BC平行,求t的值;
②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
如图,(1)∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形;
(2)∵AB∥CD,
∴∠ABC+∠BCD=180°,
又∵∠BAD=∠BCD,
∴∠BAD+∠ABC=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形;
(3)∵在四边形ABCD中,AO=CO,BO=DO,
∴四边形ABCD是平行四边形;
(4)∵在四边形ABCD中,AB∥CD,AD=BC,
∴四边形ABCD可能是等腰梯形,也可能是平行四边形;
综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.
故选C.
2.A
解析:A
【分析】
共有3种花,选到月季花占其中的一种,利用概率公式进行求解即可.【详解】
所有机会均等的可能共有3种,而选到月季花的机会有1种,
因此选到月季花的概率是1
3
,
故选A.
【点睛】
本题考查了简单的概率计算,用到的知识点为:概率=所求情况数与总情况数之比.3.D
解析:D
【分析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A.对全国中学生使用手机情况的调查适合抽样调查;
B.对五一节期间来花果山游览的游客的满意度调查适合抽样调查;
C.环保部门对长江水域水质情况的调查适合抽样调查;
D.对本校某班学生阅读课外书籍情况的调查适合普查;
故选:D.
【点睛】
本题考查判别普查的方式,关键在于熟记抽样调查和普查的定义.
4.B
解析:B
【分析】
根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=26°可求出∠B的值,继而求出答案.
【详解】
解:由题意得:DE∥BC,
∴∠A'DE=∠B=180°﹣120°﹣26°=34°,
∴∠BDE=180°﹣∠B=146°,
故∠A'DB=∠BDE﹣∠A'DE=146°﹣34°=112°.
故选:B.
【点睛】
本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.
5.B
解析:B
【分析】
随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.
【详解】
解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,
所以抛掷硬币的次数为3000,则“正面朝上”的频数最接近3000×0.5=1500次,
故选:B.
【点睛】
本题考查利用频率估算概率,解题的关键是掌握利用频率估算概率的方法.
6.B
解析:B
【分析】
根据抽样调查和普查的特点分析即可.
【详解】
解:A.调查一批电池的使用寿命适合抽样调查;
B.调查全班同学的身高情况适合普查;
C.调查一批食品中防腐剂的含量适合抽样调查;
D.调查全市中小学生最喜爱的数学家适合抽样调查;
故选:B.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.C
解析:C
【分析】
随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.
【详解】
观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,
⨯=次,故选C.所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近10000.5500
【点睛】
本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估
计概率.
8.A
解析:A
【解析】
如图1,作AE⊥BC于E,AF⊥CD于F,
,
∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∵两个矩形的宽都是3,
∴AE=AF=3,
∵S四边形ABCD=AE⋅BC=AF⋅CD,
∴BC=CD,
∴平行四边形ABCD是菱形.
如图2,
,
设AB=BC=x,则BE=9−x,
∵BC2=BE2+CE2,
∴x2=(9−x)2+32,
解得x=5,
∴四边形ABCD面积的最大值是:
5×3=15.
故选A.
9.D
解析:D
【解析】
分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.
详解:∵四边形ABCD是平行四边形,
∴AC、BD互相平分,
∴O是BD的中点.
又∵OE⊥BD,
∴OE为线段BD的中垂线,
∴BE=DE.
又∵△ABE的周长=AB+AE+BE,
∴△ABE的周长=AB+AE+DE=AB+AD.
又∵□ABCD的周长为20cm,
∴AB+AD=10cm
∴△ABE的周长=10cm.
故选D.
点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分.请在此填写本题解析!
10.C
解析:C
【分析】
将x=5代入分式方程中进行求解即可.
【详解】
把x=5代入关于x的分式方程2
2
x m
x
+
-
=3得:
25
3
52
m
⨯+
=
-
,
解得:m=﹣1,
故选:C.
【点睛】
本题考查分式方程的解,一般直接将解代入分式方程进行求解.
二、填空题
11.1<x<7
【解析】
因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.
解析:1<x<7
【解析】
因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即
1<x<7,故答案为1<x<7.
12.从各学校共随机抽取的500名八年级男生体重.
【分析】
所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.
【详解】
解:在
解析:从各学校共随机抽取的500名八年级男生体重.
【分析】
所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.
【详解】
解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,
故答案为:从各学校共随机抽取的500名八年级男生体重.
【点睛】
本题考查统计中的总体与样本,属于基本题型.
13.5
【详解】
解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-
解析:5
【详解】
解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.
考点:频数与频率
14.1000
【解析】
【分析】
根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说明有标记的占到,而有标记的共有100条,从而可求得总数.
【详解】
可估计湖里大约有鱼
解析:1000
【解析】
【分析】
根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为20条,说
明有标记的占到
1
10
,而有标记的共有100条,从而可求得总数.
【详解】
可估计湖里大约有鱼100÷20
200
=1000条.
故答案为1000.
【点睛】
本题考查了用样本估计总体,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.
15.①②③⑤
【分析】
】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.
【详解】
∵四边形ABCD是平行四边形,AB=AD,
∴四边形ABCD是菱形,
又∵AC=BD,
∴四边形ABCD是正方
解析:①②③⑤
【分析】
】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.
【详解】
∵四边形ABCD是平行四边形,AB=AD,
∴四边形ABCD是菱形,
又∵AC=BD,
∴四边形ABCD是正方形,①正确;
∵四边形ABCD是平行四边形,AB⊥AD,
∴四边形ABCD是矩形,
又∵AC⊥BD,
∴四边形ABCD是正方形,②正确;
∵四边形ABCD是平行四边形,AB⊥AD,
∴四边形ABCD是矩形,
又∵AB=AD,
∴四边形ABCD是正方形,③正确;
④AB=BD,且AB⊥BD,无法得出四边形ABCD是正方形,故④错误;
∵四边形ABCD是平行四边形,OB=OC,
∴四边形ABCD是矩形,
又∵OB⊥OC,
∴四边形ABCD是正方形,⑤正确;
故答案为:①②③⑤.
【点睛】
本题考查了矩形、菱形、正方形的判定,熟记特殊四边形的判定是解答的关键. 16.【分析】
作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.
【详解】
解
解析:【分析】
作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.
【详解】
解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,
∵四边形ABCD是菱形,
∴AC⊥BD,∠QBP=∠MBP,
即Q在AB上,
∵MQ⊥BD,
∴AC∥MQ,
∵M为BC中点,
∴Q为AB中点,
∵N为CD中点,四边形ABCD是菱形,
∴BQ∥CD,BQ=CN,
∴四边形BQNC是平行四边形,
∴NQ=BC,
∵四边形ABCD是菱形,
∴CP=1
2AC=3,BP=
1
2
BD=4,
在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,
∴MP+NP=QP+NP=QN=5,
故答案为5
【点睛】
本题考查轴对称-最短路线问题;菱形的性质.
17.﹣3a
【分析】
首先利用a的取值范围化简,进而去绝对值求出答案.【详解】
∵a<0,
∴|﹣2a|
=|﹣a﹣2a|
=|﹣3a|
=﹣3a.
故答案为:﹣3a.
【点睛】
此题主要考查了二次根
解析:﹣3a
【分析】
首先利用a的取值范围化简,进而去绝对值求出答案.
【详解】
∵a<0,
∴2a2a|
=|﹣a﹣2a|
=|﹣3a|
=﹣3a.
故答案为:﹣3a.
【点睛】
此题主要考查了二次根式的化简,正确化简二次根式是解题关键.18.10
【分析】
根据图象找出气温差距最大的一天,然后计算温差即可.【详解】
由图可得气温差距最大的一天为5月28日,
温差为:25-15=10,
故答案为:10.
【点睛】
本题考查了有理数减法的
解析:10
【分析】
根据图象找出气温差距最大的一天,然后计算温差即可.
【详解】
由图可得气温差距最大的一天为5月28日,
温差为:25-15=10,
故答案为:10.
【点睛】
本题考查了有理数减法的实际应用,根据图象找出温差最大的一天是解题关键.
19.1
【解析】
分析:利用整体的思想以及根与系数的关系即可求出答案.
详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,
∴at2+bt+1=0,
由题意可知:t1=
解析:1
【解析】
分析:利用整体的思想以及根与系数的关系即可求出答案.
详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,
∴at2+bt+1=0,
由题意可知:t1=1,t2=2,
∴t1+t2=3,
∴x3+x4+2=3
故答案为:1
点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.
20.【分析】
连接OC,过点C作C E⊥x轴于E,由直角三角形的性质可求BE=BC=1,CE =,由勾股定理可求OC的长,据此进一步分析即可求解.
【详解】
如图,连接OC,过点C作CE⊥x轴于点E,
解析:
【分析】
连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=1
2
BC=1,CE=3,由
勾股定理可求OC的长,据此进一步分析即可求解.【详解】
如图,连接OC,过点C作CE⊥x轴于点E,
∵四边形OBCD是菱形,
∴OD∥BC,
∴∠BOD=∠CBE=60°,
∵CE⊥OE,
∴BE=1
2
BC=1,CE3
∴2223
OC OE CE
=+=
∴当点C1在y轴上时,点C1的纵坐标有最小值为3
-,
故答案为:23
-
【点睛】
本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键.
三、解答题
21.(1)150人;(2)见解析;(3)192人
【分析】
(1)根据书法小组的人数及其对应百分比可得总人数;
(2)根据各小组人数之和等于总人数求得航模人数,从而补全图形;
(3)总人数乘以样本中围棋的人数所占百分比即可.
【详解】
(1)参加这次问卷调查的学生人数为:30÷20%=150(人);
(2)航模的人数为150﹣(30+54+24)=42(人),补全条形统计图如下:
(3)该校选择“围棋”课外兴趣小组的学生有:1200×
24150
×100%=192(人). 【点睛】 本题考查了条形统计图和扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
22.证明见解析.
【解析】
试题分析:由平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠ADE=∠CBF ,再由BE=DF ,得出DE=BF ,证明△ADE ≌△CBF ,即可得出结论.
试题解析:∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AD=BC ,
∴∠ADE=∠CBF ,
∵BE=DF ,
∴DE=BF ,
在△ADE 和△CBF 中,
{AD CB
ADE CBF DE BF
=∠=∠=,
∴△ADE ≌△CBF (SAS ),
∴AE=CF .
考点:平行四边形的性质;全等三角形的判定与性质.
23.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12317317,44
x x +=
=. 【分析】
(1)根据因式分解法即可求出答案;
(2)根据因式分解法即可求出答案.
(3)利用公式法求解可得.
【详解】
(1)x 2﹣4x ﹣5=0,
分解因式得:(x +1)(x ﹣5)=0,
则x+1=0或x﹣5=0,
解得:x1=-1,x2=5.
(2)y(y﹣7)=14﹣2y,
移项得,y(y﹣7)-14+2y=0,
分解因式得:(y﹣7)(y+2)=0,
则y﹣7=0或y+2=0,
解得:y1=7,y2=﹣2.
(3)2x2﹣3x﹣1=0,
∴a=2,b=﹣3,c=﹣1,
则△=(﹣3)2﹣4×2×(﹣1)=17>0,
∴x1=317
+
,x2=
317
-
.
【点睛】
本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.
24.(1)见解析;(2)当∠A=90°时,FG⊥FH.
【分析】
(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定定理得到AD=AE,得到DB=EC,根据三角形中位线定理证明结论;
(2)延长FG交AC于N,根据三角形中位线定理得到FH∥AC,FN∥AB,根据平行线的性质解答即可.
【详解】
(1)证明:∵AB=AC.
∴∠ABC=∠ACB,∵DE∥BC,
∴∠ADE=∠ABC,∠AED=∠ACB,
∴∠ADE=∠AED,
∴AD=AE,
∴DB=EC,
∵点F、G、H分别为BE、DE、BC的中点,
∴FG是△EDB的中位线,FH是△BCE的中位线,
∴FG=1
2
BD,FH=
1
2
CE,
∴FG=FH;
(2)解:延长FG交AC于N,
∵FG是△EDB的中位线,FH是△BCE的中位线,
∴FH∥AC,FN∥AB,
∵FG⊥FH,
∴∠A=90°,
∴当∠A=90°时,FG⊥FH.
【点睛】
本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
25.(1)见解析;(2)DF⊥ON,理由见解析;(3)24
【分析】
(1)根据正方形的性质证明△BCE≌△DCE即可;
(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.
【详解】
解:(1)证明:∵四边形ABCD正方形,
∴CA平分∠BCD,BC=DC,
∴∠BCE=∠DCE=45°,
∵CE=CE,
∴△BCE≌△DCE(SAS);
∴BE=DE;
(2)DF⊥ON,理由如下:
∵△BCE≌△DCE,
∴∠EBC=∠EDC,
∵∠EBC=∠CBN,
∴∠EDC=∠CBN,
∵∠EDC+∠1=90°,∠1=∠2,
∴∠2+∠CBN=90°,
∴∠EFB=90°,即DF⊥ON;
(3)过D点作DG垂直于OM,交点为G,
∵四边形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAG+∠BAO=90°,
∵∠ABO+∠BAO=90°,
∴∠DAG=∠ABO,
又∵∠MON=90°,DG⊥OM,
∴△ADG≌△ABO,
∴DM=AO,GA=OB=5,
∵AB=13,OB=5,
根据勾股定理可得AO=12,
由(2)可知DF⊥ON,
又∵∠MON=90°,DG⊥OM,
∴四边形OFDM是矩形,
∴OF=DG=AO=12,DF=OM=17,
由(1)可知BE=DE,
∴△BEF的周长=DF+BF=17+(12-5)=24.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.
26.(1)见解析;(2)①②③④;(3)①证明见解析;②3
【分析】
(1)根据准矩形和准菱形的特点画图即可;
(2)根据矩形的判定定理和菱形的判定定理结合准矩形和准菱形的性质对每一个选项进行推断即可;
(3)①先根据已知得出△ACF≌△ECF,再结合∠ACE=∠AFE可推出AC∥EF,AF∥CE,则证明了准菱形ACEF是平行四边形,又因为AC=EC即可得出准菱形ACEF是菱形;
②取AC的中点M,连接BM、DM,根据四边形ACEF是菱形可得A、B、C、D四点共圆,点M是圆心,根据圆周角定理可推出∠BMD=90°,即可求出AC,再根据∠ACD=30°即可求出AD,CD的长,则可求出菱形的面积.
【详解】
(1);
(2)①因为∠A=∠C=90°,结合一组对边平行可以判断四边形为矩形,故①正确;
②因为∠A=∠C=90°,结合一组对边相等可以判断四边形为矩形,故②正确;
③因为AB=AD,BC=DC,结合一组对边相等可以判断四边形为菱形,故③正确;
④因为AB=AD,BC=DC,结合一组对边平行可以判断四边形为菱形,故④正确;
故答案为:①②③④;
(3)①证明:∵AC=EC,AF=EF,CF=CF,
∴△ACF≌△ECF(SSS).
∴∠ACF=∠ECF,∠AFC=∠EFC,
∵∠ACE=∠AFE,
∴∠ACF=∠EFC,∠ECF=∠AFC,
∴AC∥EF,AF∥CE,
∴准菱形ACEF是平行四边形,
∵AC=EC,
∴准菱形ACEF是菱形;
②如图:取AC的中点M,连接BM、DM,
∵四边形ACEF是菱形,
∴AE⊥CF,∠ADC=90°,
又∵∠ABC=90°,
∴A、B、C、D四点共圆,点M是圆心,
∵∠ACB=15°,
∴∠AMB=30°,
∵∠ACD=30°,
∴∠AMD=60°,
∴∠BMD=90°,
∴△BMD是等腰直角三角形,
∴BM=DM=2BD=2=1, ∴AC=2(直角三角形斜边上的中线等于斜边的一半),
∴AD=AC ×sin30°=1,CD=AC ×cos30°
∴菱形ACEF 的面积=
12×1×4= 【点睛】
本题考查了矩形的判定和性质,菱形的判定和性质,圆周角定理,全等三角形的判定和性质,掌握知识点是解题关键.
27.详见解析.
【分析】
先判断出∠OAB =∠DCA ,进而判断出∠DAC =∠DAC ,得出CD =AD =AB ,证出四边形ABCD 是平行四边形,再由AD =AB ,即可得出结论.
【详解】
证明:∵AB ∥CD ,
∴∠OAB =∠DCA ,
∵AC 平分∠BAD .
∴∠OAB =∠DAC ,
∴∠DCA =∠DAC ,
∴CD =AD =AB ,
∵AB ∥CD ,
∴四边形ABCD 是平行四边形,
∵AD =AB ,
∴四边形ABCD 是菱形.
【点睛】
本题考查了菱形的判定,能够了解菱形的几种判定方法是解答本题的关键,难度不大.
28.(1)证明见详解;(2)①5或6;②9或10或
496
. 【分析】
(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;
(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;
②根据题意得出当点M 在DA 上,即4<t≤10时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-8;分别得出方程,解方程即可.
【详解】
(1)证明:设BD=2x ,AD=3x ,CD=4x ,
则AB=5x ,
在Rt △ACD 中,AC=5x ,
∴AB=AC ,
∴△ABC是等腰三角形;
(2)解:由(1)知,AB=5x,CD=4x,
∴S△ABC=1
2
×5x×4x=160cm2,而x>0,
∴x=4cm,
则BD=8cm,AD=12cm,CD=16cm,AB=AC=20cm.
由运动知,AM=20-2t,AN=2t,
①当MN∥BC时,AM=AN,
即20-2t=2t,
∴t=5;
当DN∥BC时,AD=AN,
∴12=2t,
得:t=6;
∴若△DMN的边与BC平行时,t值为5或6.
②存在,理由:
Ⅰ、当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=4时,点M运动到点D,不构成三角形
Ⅲ、当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,
∴DE=1
2
AC=10
当DE=DM,则2t-8=10,
∴t=9;
当ED=EM,则点M运动到点A,∴t=10;
当MD=ME=2t-8,
如图,过点E作EF垂直AB于F,
∵ED=EA,
∴DF=AF=1
2
AD=6,
在Rt△AEF中,EF=8;
∵BM=2t,BF=BD+DF=8+6=14,∴FM=2t-14
在Rt△EFM中,(2t-8)2-(2t-14)2=82,
∴t=49
6
.
综上所述,符合要求的t值为9或10或49
6
.
【点睛】
此题是三角形综合题,主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.。