高考数学空间距离的计算

合集下载

高考数学关于求空间距离的问题

高考数学关于求空间距离的问题

题目高中数学复习专题讲座关于求空间距离的问题 高考要求空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离 重难点归纳1.空间中的距离主要指以下七种 (1)两点之间的距离 (2)点到直线的距离 (3)点到平面的距离 (4)两条平行线间的距离 (5)两条异面直线间的距离(6)平面的平行直线与平面之间的距离 (7)两个平行平面之间的距离七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离 七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点求点到平面的距离 (1)直接法,即直接由点作垂线,求垂线段的长 (2)转移法,转化成求另一点到该平面的距离 (3)体积法 (3)向量法求异面直线的距离 (1)定义法,即求公垂线段的长 (2)转化成求直线与平面的距离 (3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的 2.用向量法求距离的公式:⑴异面直线,a b 之间的距离:||AB n d n ⋅= ,其中,,,n a n b A a B b ⊥⊥∈∈。

⑵直线a 与平面α之间的距离:||AB n d n ⋅= ,其中,A a B α∈∈。

n是平面α的法向量。

⑶两平行平面,αβ之间的距离:||AB n d n ⋅= ,其中,A B αβ∈∈。

n是平面α的法向量。

⑷点A 到平面α的距离:||AB n d n ⋅= ,其中B α∈,n是平面α的法向量。

另法:点000(,,),A x y z 平面0Ax By Cz D +++=则d =⑸点A 到直线a 的距离:d =B a ∈,a是直线a 的方向向量。

⑹两平行直线,a b 之间的距离:d =,A a B b ∈∈,a是a 的方向向量。

高考数学复习 空间距离 ppt

高考数学复习 空间距离 ppt

DK
E
O
H
A
F
C B
过O作OK⊥平面PEF,可证明(zhèngmíng)OK就是所要求的 距离
此时,得用△OKH∽△PCH,容易求得 OK的值。
2 11 11第二十页,共32页。
如图,在四棱锥P-ABCD中,底面ABCD是
正方形,PD 底面ABCD,PD = DC = a,
E为PC的中点(zhōnɡ diǎn). 求点P到平面
为60,求点 B到旋转后形成的平面(pAínBgCmiàn) 的距离.
A 分析 : 设点B到平面ABC的距离为h,
连结BB,则VBABC VABBC ,
易得CDB为二面角C AD B
的平面角为60 , BBC为直角三角形,
AD 面BBC.

1 3
h
S ABC
1 3
AD SBBC
B
D
S ABC
a
所确定的平面(píngmiàn) Q
B N
为α,且平面(píngmiàn)α
交直线as与iAnQB60,
7 2 21 33
2 第七页,共32页。
点—面
从平面外一点(yī diǎn)引这个平面的
垂足叫做(jiàozuò)点在这个平面内的
这个(zhège)点和垂足间的距离叫
A
点到平面的距离
H
线面垂直
11 22
12 ( 1 )2 4
15 16
,
S BBC
1 2
1 2
3 2
3, 8
h AD SBBC S ABC
3 3 2 8
15 16
15 即为B到面ABC的距离. 5
第二十六页,共32页。

高中数学立体几何空间距离问题

高中数学立体几何空间距离问题

立体几何空间距离问题空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离.●难点磁场(★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点.求:(1)Q到BD的距离;(2)P到平面BQD的距离.P为RT△ABC所在平面α外一点,∠ACB=90°(如图)(1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角(2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离●案例探究[例1]把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC 的中点,点O 是原正方形的中心,求:(1)EF 的长;(2)折起后∠EOF 的大小.命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目.知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直.技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单.解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-42a , a ),F (42a , 42a ,0) 21||||,cos ,2||,2||8042)42)(42(420)0,42,42(),42,42,0()2(23,43)420()4242()042(||)1(22222-=>=<==-=⋅+-+⨯=⋅=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF∴∠EOF =120°[例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离.命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.错解分析:本题容易错误认为O 1B 是A 1C 与AB 1的距离,这主要是对异面直线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的距离.技巧与方法:求异面直线的距离,有时较难作出它们的公垂线,故通常采用化归思想,转化为求线面距、面面距、或由最值法求得.解法一:如图,连结AC 1,在正方体AC 1中,∵A 1C 1∥AC ,∴A 1C 1∥平面AB 1C ,∴A 1C 1与平面AB 1C 间的距离等于异面直线A 1C 1与AB 1间的距离.连结B 1D 1、BD ,设B 1D 1∩A 1C 1=O 1,BD ∩AC =O ∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥平面BB 1D 1D∴平面AB 1C ⊥平面BB 1D 1D ,连结B 1O ,则平面AB 1C ∩平面BB 1D 1D =B 1O 作O 1G ⊥B 1O 于G ,则O 1G ⊥平面AB 1C∴O 1G 为直线A 1C 1与平面AB 1C 间的距离,即为异面直线A 1C 1与AB 1间的距离.在Rt △OO 1B 1中,∵O 1B 1=22,OO 1=1,∴OB 1=21121B O OO += 26∴O 1G =331111=⋅OB B O O O ,即异面直线A 1C 1与AB 1间距离为33.解法二:如图,在A 1C 上任取一点M ,作MN ⊥AB 1于N ,作MR ⊥A 1B 1于R ,连结RN ,∵平面A 1B 1C 1D 1⊥平面A 1ABB 1,∴MR ⊥平面A 1ABB 1,MR ⊥AB 1 ∵AB 1⊥RN ,设A 1R =x ,则RB 1=1-x ∵∠C 1A 1B 1=∠AB 1A 1=45°,∴MR =x ,RN =NB 1=)1(22x - 31)31(23)1(2122222+-=-+=+=x x x RN MR MN (0<x <1)∴当x =31时,MN 有最小值33即异面直线A 1C 1与AB 1距离为33.●锦囊妙计空间中的距离主要指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离.(6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离.七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离.在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点.求点到平面的距离:(1)直接法,即直接由点作垂线,求垂线段的长.(2)转移法,转化成求另一点到该平面的距离.(3)体积法.求异面直线的距离:(1)定义法,即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.●歼灭难点训练 一、选择题1.(★★★★★)正方形ABCD 边长为2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图),M 为矩形AEFD 内一点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为( )21 D. 23C. B.1 22A.2.(★★★★)三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,则A 1C 1与l 的距离为( )A.10B.11C.2.6D.2.4二、填空题3.(★★★★)如左下图,空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为_________.4.(★★★★)如右上图,ABCD与ABEF均是正方形,如果二面角E—AB—C 的度数为30°,那么EF与平面ABCD的距离为_________.三、解答题5.(★★★★★)在长方体ABCD—A1B1C1D1中,AB=4,BC=3,CC1=2,如图:(1)求证:平面A1BC1∥平面ACD1;(2)求(1)中两个平行平面间的距离;(3)求点B1到平面A1BC1的距离.6.(★★★★★)已知正四棱柱ABCD—A1B1C1D1,点E在棱D1D上,截面EAC∥D1B且面EAC与底面ABCD所成的角为45°,AB=a,求:(1)截面EAC的面积;(2)异面直线A1B1与AC之间的距离;(3)三棱锥B1—EAC的体积.7.(★★★★)如图,已知三棱柱A1B1C1—ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.(1)求点A到平面B1BCC1的距离;(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.8.(★★★★★)如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB = 31AD =a ,∠ADC =arccos552,P A ⊥面ABCD 且P A =a .(1)求异面直线AD 与PC 间的距离;(2)在线段AD 上是否存在一点F ,使点A 到平面PCF 的距离为36.参考答案 难点磁场解:(1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足 连结QE ,∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE ∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b , ∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c∴QE =22222ba b a c ++∴Q 到BD 距离为22222ba b a c ++.(2)解法一:∵平面BQD 经过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离.在Rt △AQE 中,∵AQ =c ,AE =22ba ab +∴AH =22222)(ba cb a abc ++∴P 到平面BD 的距离为22222)(ba cb a abc ++解法二:设点A 到平面QBD 的距离为h ,由 V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQ h =22222)(ba cb a abc S AQS BQDABD ++==⋅∆∆歼灭难点训练一、1.解析:过点M 作MM ′⊥EF ,则MM ′⊥平面BCF ∵∠MBE =∠MBC∴BM ′为∠EBC 为角平分线, ∴∠EBM ′=45°,BM ′=2,从而MN =22 答案:A2.解析:交线l 过B 与AC 平行,作CD ⊥l 于D ,连C 1D ,则C 1D 为A 1C 1与l 的距离,而CD 等于AC 上的高,即CD =512,Rt △C 1CD 中易求得C 1D =513=2.6 答案:C二、3.解析:以A 、B 、C 、D 为顶点的四边形为空间四边形,且为正四面体,取P 、Q 分别为AB 、CD 的中点,因为AQ =BQ =22a ,∴PQ ⊥AB ,同理可得PQ ⊥CD ,故线段PQ 的长为P 、Q 两点间的最短距离,在Rt △APQ 中,PQ =22)2()23(2222=-=-a a AP AQ a 答案:22a4.解析:显然∠F AD 是二面角E —AB —C 的平面角,∠F AD =30°,过F 作FG ⊥平面ABCD 于G ,则G 必在AD 上,由EF ∥平面ABCD .∴FG 为EF 与平面ABCD 的距离,即FG =2a . 答案:2a三、5.(1)证明:由于BC 1∥AD 1,则BC 1∥平面ACD 1 同理,A 1B ∥平面ACD 1,则平面A 1BC 1∥平面ACD 1(2)解:设两平行平面A 1BC 1与ACD 1间的距离为d ,则d 等于D 1到平面A 1BC 1的距离.易求A 1C 1=5,A 1B =25,BC 1=13,则cos A 1BC 1=652,则sin A 1BC 1=6561,则S 111C B A ∆=61,由于111111D C A B BC A D V V --=,则31S 11BC A ∆·d =)21(31111D C AD ⋅·BB 1,代入求得d =616112,即两平行平面间的距离为616112. (3)解:由于线段B 1D 1被平面A 1BC 1所平分,则B 1、D 1到平面A 1BC 1的距离相等,则由(2)知点B 1到平面A 1BC 1的距离等于616112. 6.解:(1)连结DB 交AC 于O ,连结EO , ∵底面ABCD 是正方形 ∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45° 又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a (2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1 ∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a ∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC ∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a32422322311a a a V EAC B =⋅⋅=-7.解:(1)∵BB 1⊥A 1E ,CC 1⊥A 1F ,BB 1∥CC 1 ∴BB 1⊥平面A 1EF 即面A 1EF ⊥面BB 1C 1C 在Rt △A 1EB 1中, ∵∠A 1B 1E =45°,A 1B 1=a∴A 1E =22a ,同理A 1F =22a ,又EF =a ,∴A 1E =22a 同理A 1F =22a ,又EF =a∴△EA 1F 为等腰直角三角形,∠EA 1F =90°过A 1作A 1N ⊥EF ,则N 为EF 中点,且A 1N ⊥平面BCC 1B 1 即A 1N 为点A 1到平面BCC 1B 1的距离 ∴A 1N =221a =又∵AA 1∥面BCC 1B ,A 到平面BCC 1B 1的距离为2a ∴a =2,∴所求距离为2(2)设BC 、B 1C 1的中点分别为D 、D 1,连结AD 、DD 1和A 1D 1,则DD 1必过点N ,易证ADD 1A 1为平行四边形.∵B 1C 1⊥D 1D ,B 1C 1⊥A 1N ∴B 1C 1⊥平面ADD 1A 1 ∴BC ⊥平面ADD 1A 1得平面ABC ⊥平面ADD 1A 1,过A 1作A 1M ⊥平面ABC ,交AD 于M , 若A 1M =A 1N ,又∠A 1AM =∠A 1D 1N ,∠AMA 1=∠A 1ND 1=90° ∴△AMA 1≌△A 1ND 1,∴AA 1=A 1D 1=3,即当AA 1=3时满足条件. 8.解:(1)∵BC ∥AD ,BC ⊂面PBC ,∴AD ∥面PBC从而AD 与PC 间的距离就是直线AD 与平面PBC 间的距离. 过A 作AE ⊥PB ,又AE ⊥BC ∴AE ⊥平面PBC ,AE 为所求. 在等腰直角三角形P AB 中,P A =AB =a ∴AE =22a(2)作CM ∥AB ,由已知cos ADC =552 ∴tan ADC =21,即CM =21DM ∴ABCM 为正方形,AC =2a ,PC =3a过A 作AH ⊥PC ,在Rt △P AC 中,得AH =36 下面在AD 上找一点F ,使PC ⊥CF取MD 中点F ,△ACM 、△FCM 均为等腰直角三角形∴∠ACM +∠FCM =45°+45°=90°∴FC ⊥AC ,即FC ⊥PC ∴在AD 上存在满足条件的点F .[学法指导]立体几何中的策略思想及方法近年来,高考对立体几何的考查仍然注重于空间观点的建立和空间想象能力的培养.题目起点低,步步升高,给不同层次的学生有发挥能力的余地.大题综合性强,有几何组合体中深层次考查空间的线面关系.因此,高考复习应在抓好基本概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何问题的有效的策略思想及方法.一、领悟解题的基本策略思想高考改革稳中有变.运用基本数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在基本数学思想指导下,归纳一套合乎一般思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的经验,解决一般基本数学问题就会自然流畅.二、探寻立体几何图形中的基面立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地“立”起来.在具体的问题中,证明和计算经常依附于某种特殊的辅助平面即基面.这个辅助平面的获取正是解题的关键所在,通过对这个平面的截得,延展或构造,纲举目张,问题就迎刃而解了.三、重视模型在解题中的应用学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力.而数学问题中许多图形和数量关系都与我们熟悉模型存在着某种联系.它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学问题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特征规律获取优解.。

空间中两点之间的距离公式

空间中两点之间的距离公式

空间中两点之间的距离公式
距离是空间中两点之间的实际距离,我们常用距离公式来表示两点之间的距离。

距离公式是指计算两点之间距离的公式,主要是三维空间中的点之间的距离。

三维空间中,任意两点之间的距离公式为:
d=√((x2-x1)2+(y2-y1)2+(z2-z1)2)
其中,d为两点之间的距离,x1、y1、z1为第一个点的坐标,x2、y2、z2为第二个点的坐标。

二维空间中,任意两点之间的距离公式为:
d=√((x2-x1)2+(y2-y1)2)
其中,d为两点之间的距离,x1、y1为第一个点的坐标,x2、y2为第二个点的坐标。

一维空间中,任意两点之间的距离公式为:
d=|x2-x1|
其中,d为两点之间的距离,x1、x2为第一个点和第二个点的坐标。

以上就是距离公式的基本内容,它可以帮助我们更准确地计算两点之间的距离,从而更好地理解空间关系。

距离是一个重要的概念,它可以帮助我们更好地理解空间中的物理现象,比如,我们可以使用距离公式来计算太阳与地球之间的距离,从而更准确地推断太阳系的大小和结构等。

此外,距离公式也可以用于物理、几何等学科,以及地理、气象等学科。

距离公式是一个重要的概念,它可以帮助我们更准确地计算两点之间的距离,从而帮助我们更好地理解空间关系,并用于不同学科中。

数学高考知识点求距离的题

数学高考知识点求距离的题

数学高考知识点求距离的题:求距离的题数学是一门精密而又具有严谨逻辑的学科,高考数学中有许多知识点需要我们熟练掌握。

其中,求距离是一个经常出现的考点,涉及到不同几何图形的距离计算。

本文将以一些具体例题来介绍这个考点,并解释解题思路和方法。

一、平面几何中的求距离平面几何涉及到不同的图形,比如直线、线段、圆等。

在解题过程中,我们往往需要求解两个不同图形之间的距离。

这些距离求解的方法各不相同,下面我们将通过几个例题来逐步探讨。

1. 已知直线方程,求点到直线的距离例题:已知直线的方程为y = 2x + 1,求点P(3,4)到直线的距离。

解析:要求点到直线的距离,我们可以利用点到直线的垂线。

首先,求解直线的斜率k = 2,因为垂线的斜率为-1/k,所以垂线的斜率为-1/2。

然后,利用点斜式可得到垂线的方程为y = -1/2x + b。

将点P代入垂线方程,得到4 = -1/2*3 + b,求解b可得b = 19/2。

最后,求解点到直线的距离可通过计算两个垂线的交点到P点的距离,即d = |(3 - 19/8)/(1 + 1/4)|,简化计算可得到d = 41/8。

2. 已知两点坐标,求点到点的距离例题:已知平面上两点A(1,2)和B(4,6),求点A到点B的距离。

解析:利用两点间的距离公式即可求解,d = √[(x2 - x1)² + (y2 - y1)²]。

将题目中的坐标代入公式,可得到d = √[(4 - 1)²+ (6 - 2)²] = √(9 + 16) = √25 = 5。

二、空间几何中的求距离除了平面几何中的求距离,高考数学也会考察到空间几何中的距离计算。

空间几何涉及到三维图形,如直线、平面和空间点等。

下面,我们将通过例题来看一下如何解决这类题目。

1. 已知平面方程和点坐标,求点到平面的距离例题:已知平面的方程为2x + 3y + z = 5,点P(1,2,3),求点P到平面的距离。

高中数学高考复习专题《立体几何》微专题1 空间中的距离

高中数学高考复习专题《立体几何》微专题1  空间中的距离

1.典型例题
题型一、点到直线的距离
例 1 已知正方体 ABCD-A1B1C1D1 的棱长为 2,E 为棱 A1B1 的中点,F 为棱 C1D1 的中点,
则 BF=
,点 A 到直线 BE 的距离为

【答案】3,45 5
【解析】如图 2 所示,连结 B1F,在△BB1F 中可得 BF=3.作 AH⊥BE 于 H,连结 AE,
E
A
F
B
图4
D
C
E O
A
F
B
图5
【答案】(1)2
2;(2)2
1111;(3)2
11. 11
【解析】如图 5 所示,连结 AC 交 BD 于 O.
(1)可证 OC⊥BD,OC⊥PC,又 OC=2 2,∴异面直线 PC、BD 间的距离为
2 2.
(2)法一 可证 BD∥平面 PEF,∴点 O 到平面 PEF 的距离等于点 B 到平面 PEF 的距
(4)两条异面直线间的距离
和两条异面直线分别垂直相交的直线,叫两条异面直线的公垂线;公垂线上夹在两异
面直线间的线段的长度,叫两异面直线间的距离.
如图 1 所示,AA1 与 BC 为异面直线.易知 AB⊥AA1,AB⊥BC,因此异面直线 AA1 与 BC 间的距离为 1.
(5)直线和平面的距离
一条直线和一个平面平行,这条直线上任意一点到这个平面的距离,叫做这条直线和这
D1
C1
A1
B1
D
C
A (2)点到平面的距离
B 图1
从平面外一点引平面的垂线,这个点和垂足间的距离,叫做这个点到这个平面的距离.
如图 1 所示,易知 AA1⊥平面 A1C1,因此点 A 到平面 A1C1 的距离为 1. (3)两条平行直线间的距离

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.

,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬

[0,π] .

易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.

新高考数学空间距离及立体几何中的探索性问题精品课件

新高考数学空间距离及立体几何中的探索性问题精品课件
课堂考点探究
[解析]方法一:设M为直线AC上任意一点,过M作MN⊥BC1,垂足为N,连接AN,如图,设=λ=λ+λ(0≤λ≤1),=μ=μ+μ(0≤μ≤1),则=-= +-=(1-λ)+(μ-λ)+μ,=+.∵MN⊥BC1, ∴·=0,即[(1-λ)+(μ-λ)+μ]·(+)=0,∵AB⊥AD, AB⊥AA1, AD⊥AA1,∴(μ-λ)+μ=0,即μ-λ+μ=0,∴λ=2μ.∴=(1-2μ)-μ+ μ,∴||= ==,∴当μ=时,||取得最小值=,故异面直线AC与BC1之间的距离是.故选B.
[总结反思]点面距的求法:(1)几何法:①作出点到平面的垂线段,在直角三角形中,求这条垂线段的长度.②把待求的点面距看作三棱锥的高,利用三棱锥的等体积转换法求解.(2)向量法:点A到平面α的距离d=(其中B是平面α内一点,n是平面α的一个法向量).
课堂考点探究
课堂考点探究
变式题1 (1)正三棱柱ABC-A1B1C1的所有顶点均在表面积为8π的球O的球面上,AB=,则B1到平面A1BC的距离为( )A.1 B. C. D.
课堂考点探究
方法二:如图,取BC的中点E,连接B1E,DE,B1E交BC1于点G,DE交AC于点F,则==2,==2.连接B1D,FG,在△B1DE中,==2,∴FG DB1.在正方体ABCD-A1B1C1D1中,易证B1D⊥AC,B1D⊥BC1,∴FG⊥AC,FG⊥BC1,∴FG为异面直线AC与BC1的公垂线段.∵B1D=,∴FG=,即异面直线AC与BC1之间的距离为.
课堂考点探究
方法三:如图,以D为原点,以,,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则D(0,0,0),A(1,0,0),B(1,1,0),B1(1,1,1),C1(0,1,1),C(0,1,0),连接DB1,∴=(-1,1,0),=(-1,0,1),=(0,1,0),=(1,1,1),则·=0, ·=0,∴DB1⊥AC,DB1⊥BC1,∴异面直线AC与BC1之间的距离为==.

高考数学 空间向量与立体几何常用公式 理科

高考数学 空间向量与立体几何常用公式 理科

《空间向量与立体几何》知识点一:利用向量求空间角(1)求异面直线所成的角已知a,b为两异面直线,A,C与B,D分别是a,b上的任意两点,a,b所成的角为,则。

注意:两异面直线所成的角的范围为(00,900]。

(2)求直线和平面所成的角设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的角为,则有。

(3)求二面角如图,若于A,于B,平面PAB交于E,则∠AEB为二面角的平面角,∠AEB+∠APB=180°。

若分别为面,的法向量,则二面角的平面角或,即二面角等于它的两个面的法向量的夹角或夹角的补角。

知识点二:利用向量求空间距离(1)空间两点间距离公式:设点,,则(2)两异面直线距离的求法如图,设,是两条异面直线,是与的公垂线段AB的方向向量,又C,D分别是,上任意两点,则与的距离是。

(3)点面距离的求法:如图,BO⊥平面,垂足为O,则点B到平面的距离就是线段BO的长度。

若AB是平面的任一条斜线段,则在Rt△BOA中,。

设平面的法向为,则点B到平面的距离为。

注意:线面距、面面距均可转化为点面距离,用求点面距的方法进行求解。

知识点三:用向量语言表述线与面之间的位置关系设两不同直线,的方向向量分别为,,两不同平面,的法向量分别为,,则①线线平行:,;②线线垂直:;③线面平行:在平面外,;④线面垂直:,;⑤面面平行:,;⑥面面垂直:。

关键:用向量知识来探讨空间的垂直与平行问题,关键是找出或求出问题中涉及的直线的方向向量和平面的法向量,通过讨论向量的共线或垂直,确定线面之间的位置关系。

高考数学复习考点题型专题讲解15 空间角、距离的计算(几何法、向量法)

高考数学复习考点题型专题讲解15 空间角、距离的计算(几何法、向量法)

高考数学复习考点题型专题讲解专题15 空间角、距离的计算(几何法、向量法) 高考定位 1.以空间几何体为载体考查空间角(以线面角为主)是高考命题的重点,常与空间线面位置关系的证明相结合,热点为空间角的求解,常以解答题的形式进行考查.高考注重利用向量方法解决空间角问题,但也可利用几何法来求解;2.空间距离(特别是点到面的距离)也是高考题中的常见题型,多以解答题的形式出现,难度中等.1.(多选)(2022·新高考Ⅰ卷)已知正方体ABCD-A1B1C1D1,则( )A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°答案ABD解析如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确;在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1.连接B1C,则B1C⊥BC1.因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确;连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB. 因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=2a,OC1=2a 2,所以在Rt△BOC1中,OC1=12BC1,所以∠OBC1=30°,故C错误;因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.故选ABD.2.(2019·全国Ⅰ卷)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为________.答案 2解析如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离.再过O作OE⊥AC于E,OF⊥BC于F,连接OC,PE,PF,则PE⊥AC,PF⊥BC.所以PE=PF=3,所以OE=OF,所以CO为∠ACB的平分线,即∠ACO=45°.在Rt△PEC中,PC=2,PE=3,所以CE=1,所以OE=1,所以PO=PE2-OE2=(3)2-12= 2.3.(2022·新高考Ⅱ卷)如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E为PB的中点.(1)证明:OE∥平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.(1)证明如图,取AB的中点D,连接DP,DO,DE.因为AP=PB,所以PD⊥AB.因为PO为三棱锥P-ABC的高,所以PO⊥平面ABC.因为AB⊂平面ABC,所以PO⊥AB.又PO,PD⊂平面POD,且PO∩PD=P,所以AB⊥平面POD.因为OD⊂平面POD,所以AB⊥OD,又AB⊥AC,AB,OD,AC⊂平面ABC,所以OD∥AC.因为OD⊄平面PAC,AC⊂平面PAC,所以OD∥平面PAC.因为D,E分别为BA,BP的中点,所以DE∥PA.因为DE⊄平面PAC,PA⊂平面PAC,所以DE∥平面PAC.又OD,DE⊂平面ODE,OD∩DE=D,所以平面ODE∥平面PAC.又OE⊂平面ODE,所以OE∥平面PAC.(2)解连接OA,因为PO⊥平面ABC,OA,OB⊂平面ABC,所以PO⊥OA,PO⊥OB,所以OA=OB=PA2-PO2=52-32=4.易得在△AOB中,∠OAB=∠ABO=30°,所以OD=OA sin 30°=4×12=2,AB=2AD=2OA cos 30°=2×4×32=4 3.又∠ABC=∠ABO+∠CBO=60°,所以在Rt△ABC 中,AC =AB tan 60°=43×3=12.以A 为坐标原点,AB ,AC 所在直线分别为x ,y 轴,以过A 且垂直于平面ABC 的直线为z 轴建立空间直角坐标系,如图所示,则A (0,0,0),B (43,0,0),C (0,12,0), P (23,2,3),E ⎝⎛⎭⎪⎫33,1,32,所以AE →=⎝ ⎛⎭⎪⎫33,1,32,AB →=(43,0,0),AC →=(0,12,0).设平面AEC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=0,n ·AC →=0,即⎩⎨⎧33x +y +32z =0,12y =0,令z =23,则n =(-1,0,23).设平面AEB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,即⎩⎨⎧33x 1+y 1+32z 1=0,43x 1=0,令z 1=2,则m =(0,-3,2),所以|cos 〈n ,m 〉|=⎪⎪⎪⎪⎪⎪n ·m |n |·|m |=4313.设二面角C -AE -B 的大小为θ,则sin θ=1-⎝⎛⎭⎪⎫43132=1113.4.(2021·浙江卷)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,PA=15,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(1)证明:AB⊥PM;(2)求直线AN与平面PDM所成角的正弦值.(1)证明因为底面ABCD是平行四边形,∠ABC=120°,BC=4,AB=1,且M为BC的中点,所以CM=2,CD=1,∠DCM=60°,易得CD⊥DM.又PD⊥DC,且PD∩DM=D,PD,DM⊂平面PDM,所以CD⊥平面PDM.因为AB∥CD,所以AB⊥平面PDM.又PM⊂平面PDM,所以AB⊥PM.(2)解法一由(1)知AB⊥平面PDM,所以∠NAB为直线AN与平面PDM所成角的余角.连接AM,因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM⊥平面ABCD,又AM⊂平面ABCD,所以PM⊥AM.因为∠ABC=120°,AB=1,BM=2,所以由余弦定理得AM=7,又PA=15,所以PM=22,所以PB=PC=2 3.连接BN,结合余弦定理得BN=11.连接AC,则由余弦定理得AC=21,在△PAC中,结合余弦定理得PA2+AC2=2AN2+2PN2,所以AN=15.所以在△ABN中,cos∠BAN=AB2+AN2-BN22AB·AN=1+15-11215=156.设直线AN与平面PDM所成的角为θ,则sin θ=cos ∠BAN=15 6.故直线AN与平面PDM所成角的正弦值为15 6.法二因为PM⊥MD,由(1)知PM⊥DC,又MD,DC⊂平面ABCD,MD∩DC=D,所以PM ⊥平面ABCD . 连接AM ,则PM ⊥AM .因为∠ABC =120°,AB =1,BM =2, 所以AM =7,又PA =15,所以PM =2 2. 由(1)知CD ⊥DM ,过点M 作ME ∥CD 交AD 于点E , 则ME ⊥MD.故可以以M 为坐标原点,MD ,ME ,MP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (-3,2,0),P (0,0,22),C (3,-1,0), 所以N ⎝ ⎛⎭⎪⎫32,-12,2,所以AN →=⎝ ⎛⎭⎪⎫332,-52,2.易知平面PDM 的一个法向量为n =(0,1,0). 设直线AN 与平面PDM 所成的角为θ,则sin θ=|cos 〈AN →,n 〉|=|AN →·n ||AN →|·|n |=5215=156.故直线AN 与平面PDM 所成角的正弦值为156.热点一 异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n |m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ∈⎝⎛⎦⎥⎤0,π2,求出角θ.例1 在正方体ABCD -A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A.π2B.π3C.π4D.π6 答案 D解析 法一 如图,连接C 1P ,因为ABCD -A 1B 1C 1D 1是正方体,且P 为B 1D 1的中点,所以C 1P ⊥B 1D 1,又C 1P ⊥BB 1,B 1D 1∩BB 1=B 1,B 1D 1,BB 1⊂平面B 1BP , 所以C 1P ⊥平面B 1BP . 又BP ⊂平面B 1BP , 所以有C 1P ⊥BP .连接BC 1, 则AD 1∥BC 1,所以∠PBC 1为直线PB 与AD 1所成的角. 设正方体ABCD -A 1B 1C 1D 1的棱长为2,则在Rt△C 1PB 中,C 1P =12B 1D 1=2,BC 1=22,sin ∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6,故选D. 法二 如图,以A 为坐标原点,AB ,AD ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体ABCD -A 1B 1C 1D 1的棱长为2,则A (0,0,0),B (2,0,0),P (1,1,2),D 1(0,2,2),PB →=(1,-1,-2),AD →1=(0,2,2). 设直线PB 与AD 1所成的角为θ, 则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AD →1|PB →||AD →1|=|-6|6×8=32. 因为θ∈⎝⎛⎦⎥⎤0,π2,所以θ=π6,故选D.法三如图,连接BC1,A1B,A1P,PC1,则易知AD1∥BC1,所以直线PB与AD1所成的角等于直线PB与BC1所成的角.由P为正方形A1B1C1D1的对角线B1D1的中点,知A1,P,C1三点共线,且P为A1C1的中点.易知A1B=BC1=A1C1,所以△A1BC1为等边三角形,所以∠A1BC1=π3,又P为A1C1的中点,所以可得∠PBC1=12∠A1BC1=π6,故直线PB与AD1所成的角为π6,故选D.易错提醒 1.利用几何法求异面直线所成的角时,通过平移直线所得的角不一定就是两异面直线所成的角,也可能是其补角.2.用向量法时,要注意向量夹角与异面直线所成角的范围不同.训练1 (1)(2022·湖州质检)在长方体ABCD-A1B1C1D1中,BB1=2AB=2BC,P,Q分别为B 1C1,BC的中点,则异面直线AQ与BP所成角的余弦值是( )A.55B.21717C.8585D.28585 答案 C解析法一 不妨设AB =2,则BC =2,BB 1=4,连接A 1P ,A 1B (图略),则A 1P ∥AQ , ∴∠A 1PB (或其补角)为异面直线AQ 与BP 所成的角.由勾股定理得BP =17,A 1P =5,A 1B =25,在△A 1BP 中,由余弦定理的推论得,cos∠A 1PB =(17)2+(5)2-(25)22×17×5=8585.故选C.法二 如图建立空间直角坐标系, 设直线AQ 与BP 所成的角为θ, 不妨设AB =2, 则BC =2,BB 1=4.故B (2,0,0),P (2,1,4),Q (2,1,0), 所以BP →=(0,1,4),AQ →=(2,1,0),所以cos θ=|cos 〈BP →,AQ →〉|=⎪⎪⎪⎪⎪⎪117×5=8585. (2)(2022·河南顶尖名校联考)如图,圆锥的底面直径AB =2,其侧面展开图为半圆,底面圆的弦AD =3,则异面直线AD 与BC 所成的角的余弦值为( )A.0B.3 3C.34D.22答案 C解析法一如图,延长DO交圆于E,连接BE,CE,易知AD=BE=3,AD∥BE,∴∠EBC(或其补角)为异面直线AD与BC所成的角.由圆锥侧面展开图为半圆,易得BC=2,在△BEC中,BC=CE=2,BE=3,∴cos∠EBC=22+(3)2-222×2×3=34.法二由圆锥侧面展开图为半圆,易得BC=2,又BO=1,所以CO=3,在△AOD中,AO=DO=1,AD=3,由余弦定理得cos∠AOD=12+12-(3)22×1×1=-12,则∠AOD=2π3,以O 为坐标原点,OB 所在直线为y 轴,OC 所在直线为z 轴,建立空间直角坐标系如图,则A (0,-1,0),D ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),C (0,0,3),所以AD →=⎝ ⎛⎭⎪⎫32,32,0,BC →=(0,-1,3),故cos 〈AD →,BC →〉=-323×2=-34,又异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,故直线AD 与BC 所成角的余弦值为34. 热点二 直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈⎣⎢⎡⎦⎥⎤0,π2,求出角θ.例2(2022·南京模拟)如图,在三棱柱ABC-A1B1C1中,AA1=13,AB=8,BC=6,AB⊥BC,AB=B1C,D为AC的中点,平面AB1C⊥平面ABC.1(1)求证:B1D⊥平面ABC;(2)求直线C1D与平面AB1C所成角的正弦值.(1)证明因为AB1=B1C,D为AC的中点,所以B1D⊥AC.又平面AB1C⊥平面ABC,平面AB1C∩平面ABC=AC,B1D⊂平面AB1C,所以B1D⊥平面ABC.(2)解法一在平面ABC内,过点D作BC的平行线,交AB于点E,过点D作AB的平行线,交BC于点F,连接DE,DF,BD.由(1)知B 1D ⊥平面ABC , 所以B 1D ⊥AC ,B 1D ⊥BD . 因为AB ⊥BC ,所以DE ⊥DF ,故以{DE →,DF →,DB 1→}为基底建立如图所示的空间直角坐标系D -xyz .因为AB =8,BC =6,AB ⊥BC ,所以AC =AB 2+BC 2=10,BD =12AC =5.又AA 1=BB 1=13,AB ⊥BC , 所以B 1D =BB 21-BD 2=12.易得D (0,0,0),A (3,-4,0),B (3,4,0),C (-3,4,0),B 1(0,0,12), 则AC →=(-6,8,0),BC →=(-6,0,0),B 1C →=(-3,4,-12). 设点C 1(x ,y ,z ), 则B 1C 1→=(x ,y ,z -12), 由BC →=B 1C 1→,得(-6,0,0)=(x ,y ,z -12),所以⎩⎨⎧x =-6,y =0,z =12,即C 1(-6,0,12),所以C 1D →=(6,0,-12).设平面AB 1C 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·AC →=-6x 1+8y 1=0,n ·B 1C →=-3x 1+4y 1-12z 1=0,得3x 1=4y 1,z 1=0.不妨取x 1=4,则y 1=3,得平面AB 1C 的一个法向量为n =(4,3,0). 设直线C 1D 与平面AB 1C 所成的角为θ, 则sin θ=|cos 〈n ,C 1D →〉|=|n ·C 1D →||n |·|C 1D →|=|4×6+3×0+0×(-12)|42+32+02×62+02+(-12)2=4525. 所以直线C 1D 与平面AB 1C 所成角的正弦值为4525. 法二 连接BC 1,交B 1C 于点M ,易知BM =MC 1,所以点C 1到平面AB 1C 的距离d 和点B 到平面AB 1C 的距离相等.过点B 作BH ⊥AC ,垂足为H .又平面AB 1C ⊥平面ABC ,平面AB 1C ∩平面ABC =AC ,BH ⊂平面ABC , 所以BH ⊥平面AB 1C ,则BH 为点B 到平面AB 1C 的距离. 在Rt△ABC 中,因为AB =8,BC =6,AB ⊥BC , 所以AC =10,则BH =6×810=245, 所以d =BH =245.由(1)知B 1D ⊥平面ABC , 又BC ⊂平面ABC ,所以B 1D ⊥BC . 又B 1C 1∥BC ,所以B 1D ⊥B 1C 1, 则△DB 1C 1为直角三角形. 连接BD ,则B 1D ⊥BD .因为D 为AC 的中点,所以BD =12AC =5.又AA 1=BB 1=13,所以B 1D =12. 又B 1C 1=BC =6,所以C 1D =6 5. 设直线C 1D 与平面AB 1C 所成的角为θ,则sin θ=d C 1D =24565=4525. 所以直线C 1D 与平面AB 1C 所成角的正弦值为4525. 规律方法 1.几何法求线面角的关键是找出线面角(重点是找垂线与射影),然后在三角形中应用余弦定理(勾股定理)求解;2.向量法求线面角时要注意:线面角θ与直线的方向向量a 和平面的法向量n 所成的角〈a ,n 〉的关系是〈a ,n 〉+θ=π2或〈a ,n 〉-θ=π2,所以应用向量法求的是线面角的正弦值,而不是余弦值.训练2(2022·湖北十校联考)如图,在四棱锥A-BCDE中,CD∥BE,CD=12EB=1,CB⊥BE,AE=AB=BC=2,AD=3,O是AE的中点.(1)求证:DO∥平面ABC;(2)求DA与平面ABC所成角的正弦值. (1)证明取AB的中点为F,连接CF,OF,因为O,F分别为AE,AB的中点,所以OF∥BE,且OF=12 BE.又CD∥BE,CD=12 EB,所以OF∥CD,且OF=CD,所以四边形OFCD为平行四边形,所以DO∥CF,又CF⊂平面ABC,DO⊄平面ABC,所以DO∥平面ABC.(2)解法一取EB的中点为G,连接AG,DG,易得DG綊BC.因为AE=AB=2,BE=2,所以AE2+AB2=BE2,所以AB⊥AE,△ABE为等腰直角三角形,所以AG⊥BE,AG=1,又AD=3,DG=BC=2,所以AG2+DG2=AD2,所以DG⊥AG.又BE⊥AG,BE∩DG=G,BE,DG⊂平面BCDE,所以AG⊥平面BCDE. 记h为点D到平面ABC的距离,连接BD,则V D-ABC=V A-BCD,即13S△ABC·h=13S△BCD·AG,因为BC⊂平面BCDE,所以BC⊥AG,又CB⊥BE,BE∩AG=G,BE,AG⊂平面ABE,所以BC⊥平面ABE,又AB⊂平面ABE,所以BC⊥AB,所以S△ABC=12×AB×BC=12×2×2=1,又S△BCD=12×BC×CD=12×2×1=22,所以h=2 2,设DA与平面ABC所成的角为θ,则sin θ=h AD =223=66.所以DA 与平面ABC 所成角的正弦值为66. 法二 如图,取EB 的中点为G ,连接AG ,OG ,DG ,由(2)法一可知AG ⊥BE ,AB ⊥AE ,BC ⊥平面ABE ,BC ∥DG ,所以DG ⊥平面ABE .以G 为坐标原点,以GA →,GB →,GD →的方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则G (0,0,0),A (1,0,0),D (0,0,2),E (0,-1,0),AD →=(-1,0,2). 因为AE ⊂平面ABE ,所以BC ⊥AE ,又AB ⊥AE ,BC ∩AB =B ,BC ,AB ⊂平面ABC ,所以AE ⊥平面ABC , 故平面ABC 的一个法向量为AE →=(-1,-1,0). 设DA 与平面ABC 所成角为θ,则sin θ=|cos 〈AD →,AE →〉|=|AD →·AE →||AD →|·|AE →|=16=66.所以DA 与平面ABC 所成角的正弦值为66.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m,n;②计算cos〈m,n〉=m·n|m|·|n|;③设两个平面的夹角为θ,则cos θ=|cos〈m,n〉|.例3(2022·济南质测)如图,在三棱锥D-ABC中,DA⊥底面ABC,AC=BC=DA=1,AB =2,E是CD的中点,点F在DB上,且EF⊥DB.(1)证明:DB⊥平面AEF;(2)求平面ADB与平面DBC夹角的大小.法一(1)证明∵DA⊥平面ABC,且BC⊂平面ABC,∴DA⊥BC.∵AC=BC=1,AB=2,∴AC2+BC2=AB2,∴AC⊥BC.∵DA∩AC=A,DA,AC⊂平面DAC,∴BC ⊥平面DAC , 又AE ⊂平面DAC , ∴BC ⊥AE .∵DA =AC ,E 是CD 的中点, ∴DC ⊥AE ,又BC ∩DC =C ,BC ,DC ⊂平面DBC , ∴AE ⊥平面DBC ,又DB ⊂平面DBC ,∴DB ⊥AE , 又EF ⊥DB ,EF ∩AE =E ,EF ,AE ⊂平面AEF , ∴DB ⊥平面AEF .(2)解∵EF ⊥DB ,由(1)得DB ⊥AF , ∴∠AFE 为平面ADB 与平面DBC 的夹角. ∵DA ⊥平面ABC , ∴DA ⊥AC ,DA ⊥AB ,又AC =DA =1,E 为CD 的中点, ∴AE =12DC =22.∵AB =2,∴S △DAB =12×DA ×AB =12×DB ×AF ,∴AF =DA ×AB DB =1×212+(2)2=63. 由(1)知,AE ⊥平面DBC ,∵EF ⊂平面DBC ,∴AE ⊥EF ,∴sin∠AFE =AE AF =2263=32. ∵∠AFE 为锐角,∴∠AFE =π3, ∴平面ADB 与平面DBC 夹角的大小为π3.法二 (1)证明∵DA ⊥平面ABC ,且BC ⊂平面ABC ,∴DA ⊥BC . ∵AC =BC =1,AB =2, ∴AC 2+BC 2=AB 2, ∴AC ⊥BC .∴DA ∩AC =A ,DA ,AC ⊂平面DAC , ∴BC ⊥平面DAC , 如图,过点A 作AG ∥BC , 则AG ⊥平面DAC .以A 为坐标原点,分别以向量AC →,AG →,AD →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz ,则A (0,0,0),B (1,1,0),D (0,0,1),E ⎝ ⎛⎭⎪⎫12,0,12,∴DB →=(1,1,-1),AE →=⎝ ⎛⎭⎪⎫12,0,12.∵DB →·AE →=1×12+1×0+(-1)×12=0,∴DB →⊥AE →,∴DB ⊥AE .又DB ⊥EF ,且AE ∩EF =E ,AE ,EF ⊂平面AEF , ∴DB ⊥平面AEF .(2)解 由(1)知AD →=(0,0,1),BD →=(-1,-1,1),CD →=(-1,0,1). 设平面ADB 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AD →=0,m ·BD →=0,∴⎩⎨⎧z 1=0,-x 1-y 1+z 1=0,令y 1=1,则m =(-1,1,0).设平面DBC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·CD →=0,n ·BD →=0,∴⎩⎨⎧-x 2+z 2=0,-x 2-y 2+z 2=0, 令x 2=1,则n =(1,0,1). 设平面ADB 与平面DBC 的夹角为θ, 则cos θ=|cos 〈m ,n 〉|=|-1|2×2=12.所以θ=π3,即平面ADB 与平面DBC 夹角的大小为π3.规律方法 (1)用几何法求解二面角的关键是:先找(或作)出二面角的平面角,再在三角形中求解此角.(2)利用法向量的依据是两个半平面的法向量所成的角和二面角的平面角相等或互补,在求二面角的大小时,一定要判断出二面角的平面角是锐角还是钝角,否则解法是不严谨的.训练3(2022·沈阳质检)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,PA =AB =2,AD =2BC =2 2.(1)求证:BD ⊥平面PAC ;(2)求平面BPC 与平面PCD 夹角的余弦值.(1)证明法一 由题意得,四边形ABCD 是直角梯形,BC ∥AD ,AB ⊥AD ,PA =AB =2,AD =2BC =22,所以tan ∠ACB =tan∠DBA =2, 可知∠ACB =∠DBA ,所以∠DBC +∠ACB =90°,则AC ⊥BD . 又PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA ⊥BD ,又AC∩PA=A,PA,AC⊂平面PAC,故BD⊥平面PAC.法二由题意PA⊥平面ABCD,AB⊥AD,分别以AB→,AD→,AP→的方向为x轴,y轴,z轴正方向建立空间直角坐标系A-xyz,如图所示,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,22,0),P(0,0,2),BD→=(-2,22,0),AP→=(0,0,2),BD→·AP→=0,即BD⊥AP,AC→=(2,2,0),BD→·AC→=-4+4=0,即BD⊥AC,又AC∩AP=A,AC,AP⊂平面PAC,故BD⊥平面PAC.(2)解由题意PA⊥平面ABCD,AB⊥AD,分别以AB→,AD→,AP→的方向为x轴,y轴,z轴正方向建立空间直角坐标系A-xyz,如图所示,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,22,0),P(0,0,2),在平面PBC中,BC→=(0,2,0),BP→=(-2,0,2),设平面PBC的法向量为n=(x1,y1,z1),则⎩⎪⎨⎪⎧n ·BC →=2y 1=0,n ·BP →=-2x 1+2z 1=0,所以y 1=0,令x 1=1,则z 1=1, 所以n =(1,0,1).在平面PCD 中,CD →=(-2,2,0), CP →=(-2,-2,2),设平面PCD 的法向量为m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧m ·CD →=-2x 2+2y 2=0,m ·CP →=-2x 2-2y 2+2z 2=0,令x 2=1,则y 2=2,z 2=2, 所以m =(1,2,2).设平面BPC 与平面PCD 夹角的大小为θ, 则cos θ=|cos 〈m ,n 〉|=|1+0+2|2×7=31414,所以平面BPC 与平面PCD 夹角的余弦值为31414. 热点四 距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.例4 在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,M为BB1的中点,N为BC的中点.(1)求点M到直线AC1的距离;(2)求点N到平面MA1C1的距离.解法一(1)如图,连接AM,MC1,AC1,易知MC1=MB21+A1B21+A1C21=22+22+12=3,AC1=22,MA=5,在△MAC1中,由余弦定理得cos ∠MAC1=5+8-92×5×22=1010,则sin ∠MAC1=310 10,所以M到直线AC1的距离为MA·sin ∠MAC1=5×31010=322.(2)如图,S△MNC1=S矩形B1BCC1-S△B1MC1-S△BMN-S△NCC1=42-2-22-2=322,设点N到平面MA1C1的距离为h,由V N-MA1C1=V A1-MNC1,得1 3×12×2×5×h=13×322×2,得h =355,即N 到平面MA 1C 1的距离为355. 法二 (1)建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),M (2,0,1),C 1(0,2,2),直线AC 1的一个单位方向向量为s 0=⎝⎛⎭⎪⎫0,22,22,AM →=(2,0,1),故点M 到直线AC 1的距离d =|AM →|2-|AM →·s 0|2=5-12=322. (2)设平面MA 1C 1的法向量为n =(x ,y ,z ), 因为A 1C 1→=(0,2,0),A 1M →=(2,0,-1), 则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1M →=0,即⎩⎨⎧2y =0,2x -z =0,取x =1,得z =2,故n =(1,0,2)为平面MA 1C 1的一个法向量, 因为N (1,1,0),所以MN →=(-1,1,-1), 故N 到平面MA 1C 1的距离d =|MN →·n ||n |=35=355.规律方法 1.在解题过程中要对“点线距离”、“点面距离”、“线面距离”与“面面距离”进行适当转化,从而把所求距离转化为点与点的距离进而解决问题. 2.解决点线距问题注意应用等面积法,解决点面距问题注意应用等体积法.训练4 在四棱柱ABCD-A1B1C1D1中,A1A⊥平面ABCD,AA1=3,底面是边长为4的菱形,且∠DAB=60°,AC∩BD=O,A1C1∩B1D1=O1,E是O1A的中点,则点E到平面O1BC的距离为( )A.2B.1C.32D.3答案 C解析法一如图,连接OO1,则OO1⊥平面ABCD,OO1=AA1=3,∵四边形ABCD是边长为4的菱形,且∠DAB=60°,∴OB=2,OC=23,AC=2OC=43,OB⊥AC.∴O1B=13,O1C=21,又BC=4,∴cos∠BO1C=913×21,sin∠BO1C=8313×21,故S△BO1C=12×13×21×8313×21=4 3.设A到平面O1BC的距离为h,则由V A-BO1C=V O1-ABC得13×43×h=13×12×43×2×3,解得h =3,又∵E 是O 1A 的中点, ∴E 到平面O 1BC 的距离为32.法二 易得OO 1⊥平面ABCD ,所以OO 1⊥OA ,OO 1⊥OB . 又OA ⊥OB ,所以建立如图所示的空间直角坐标系Oxyz . 因为底面ABCD 是边长为4的菱形,∠DAB =60°, 所以OA =23,OB =2,则A (23,0,0),B (0,2,0),C (-23,0,0),O 1(0,0,3), 所以O 1B →=(0,2,-3),O 1C →=(-23,0,-3). 设平面O 1BC 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·O 1B →=0,n ·O 1C →=0,所以⎩⎨⎧2y -3z =0,-23x -3z =0,取z =2,则x =-3,y =3,则n =(-3,3,2)是平面O 1BC 的一个法向量. 设点E 到平面O 1BC 的距离为d .因为E 是O 1A 的中点,所以E ⎝⎛⎭⎪⎫3,0,32,EO 1→=⎝⎛⎭⎪⎫-3,0,32, 则d =|EO 1→·n ||n |=⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫-3,0,32·(-3,3,2)(-3)2+32+22=32, 所以点E 到平面O 1BC 的距离为32.一、基本技能练1.如图,四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.(1)证明 取BC 的中点E ,连接DE ,则ABED 为正方形.过P 作PO ⊥平面ABCD ,垂足为O . 连接OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点, 所以OE ∥CD .因此PB ⊥CD . (2)解 取PD 的中点F ,连接OF , 则OF ∥PB .由(1)知,PB ⊥CD ,故OF ⊥CD .又OD =12BD =2,OP =PD 2-OD 2=2,故△POD 为等腰三角形,因此OF ⊥PD . 又PD ∩CD =D ,PD ,CD ⊂平面PCD , 所以OF ⊥平面PCD .因为AE ∥CD ,CD ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD .因此O 到平面PCD 的距离OF 就是A 到平面PCD 的距离,而 OF =12PB =1,所以A 到平面PCD 的距离为1.2.(2022·广州调研)如图,在三棱锥P -ABC 中,BC ⊥平面PAC ,AD ⊥BP ,AB =2,BC =1,PD =3BD =3.(1)求证:PA ⊥AC ;(2)求平面PAC与平面ACD夹角的余弦值.(1)证明法一由AB=2,BD=1,AD⊥BP,得AD= 3. 由PD=3,AD=3,AD⊥BP,得PA=2 3.由BC⊥平面PAC,AC,PC⊂平面PAC,得BC⊥AC,BC⊥PC.所以AC=AB2-BC2=3,PC=PB2-BC2=15.因为AC2+PA2=15=PC2,所以PA⊥AC.法二由AB=2,BD=1,AD⊥BP,得AD= 3.由PD=3,AD=3,AD⊥BP,得PA=2 3.因为PB=4,所以PB2=AB2+PA2,所以PA⊥AB.由BC⊥平面PAC,PA⊂平面PAC,得BC⊥PA.又BC,AB⊂平面ABC,BC∩AB=B,故PA⊥平面ABC.因为AC⊂平面ABC,所以PA⊥AC.(2)解法一如图,过点D作DE∥BC交PC于点E,因为BC⊥平面PAC,所以DE⊥平面PAC.因为AC⊂平面PAC,所以DE⊥AC.过点E作EF⊥AC交AC于点F,连接DF,又DE∩EF=E,DE,EF⊂平面DEF,所以AC⊥平面DEF.因为DF⊂平面DEF,所以AC⊥DF.则∠DFE为平面PAC与平面ACD的夹角.由PD=3BD=3,DE∥BC,得DE=3 4,由EF⊥AC,PA⊥AC,且EF,PA⊂平面PAC,得EF∥PA,且EFPA=CECP=BDBP=14,得EF=3 2.易知DE⊥EF,则DF=DE2+EF2=21 4.所以cos∠DFE =EF DF =277.所以平面PAC 与平面ACD 夹角的余弦值为277. 法二 如图,作AQ ∥CB ,以AQ ,AC ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系.因为AB =2,BC =1,BD =1,BP =4, 所以AC =3,AP =2 3.故A (0,0,0),B (1,3,0),C (0,3,0),P (0,0,23). 由BD →=14BP →,得D ⎝ ⎛⎭⎪⎫34,334,32,则AD →=⎝ ⎛⎭⎪⎫34,334,32,AC →=(0,3,0).设平面ACD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,即⎩⎨⎧3y =0,34x +334y +32z =0,令x =2,则z =-3,y =0,所以n =(2,0,-3)为平面ACD 的一个法向量. 由于BC ⊥平面PAC ,因此CB →=(1,0,0)为平面PAC 的一个法向量. 设平面PAC 与平面ACD 夹角的大小为θ,则cos θ=|cos 〈CB →,n 〉|=|CB →·n ||CB →||n |=27=277.所以平面PAC 与平面ACD 夹角的余弦值为277. 3.(2022·泉州质检)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设平面FDE 与平面DEC 夹角的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,OB ,OC ⊂平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz .因为BD =2,CB =CD =5,AO =2,所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1), 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0),所以BF →=14BC →=⎝ ⎛⎭⎪⎫-14,12,0.又DB →=(2,0,0), 故DF →=DB →+BF →=⎝ ⎛⎭⎪⎫74,12,0.设平面DEF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧DE →·n 1=0,DF →·n 1=0,即⎩⎨⎧x 1+y 1+z 1=0,74x 1+12y 1=0, 取x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5)为平面DEF 的一个法向量.设平面DEC 的法向量为n 2=(x 2,y 2,z 2),又DC →=(1,2,0), 则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎨⎧x 2+y 2+z 2=0,x 2+2y 2=0, 取x 2=2,得y 2=-1,z 2=-1,所以n 2=(2,-1,-1)为平面DEC 的一个法向量. 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313.所以sin θ=1-cos 2θ=23913.二、创新拓展练4.如图,三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为矩形,若平面BCC 1B 1⊥平面ABB 1A 1,平面BCC 1B 1⊥平面ABC 1.(1)求证:AB ⊥BB 1;(2)记平面ABC 1与平面A 1B 1C 1的夹角为α,直线AC 1与平面BCC 1B 1所成的角为β,异面直线AC 1与BC 所成的角为φ,当α,β满足:cos α·cos β=m (0<m <1,m 为常数)时,求sin φ的值.(1)证明∵四边形BCC 1B 1是矩形,∴BC ⊥BB 1,图1 又平面ABB1A1⊥平面BCC1B1,平面ABB1A1∩平面BCC1B1=BB1,BC⊂平面BCC1B1,∴BC⊥平面ABB1A1,又AB⊂平面ABB1A1,∴AB⊥BC.如图1,过C作CO⊥BC1,∵平面BCC1B1⊥平面ABC1,平面BCC1B1∩平面ABC1=BC1,CO⊂平面BCC1B1,∴CO⊥平面ABC1,又AB⊂平面ABC1,∴AB⊥CO,又AB⊥BC,CO∩BC=C,CO,BC⊂平面BCC1B1,∴AB⊥平面BCC1B1,又BB1⊂平面BCC1B1,∴AB⊥BB1.(2)解由题意知AB∥A1B1,又AB⊥平面BCC1B1,∴A1B1⊥平面BCC1B1.以B 1为原点,B 1A 1,B 1B ,B 1C 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图2,图2不妨设B 1A 1=a ,B 1B =b ,B 1C 1=c ,则B 1(0,0,0),A 1(a ,0,0),B (0,b ,0),C 1(0,0,c ),A (a ,b ,0), BA →=B 1A 1→=(a ,0,0),BC →=B 1C 1→=(0,0,c ),BC1→=(0,-b ,c ). 设n 1=(x 1,y 1,z 1)为平面ABC 1的法向量,则⎩⎪⎨⎪⎧n 1·BA →=ax 1=0,n 1·BC 1→=-by 1+cz 1=0,∴x 1=0,令y 1=c ,则z 1=b , ∴n 1=(0,c ,b ).取平面A 1B 1C 1的一个法向量n =(0,1,0), 由图知,α为锐角, 则cos α=|cos 〈n 1,n 〉|=c b 2+c 2.取平面BCC 1B 1的一个法向量n 2=(1,0,0), 由C 1A →=(a ,b ,-c ), 得sin β=|cos 〈C 1A →,n 2〉|=aa 2+b 2+c2. 又β∈⎣⎢⎡⎦⎥⎤0,π2,∴cos β=b 2+c 2a 2+b 2+c 2, 则cos αcos β=ca 2+b 2+c2. |cos 〈C 1A →,BC →〉|=cos φ=|(a ,b ,-c )·(0,0,c )|c a 2+b 2+(-c )2=c a 2+b 2+c 2,∴cos φ=cos αcos β.∵cos αcos β=m 且m ∈(0,1),φ∈⎝ ⎛⎦⎥⎤0,π2,∴sin φ=1-cos 2φ=1-m 2.。

[高考数学]空间距离例题

[高考数学]空间距离例题

距离〔二〕备用例题利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题.例1如图,已知正方形ABCD 的边长为4,E 、F分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离.分析:由题设可知CG 、CB 、CD 两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B 且垂直于平面EFG 的向量,它的长即为点B 到平面EFG 的距离. 解:如图,设=CD 4i ,=CB 4j ,=CG 2k ,以i 、j 、k 为坐标向量建立空间直角坐标系C -xyz .由题设C<0,0,0>,A<4,4,0>,B<0,4,0>,D<4,0,0>,E<2,4,0>,F<4,2,0>,G<0,0,2>.∴)0,0,2(=BE ,)0,2,4(-=BF , )2,4,0(-=BG ,)2,4,2(-=GE ,)0,2,2(-=EF .设⊥BM 平面EFG ,M 为垂足,则M 、G 、E 、F 四点共面,由共面向量定理知,存在实数a 、b 、c ,使得BG c BF b BE a BM ++=)1(=++c b a ,∴)2,4,0()0,2,4()0,0,2(-+-+=c b a BM =<2a +4b ,-2b -4c ,2c >. 由⊥BM 平面EFG ,得GE BM ⊥,EF BM ⊥,于是0=⋅GE BM ,0=⋅EF BM .∴⎪⎩⎪⎨⎧=++=-⋅--+=-⋅--+10)0,2,2()2,42,42(0)2,4,2()2,42,42(c b a c c b b a c c b b a整理得:⎪⎩⎪⎨⎧=++=++=-102305c b a c b a c a ,解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==1131171115c b a .∴BM =<2a +4b ,-2b -4c ,2c >=)116,112,112(. ∴11112116112112||222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=BM 故点B 到平面EFG 的距离为11112. 说明:用向量法求点到平面的距离,常常不必作出垂线段,只需利用垂足在平面内、共面向量定理、两个向量垂直的充要条件解出垂线段对应的向量就可以了.例2已知正方体ABCD -''''D C B A 的棱长为1,求直线'DA 与AC 的距离.分析:设异面直线'DA 、AC 的公垂线是直线l ,则线段'AA 在直线l 上的射影就是两异面直线的公垂线段,所以此题可以利用向量的数量积的几何意义求解.解:如图,设=''A B i ,=''C B j ,=B B 'k ,以i 、j 、k 为坐标向量建立空间直角坐标系'B -xyz ,则有)0,0,1('A ,)1,1,1(D ,)1,0,1(A ,)1,1,0(C .∴)1,1,0('--=DA ,)0,1,1(-=AC ,)1,0,0('=A A .设n ),,(z y x =是直线l 方向上的单位向量,则1222=++z y x .∵n 'DA ⊥,n AC ⊥,∴⎪⎩⎪⎨⎧=++=+-=--100222z y x y x z y ,解得33=-==z y x 或33-=-==z y x . 取n )33,33,33(-=,则向量A A '在直线l 上的投影为 n ·A A ')33,33,33(-=·)1,0,0(33-=. 由两个向量的数量积的几何意义知,直线'DA 与AC 的距离为33.。

高考数学一轮总复习课件:空间综合问题

高考数学一轮总复习课件:空间综合问题
(2)在解决问题时,要综合考虑折叠前后的图形,既要分析 折叠后的图形,也要分析折叠前的图形.
(3)解决折叠问题的关注点:平面图形折叠成空间图形,主 要抓住变与不变的量,所谓不变的量,即是指“未折坏”的元 素,包括“未折坏”的边和角,一般优先标出未折坏的直角(从 而观察是否存在线面垂直),然后标出其他特殊角,以及所有不 变的线段.
3= 2
26,即点C到平面A1BC1的距离为
6 2.
【答案】
①略

6 2
题型二 探究性问题
利用向量解决立体几何中的探索性问题,在近几年的高考 中备受青睐.下面举例说明其破解方法,以期抛砖引玉.
例2 (2021·湖南重点校联考)如图,在四棱锥 P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥ CD,且AD=CD=2 2,BC=4 2,PA=2.
设平面EFG的一个法向量是n=(x,y,1),
则由n⊥E→F,n⊥G→E,得
((xx,,yy,,11))··((22,,-4,2,-02))==00,⇒xx-+y2=y=0,1 ⇒xy==1313,.
∴n=13,13,1. 则点B到平面GEF的距离为d=|n·|nB→|E|=2 1111.
【答案】
思考题1 (1)(2021·黑龙江哈尔滨期末)三棱柱ABC-
A1B1C1底面为正三角形,侧棱与底面垂直,若AB=2,AA1= 1,则点A到平面A1BC的距离为( B )
3 A. 4
3 B. 2
33 C. 4
D. 3
【解析】 设点A到平面A1BC的距离为h,
∵V三棱锥A1-ABC=V三棱锥A-A1BC,
若∠MGN=45°,则NG=MN,
又AN=
2 NG=
2
MN,所以MN=1,所以MN綊

高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(二)——求空间角和距离

高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(二)——求空间角和距离

(江苏专用)2018版高考数学大一轮复习第八章立体几何与空间向量8.7 立体几何中的向量方法(二)——求空间角和距离教师用书理苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学大一轮复习第八章立体几何与空间向量8.7 立体几何中的向量方法(二)——求空间角和距离教师用书理苏教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学大一轮复习第八章立体几何与空间向量8.7 立体几何中的向量方法(二)——求空间角和距离教师用书理苏教版的全部内容。

第八章立体几何与空间向量 8。

7 立体几何中的向量方法(二)--求空间角和距离教师用书理苏教版1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l与l2所成的角θa与b的夹角β1范围(0,错误!][0,π]求法cos θ=错误!cos β=错误!2.直线与平面所成角的求法设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=错误!.3.求二面角的大小(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈错误!,错误!>.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角)。

1【知识拓展】利用空间向量求距离(供选用)(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则AB=|错误!|=错误!.(2)点到平面的距离如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为|错误! |=错误!。

高中数学选择性必修一课件:1.4.2 空间中的距离问题

高中数学选择性必修一课件:1.4.2 空间中的距离问题

|自学导引|
|课堂互动|
|素养达成|
课后提能训练
1.用向量法求点面距的方法与步骤 (1)建系:建立恰当的空间直角坐标系. (2)求点坐标:写出(求出)相关点的坐标. (3)求向量:求出相关向量的坐标( A→P ,α内两不共 线向量,平面α的法向量n).
→ (4)求距离:d=|A|Pn·|n|.
|自学导引|
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
1.正方形ABCD和正方形ABEF的边长都是1,并且平面ABCD⊥平 面ABEF,点M在AC上移动,点N在BF上移动.若|CM|=|BN|=a(0<a<
2). (1)求MN的长度; (2)当a为何值时,MN的长度最短.
|自学导引|
|课堂互动|
|素养达成|
解:建立如图所示的空间直角坐标系,则点A,E,F,G的坐标分 别为(4,4,0),(2,4,0),(4,2,0),(0,0,2),则G→E=(2,4,-2),G→F=(4,2, -2),A→E=(-2,0,0).
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
设n=(x,y,z)为平面GEF的一个法向量,由nn··GG→→EF==00,,
n·D→B=ax+ay=0,
|自学导引|
|课堂互动|
|素养达成|
课后提能训练

故可设n=(1,-1,-2),故A1到平面BDM的距离d=
|A1M·n| |n|

0,0,-12a·1,-1,-2= 6
6 6 a.
|自学导引|
|课堂互动|
|素养达成|
课后提能训练
3.已知向量n=(2,0,1)为平面α的法向量,点A(-1,2,1)在α内,则

第3讲 大题专攻——空间中的距离、翻折、探索性问题 2023高考数学二轮复习课件

第3讲 大题专攻——空间中的距离、翻折、探索性问题 2023高考数学二轮复习课件
所以∠EBC=60°,AB=2 3.
因为 E 是 AB 的中点,所以 BE=BC= 3, 所以△BCE是等边三角形. 取BE的中点O,连接AO,CO,则AO⊥BE,CO⊥BE, 因为平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE, 所以AO⊥平面BCDE,所以OB,OC,OA两两垂直,
目录
则 的一nn个··――CP法BB→→向= =量00, ,.即故点2222Axx- -到平2221面y4=z=P0B0,,C 的取距x=离为7,|―A得→P|nn·| =n(|=7,11457=,112)5为10平. 面 PBC
目录
翻折问题 【例 2】 如图①,在△ABC 中,C=90°,BC= 3,AC=3,E 是 AB 的中
(1)作点到面的垂线,点到垂足的距离即为点到平面的距离; (2)等体积法; (3)向量法. 其中向量法在易建立空间直角坐标系的规则图形中较简便.
目录
如图,在三棱锥 P-ABC 中,AB⊥BC,AB=BC=12PA=1,点 O 是 AC 的中点,OP⊥底面 ABC,求点 A 到平面 PBC 的距离.
所以 cos〈n 1,n 2〉=
3 2m-122+227 .
设面 BB1C1C 与面 DFE 所成的二面角为 θ,则 sin θ= 1-cos2〈n 1,n 2〉,
故当 m=12时,面 BB1C1C 与面 DFE 所成的二面角的正弦值最小,为 33, 即当 B1D=12时,面 BB1C1C 与面 DFE 所成的二面角的正弦值最小.
目录
如图,已知圆O的直径AB长为2,上半圆圆弧上有一点C,∠COB=60°, 点P是弧AC上的动点,点D是下半圆弧的中点,现以AB为折线,将上、下 半圆所在的平面折成直二面角,连接PO,PD,CD. (1)当AB∥平面PCD时,求PC的长; 解:因为AB∥平面PCD,AB⊂平面OCP, 平面OCP∩平面PCD=PC, 所以由线面平行的性质定理得AB∥PC. 又∠COB=60°,可得∠OCP=60°. 而OC=OP,所以△OCP为正三角形,所以PC=1.

高考数学复习:利用向量求空间角和距离

高考数学复习:利用向量求空间角和距离

(2)方法一:不存在,证明如下:当面B′OA⊥面AOC时,三
棱锥B′ -AOC的体积最大,因为面B′OA∩面AOC=AO,
B′O⊥AO,所以B′O⊥面AOC,所以OC⊥OB′,又因为
OC⊥OA,所以OC⊥平面AOB′,在直角三角形CPO中,
CO=1,COP ,sinCPO 所以6 POCC=, ,所以 6
令x1=1,得n1=(1,-1,0).
设平面PBC的一个法向量为n2=(x2,y2,z2),
由n2·PC=0,n2· B=C 0得
y2x2
z2 0,
0,?
令y2=1得n2=(0,1,1), 设二面角C -PB -D的大小为θ,则cos θ= 所以θ=60°.
| n1 n2 | 1 , | n1 || n2 | 2
D. 4 15
【解析】选A.以D为原点,DA为x轴,DC为y轴,DD1为z 轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为2,则N(1,2,2), D(0,0,0),C(0,2,0),M(2,2,1),则 C=M(2,0,1), DN=(1,2,2),设异面直线所成角为θ, 则cos θ= | CM DN | 4所以 4异5面,直线CM与
( 2,0,0) ( 2,0, 2),
所以
cos〈A1F,D1E〉
|
A1F A1F |
D1E | D1E
|
2
2 2 1
解得 1 ( 1 舍去).
3
3
答案: 1
3
3 2, 5 10
【规律方法】利用向量求线线角的解题策略 (1)向量法求异面直线所成的角的方法有两种 ①基向量法:利用线性运算; ②坐标法:利用坐标运算.
D. 10 10

高考数学求空间距离

高考数学求空间距离

高考数学求空间距离空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一样化归为这三种距离.●难点磁场(★★★★)如图,已知ABCD 是矩形,AB =a ,AD =b ,P A ⊥平面ABCD ,P A =2c ,Q 是P A 的中点.求:(1)Q 到BD 的距离; (2)P 到平面BQD 的距离. ●案例探究[例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求:(1)EF 的长;(2)折起后∠EOF 的大小.命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目.知识依靠:空间向量的坐标运算及数量积公式.错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直.技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单.解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-42a , a ),F (42a , 42a ,0) 21||||,cos ,2||,2||8042)42)(42(420)0,42,42(),42,42,0()2(23,43)420()4242()042(||)1(22222-=>=<==-=⋅+-+⨯=⋅=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF∴∠EOF =120°[例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离.命题意图:本题要紧考查异面直线间距离的求法,属★★★★级题目.知识依靠:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.错解分析:本题容易错误认为O 1B 是A 1C 与AB 1的距离,这要紧是对异面直线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的距离.技巧与方法:求异面直线的距离,有时较难作出它们的公垂线,故通常采纳化归思想,转化为求线面距、面面距、或由最值法求得.解法一:如图,连结AC 1,在正方体AC 1中,∵A 1C 1∥AC ,∴A 1C 1∥平面AB 1C ,∴A 1C 1与平面AB 1C 间的距离等于异面直线A 1C 1与AB 1间的距离.连结B 1D 1、BD ,设B 1D 1∩A 1C 1=O 1,BD ∩AC =O ∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥平面BB 1D 1D∴平面AB 1C ⊥平面BB 1D 1D ,连结B 1O ,则平面AB 1C ∩平面BB 1D 1D =B 1O 作O 1G ⊥B 1O 于G ,则O 1G ⊥平面AB 1C∴O 1G 为直线A 1C 1与平面AB 1C 间的距离,即为异面直线A 1C 1与AB 1间的距离. 在Rt △OO 1B 1中,∵O 1B 1=22,OO 1=1,∴OB 1=21121B O OO += 26 ∴O 1G =331111=⋅OB B O O O ,即异面直线A 1C 1与AB 1间距离为33.解法二:如图,在A 1C 上任取一点M ,作MN ⊥AB 1于N ,作MR ⊥A 1B 1于R ,连结RN ,∵平面A 1B 1C 1D 1⊥平面A 1ABB 1,∴MR ⊥平面A 1ABB 1,MR ⊥AB 1∵AB 1⊥RN ,设A 1R =x ,则RB 1=1-x ∵∠C 1A 1B 1=∠AB 1A 1=45°, ∴MR =x ,RN =NB 1=)1(22x - 31)31(23)1(2122222+-=-+=+=x x x RN MR MN (0<x <1) ∴当x =31时,MN 有最小值33即异面直线A 1C 1与AB 1距离为33.●锦囊妙记空间中的距离要紧指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离.(6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离.七种距离差不多上指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有紧密联系,有些能够相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离.在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点.求点到平面的距离:(1)直截了当法,即直截了当由点作垂线,求垂线段的长.(2)转移法,转化成求另一点到该平面的距离.(3)体积法.求异面直线的距离:(1)定义法,即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.●消灭难点训练 一、选择题1.(★★★★★)正方形ABCD 边长为2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图),M 为矩形AEFD 内一点,假如∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为( )21 D. 23C. B.1 22A.2.(★★★★)三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,则A 1C 1与l 的距离为( )A.10B.11C.2.6D.2.4二、填空题3.(★★★★)如左下图,空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为_________.4.(★★★★)如右上图,ABCD 与ABEF 均是正方形,假如二面角E —AB —C 的度数为 30°,那么EF 与平面ABCD 的距离为_________.三、解答题5.(★★★★★)在长方体ABCD —A 1B 1C 1D 1中,AB =4,BC =3,CC 1=2,如图:(1)求证:平面A 1BC 1∥平面ACD 1; (2)求(1)中两个平行平面间的距离; (3)求点B 1到平面A 1BC 1的距离.6.(★★★★★)已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC ∥D 1B 且面EAC 与底面ABCD 所成的角为45°,AB =a ,求:(1)截面EAC 的面积;(2)异面直线A 1B 1与AC 之间的距离; (3)三棱锥B 1—EAC 的体积.7.(★★★★)如图,已知三棱柱A 1B 1C 1—ABC 的底面是边长为2的正三角形,侧棱A 1A 与AB 、AC 均成45°角,且A 1E ⊥B 1B 于E ,A 1F ⊥CC 1于F .(1)求点A 到平面B 1BCC 1的距离;(2)当AA 1多长时,点A 1到平面ABC 与平面B 1BCC 1的距离相等. 8.(★★★★★)如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2,AB = 31AD =a ,∠ADC =arccos552,P A ⊥面ABCD 且P A =a .(1)求异面直线AD 与PC 间的距离;(2)在线段AD 上是否存在一点F ,使点A 到平面PCF 的距离为36. 参考答案难点磁场解:(1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足连结QE ,∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE ∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b , ∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c ∴QE =22222b a b ac ++∴Q 到BD 距离为22222ba b a c ++. (2)解法一:∵平面BQD 通过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离. 在Rt △AQE 中,∵AQ =c ,AE =22ba ab +∴AH =22222)(ba cb a abc ++∴P 到平面BD 的距离为22222)(ba cb a abc ++解法二:设点A 到平面QBD 的距离为h ,由 V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQ h =22222)(ba cb a abc S AQS BQDABD ++==⋅∆∆消灭难点训练一、1.解析:过点M 作MM ′⊥EF ,则MM ′⊥平面BCF ∵∠MBE =∠MBC∴BM ′为∠EBC 为角平分线, ∴∠EBM ′=45°,BM ′=2,从而MN =22 答案:A2.解析:交线l 过B 与AC 平行,作CD ⊥l 于D ,连C 1D ,则C 1D 为A 1C 1与l 的距离,而CD 等于AC 上的高,即CD =512,Rt △C 1CD 中易求得C 1D =513=2.6答案:C二、3.解析:以A 、B 、C 、D 为顶点的四边形为空间四边形,且为正四面体,取P 、Q 分别为AB 、CD 的中点,因为AQ =BQ =22a ,∴PQ ⊥AB ,同理可得PQ ⊥CD ,故线段PQ 的 长为P 、Q 两点间的最短距离,在Rt △APQ 中,PQ =22)2()23(2222=-=-a a AP AQ a 答案:22a 4.解析:明显∠F AD 是二面角E —AB —C 的平面角,∠F AD =30°,过F 作FG ⊥平面ABCD 于G ,则G 必在AD 上,由EF ∥平面ABCD .∴FG 为EF 与平面ABCD 的距离,即FG =2a.答案:2a三、5.(1)证明:由于BC 1∥AD 1,则BC 1∥平面ACD 1 同理,A 1B ∥平面ACD 1,则平面A 1BC 1∥平面ACD 1(2)解:设两平行平面A 1BC 1与ACD 1间的距离为d ,则d 等于D 1到平面A 1BC 1的距离.易求A 1C 1=5,A 1B =25,BC 1=13,则cos A 1BC 1=652,则sin A 1BC 1=6561,则S 111C B A ∆=61,由于111111D C A B BC A D V V --=,则31S 11BC A ∆·d =)21(31111D C AD ⋅·BB 1,代入求得d =616112,即两平行平面间的距离为616112. (3)解:由于线段B 1D 1被平面A 1BC 1所平分,则B 1、D 1到平面A 1BC 1的距离相等,则由(2)知点B 1到平面A 1BC 1的距离等于616112. 6.解:(1)连结DB 交AC 于O ,连结EO , ∵底面ABCD 是正方形∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45°又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a (2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1 ∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC ∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a 32422322311a a a V EAC B =⋅⋅=-7.解:(1)∵BB 1⊥A 1E ,CC 1⊥A 1F ,BB 1∥CC 1 ∴BB 1⊥平面A 1EF 即面A 1EF ⊥面BB 1C 1C 在Rt △A 1EB 1中,∵∠A 1B 1E =45°,A 1B 1=a∴A 1E =22a ,同理A 1F =22a ,又EF =a ,∴A 1E =22a 同理A 1F =22a ,又EF =a∴△EA 1F 为等腰直角三角形,∠EA 1F =90°过A 1作A 1N ⊥EF ,则N 为EF 中点,且A 1N ⊥平面BCC 1B 1 即A 1N 为点A 1到平面BCC 1B 1的距离∴A 1N =221a=又∵AA 1∥面BCC 1B ,A 到平面BCC 1B 1的距离为2a∴a =2,∴所求距离为2(2)设BC 、B 1C 1的中点分别为D 、D 1,连结AD 、DD 1和A 1D 1,则DD 1必过点N ,易证ADD 1A 1为平行四边形.∵B 1C 1⊥D 1D ,B 1C 1⊥A 1N ∴B 1C 1⊥平面ADD 1A 1 ∴BC ⊥平面ADD 1A 1得平面ABC ⊥平面ADD 1A 1,过A 1作A 1M ⊥平面ABC ,交AD 于M , 若A 1M =A 1N ,又∠A 1AM =∠A 1D 1N ,∠AMA 1=∠A 1ND 1=90°∴△AMA 1≌△A 1ND 1,∴AA 1=A 1D 1=3,即当AA 1=3时满足条件. 8.解:(1)∵BC ∥AD ,BC ⊂面PBC ,∴AD ∥面PBC从而AD 与PC 间的距离确实是直线AD 与平面PBC 间的距离. 过A 作AE ⊥PB ,又AE ⊥BC ∴AE ⊥平面PBC ,AE 为所求.在等腰直角三角形P AB 中,P A =AB =a ∴AE =22a (2)作CM ∥AB ,由已知cos ADC =552 ∴tan ADC =21,即CM =21DM ∴ABCM 为正方形,AC =2a ,PC =3a 过A 作AH ⊥PC ,在Rt △P AC 中,得AH =36下面在AD 上找一点F ,使PC ⊥CF取MD 中点F ,△ACM 、△FCM 均为等腰直角三角形 ∴∠ACM +∠FCM =45°+45°=90°∴FC⊥AC,即FC⊥PC∴在AD上存在满足条件的点F.[学法指导]立体几何中的策略思想及方法立体几何中的策略思想及方法近年来,高考对立体几何的考查仍旧注重于空间观点的建立和空间想象能力的培养.题目起点低,步步升高,给不同层次的学生有发挥能力的余地.大题综合性强,有几何组合体中深层次考查空间的线面关系.因此,高考复习应在抓好差不多概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何问题的有效的策略思想及方法.一、领会解题的差不多策略思想高考改革稳中有变.运用差不多数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在差不多数学思想指导下,归纳一套合乎一样思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的体会,解决一样差不多数学问题就会自然流畅.二、探寻立体几何图形中的基面立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地“立”起来.在具体的问题中,证明和运算经常依附于某种专门的辅助平面即基面.那个辅助平面的猎取正是解题的关键所在,通过对那个平面的截得,延展或构造,纲举目张,问题就迎刃而解了.三、重视模型在解题中的应用学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力.而数学问题中许多图形和数量关系都与我们熟悉模型存在着某种联系.它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学问题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特点规律猎取优解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第28讲 空间距离的计算
一、高考要求
空间的距离是从数量角度进一步刻划空间中没有公共点的图形间相对位置的远近程度,是平面几何与立体几何中研究的重要数量.空间距离的求法是教材的重要内容,也是历年高考考查的重点.其中点与点、点到线、点到面的距离为基础.在高考中通常是以一道大题中的某一小题的形式出现,一般是求体积,需算点到面的距离.
二、两点解读
重点:(1)求距离的一般步骤:①找出或作出有关距离;②证明它符合定义;③归到某三角形中计算.
(2)要注意各种距离间的相互转化、等积法及“平行移动”等思想方法. 难点:点到平面的距离的求法.
三、课前训练
1.若三棱锥ABC P -的三条侧棱两两垂直,且满足PC PB PA ===1,则P 到平面ABC 的距离为 ( D )
(A )66 (B )3
6 (C )63 (D )33 2.在棱长为a 的正方体1111D C B A ABCD -中,过B 且平行于平面11D AB 的平面与平面11D AB 的距离为33a 3.已知正方体1111D C B A ABCD -中,1BD 的长为32,则1BD 与AC 间距离为36
四、典型例题
例1已知在ABC ∆中,0120,15,9=∠==BAC AC AB ,它所在平面外一点P 到ABC ∆三个顶点的距离都是14,那么点P 到平面ABC 的距离是 ( D )
(A )13 (B )11 (C )9 (D )7
例2 在北纬45o 圈上有甲、乙两地,它们的经度分别是东经140°与西经130°,设地球半径为R ,则甲乙两地的球面距离是 ( A )
(A )R π31 (B )R π21 (C )R π41 (D )R π23 例3 在正三棱柱111C B A ABC -中,若1,21==AA AB ,则点A 到平面BC A 1的距离为
23 例4 四边形ABCD 为正方形,P 为平面A B C D 外一点AD PD ⊥,2==AD PD ,二面角C AD P --为060,则P 到AB 的距离是7
例5 如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =a ,AD =3a ,且 ∠ADC =
arcsin 5
又P A ⊥平面ABCD ,P A =a . (I )求二面角P -CD -A 的大小(用反三角函数
表示).
(II )求点A 到平面PBC 的距离.
解:(1)如图,在平面ABCD 内,过点A
作AE ⊥CD ,垂足为E ,连接PE . 由P A ⊥平面ABCD ,由三垂线定理知PE ⊥CD ,故∠PEA 是二面角P —CD —A 的平面角. A P B C
D
在Rt △DAE 中,AD =3a ,∠ADC =arcsin 5
5 则AE =AD ·sinADE =5
53a 在Rt △P AE 中,tanPEA =
3553==a a AE PA 故二面角P —CD —A 的大小为arctan 3
5. (2)在平面P AB 中,过点A 作AH ⊥PB ,垂足为H .
由P A ⊥平面ABCD ,AB ⊥BC ,P A ⊥BC ,则有BC ⊥平面P AB ,又AH ⊂平面P AB ,因此BC ⊥AH ,又AH ⊥PB ,故AH ⊥平面PBC .
因此,线段AH 的长即为点A 到平面PBC 的距离.
在等腰直角△P AB 中,AH =22a ,故点A 到平面PBC 的距离为2
2a。

相关文档
最新文档