高中数学专题强化训练含解析 (7)
部编版高中数学必修二第七章复数带答案考点专题训练
(名师选题)部编版高中数学必修二第七章复数带答案考点专题训练单选题1、若z =1+2i +i 3,则|z|=( ) A .0B .1 C .√2D .22、若复数5−3−i的实部与虚部分别为a ,b ,则点A (b ,a )必在下列哪个函数的图象上( )A .y =2xB .y =x+12x C .y =|x|D .y =−2x 2−1 3、3+i 1−3i=( )A .1B .−1C .iD .−i 4、复数i 2+i 3+i 2022=( ) A .i B .−2−i C .−2+i D .−15、设z 1=−1+√3i ,z 2=(12z 1)2,则argz 2=( ) A .56πB .43πC .116πD .53π6、在复平面内,把复数3−√3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是( ) A .2√3B .−2√3i C .√3−3i D .3+√3i7、已知复数z 1,z 2在复平面内对应的点分别为(2,1),(1,b ),若z 1z 2是纯虚数,则b =( ) A .2B .12C .−12D .-28、已知复数z 1=21+i 与z 2在复平面内对应的点关于直线y =x 对称,则z 1z 2=( ) A .−4i B .−2i C .2i D .4i 多选题9、关于复数z =cos2π3+isin2π3(i 为虚数单位),下列说法正确的是( )A .|z |=1B .z 在复平面上对应的点位于第二象限C.z3=1D.z2+z+1=010、设复数z=m(3+i)−(2+i),i为虚数单位,m∈R,则下列结论正确的为()<m<1时,则复数z在复平面上对应的点位于第四象限A.当23B.若复数z在复平面上对应的点位于直线x−2y+1=0上,则m=1C.若复数z是纯虚数,则m=23⃑⃑⃑⃑⃑⃑⃑ |=√10,则m=2D.在复平面上,复数z−1对应的点为Z′,O为原点,若|OZ′11、已知复数z满足方程(z2+9)(z2−2z+4)=0,则()A.z可能为纯虚数B.该方程共有两个虚根C.z可能为1−√3i D.该方程的各根之和为2填空题12、若复数z满足z+|z|=2,则z=__________.13、对任意三个模长小于1的复数z1,z2,z3,均有|z1z2+z2z3+z3z1|2+|z1z2z3|2<λ恒成立,则实数λ的最小可能值是______.部编版高中数学必修二第七章复数带答案(七)参考答案1、答案:C分析:先根据i 2=−1将z 化简,再根据复数的模的计算公式即可求出. 因为z =1+2i +i 3=1+2i −i =1+i ,所以 |z|=√12+12=√2. 故选:C .小提示:本题主要考查复数的模的计算公式的应用,属于容易题. 2、答案:D分析:将复数化为z =a +b i 的形式即可求出A ,将A 的坐标代入选项的函数验证即可. 因为5−3−i ==5(−3+i)(−3−i)(−3+i)=-32+12i , 所以a =-32,b =12,所以A (12,−32),把点A 的坐标分别代入选项,只有D 选项满足. 故选:D. 3、答案:C解析:根据复数运算将分之分母同乘以1+3i ,化简即可得出答案. 解:3+i1−3i=(3+i )(1+3i )(1−3i )(1+3i )=3+3i 2+10i10=3−3+10i 10=i .故选:C.小提示:复数乘除法运算技巧:(1)复数的乘法:复数乘法类似于多项式的乘法运算.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数. 4、答案:B分析:由复数的乘方化简计算.i 2+i 3+i 2022=(−1)+(−i)+(−1)=−2−i . 故选:B . 5、答案:B分析:首先求z 2,再求tanθ,根据对数对应的点所在的象限,求复数的辅角主值.z2=14z12=14(−1+√3i)2=−12−√32i,复数对应的点是(−12,−√32),位于第三象限,且tanθ=ba=√3,所以argz2=4π3.故选:B6、答案:B分析:由题意知复数3−√3i对应的向量按顺时针方向旋转π3,需要把已知向量对应的复数乘以复数的沿顺时针旋转后的复数,相乘得到结果.解:∵由题意知复数3−√3i对应的向量按顺时针方向旋转π3,∴旋转后的向量为(3−√3i)[cos(−π3)+i sin(−π3)]=(3−√3i)(12−√3i2)=32−3√3i2−√3i2+3i22=−2√3i.故选:B.7、答案:A分析:根据复数的几何意义,可得z1=2+i,z2=1+bi,根据复数的运算法则,即可得答案.由题意得:z1=2+i,z2=1+bi,所以z1z2=(2+i)(1+bi)=2+2bi+i+bi2=2−b+(2b+1)i,又z1z2是纯虚数,所以{2−b=02b+1≠0,解得b=2,故选:A.小提示:本题考查复数的几何意义,复数的乘法运算,复数的分类,考查学生对基础知识的掌握程度,属基础题.8、答案:C分析:利用复数的除法运算法则化简复数z1,求出其在复平面内对应的点,再求出该点关于直线y=x对称的点,得到复数z2,最后利用复数的乘法运算法则即可求得z1z2.因为z1=21+i =2(1−i)(1+i)(1−i)=1−i,所以复数z1在复平面内对应的点为(1,−1),其关于直线y=x对称的点为(−1,1),所以z2=−1+i,所以z1z2=(1−i)(−1+i)=2i,故选:C . 9、答案:ACD分析:利用复数的运算法则,共轭复数的定义,几何意义即可求解z =cos2π3+i sin 2π3=−12+√32i 所以|z |=√(−12)2+(√32)2=1故A 正确 z̅=−12−√32i ,则z̅在复平面上对应的点为(−12,−√32)位于第三象限 故B 错误 z =−12+√32i ⇒ z 2=(−12+√32i )2=(−12)2+2×(−12)(√32i )+(√32i )2=−12−√32i z 3=z 2⋅z =(−12+√32i )2(−12+√32i )=(−12−√32i )(−12+√32i )=(−12)2−(−√32i )2=14−34i 2=14+34=1 故C 正确z 2+z +1=−12−√32i −12+√32i +1=0故D 正确 故选:ACD 10、答案:AC分析:由z =m (3+i )−(2+i ),得z =(3m −2)+(m −1)i ,然后逐个分析判断即可 由z =m (3+i )−(2+i ),得z =(3m −2)+(m −1)i ,对于A ,当23<m <1时,0<3m −2<1,−13<m −1<0,所以复数z 在复平面上对应的点位于第四象限,所以A 正确,对于B ,若复数z 在复平面上对应的点位于直线x −2y +1=0上,则3m −2−2(m −1)+1=0,解得m =−1,所以B 错误,对于C,若复数z是纯虚数,则3m−2=0且m−1≠0,解得m=23,所以C正确,对于D,由z=(3m−2)+(m−1)i,得z−1=(3m−3)+(m−1)i,则Z′(3m−3,m−1),由|OZ′⃑⃑⃑⃑⃑⃑⃑ |=√10,得(3m−3)2+(m−1)2=10,(m−1)2=1,得m=2或m=0,所以D错误,故选:AC11、答案:ACD分析:依题意可得z2+9=0或z2−2z+4=0,即z2=−9或(z−1)2=−3,从而求出z,即可判断;解:由(z2+9)(z2−2z+4)=0,得z2+9=0或z2−2z+4=0,即z2=−9或(z−1)2=−3,解得z=±3i或z=1±√3i,即方程的根分别为z1=3i、z2=−3i、z3=1+√3i、z4=1−√3i,所以z1+z2+z3+z4=3i+(−3i)+(1+√3i)+(1−√3i)=2故选:ACD.12、答案:1分析:设z=a+b i(a,b∈R),根据题意,结合求模公式、复数相等的条件等知识,列出方程组,即可得答案. 设z=a+b i(a,b∈R),所以z+|z|=a+b i+√a2+b2=2,所以{a+√a2+b2=2b=0,解得{a=1b=0,所以z=1.所以答案是:113、答案:10分析:利用复数的三角形式结合余弦函数的性质可得|z1z2+z2z3+z3z1|2+|z1z2z3|2的取值范围,从而得到实数λ的最小可能值.设z1=ρ1(cosθ1+i sinθ1),z2=ρ2(cosθ2+i sinθ2),z3=ρ3(cosθ3+i sinθ3),由题设有ρi∈[0,1)(i=1,2,3).又|z1z2+z2z3+z3z1|2=[ρ1ρ2cos(θ1+θ2)+ρ2ρ3cos(θ2+θ3)+ρ1ρ3cos(θ1+θ3)]2+[ρ1ρ2sin(θ1+θ2)+ρ2ρ3sin(θ2+θ3)+ρ1ρ3sin(θ1+θ3)]2,=ρ12ρ22+ρ22ρ32+ρ12ρ32+2ρ1ρ22ρ3cos(θ1−θ3)+2ρ1ρ32ρ2cos(θ1−θ2)+2ρ2ρ12ρ3cos(θ2−θ3),而|z1z2z3|2=(|z1||z2||z3|)2=ρ22ρ12ρ32,所以|z1z2+z2z3+z3z1|2+|z1z2z3|2<4+2[cos(θ1−θ2)+cos(θ2−θ3)+cos(θ1−θ3)],而cos(θ1−θ3)+cos(θ1−θ2)+cos(θ2−θ3)≤3,当且仅当θ1,θ2,θ3终边相同时等号成立,故|z1z2+z2z3+z3z1|2+|z1z2z3|2<10,所以λ≥10,故实数λ的最小可能值为10,所以答案是:10.。
高中数学数列-错位相减法求和专题训练含答案精选全文完整版
可编辑修改精选全文完整版错位相减法求和专题训练1.已知数列{}n a 满足22,{ 2,n n n a n a a n ++=为奇数为偶数,且*12,1,2n N a a ∈==.(1)求 {}n a 的通项公式;(2)设*1,n n n b a a n N +=⋅∈,求数列{}n b 的前2n 项和2n S ;(3)设()2121nn n n c a a -=⋅+-,证明:123111154n c c c c ++++< 2.设正项数列{}n a 的前n 项和为n S ,且满足37a =, 21691n n a S n +=++, *n N ∈.(1)求数列{}n a 的通项公式;(2)若正项等比数列{}n b 满足1132,b a b a ==,且n n n c a b =⋅,数列{}n c 的前n 项和为n T . ①求n T ;②若对任意2n ≥, *n N ∈,均有()2563135n T m n n -≥-+恒成立,求实数m 的取值范围.3.已知*n N ∈,设n S 是单调递减的等比数列{}n a 的前n 项和, 112a =且224433,,S a S a S a +++成等差数列.(1)求数列{}n a 的通项公式;(2)记数列{}n na 的前n 项和为n T ,求证:对于任意正整数n , 122n T ≤<. 4.递增的等比数列{}n a 的前n 项和为n S ,且26S =, 430S =. (1)求数列{}n a 的通项公式;(2)若12log n n n b a a =,数列{}n b 的前n 项和为n T ,求1250n n T n ++⋅>成立的正整数n 的最小值.5.已知数列{}n a 及()212n n n f x a x a x a x =+++,且()()11?nn f n -=-, 1,2,3,n =.(1)求123a a a ,,的值;(2)求数列{}n a 的通项公式; (3)求证:11133n f ⎛⎫≤< ⎪⎝⎭. 6.已知数列{}n a 是以2为首项的等差数列,且1311,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式及前n 项和()*n S n N ∈; (Ⅱ)若()1232n a n b -=,求数列{}1n n a b +的前n 项之和()*n T n N ∈.7.在数列{}n a 中, 14a =,前n 项和n S 满足1n n S a n +=+.(1)求证:当2n ≥时,数列{}1n a -为等比数列,并求通项公式n a ;(2)令11•213nn n n na b -⎛⎫= ⎪+⎝⎭,求数列{}n b 的前n 项和为n T .8.已知等差数列{}n a 的前n 项和n S ,且252,15a S ==,数列{}n b 满足11,2b =1n b += 12n n b n+. (1)求数列{}n a , {}n b 的通项公式; (2)记n T 为数列{}n b 的前n 项和, ()()222n n S T f n n -=+,试问()f n 是否存在最大值,若存在,求出最大值;若不存在,请说明理由.9.已知数列{}n a 的前n 项和22n S n n =+.(1)求数列{}n a 的通项公式n a ; (2)令()*211n n b n N a =∈-,求数列{}n a 的前n 项和n T . 10.已知单调递增的等比数列{}n a 满足: 2420a a +=, 38a = (1)求数列{}n a 的通项公式;(2)若12log n n n b a a =⋅,数列{}n b 的前n 项和为n S , 1250n n S n ++⋅>成立的正整数n 的最小值.参考答案1.解析:(1)当n 为奇数时, 22n n a a +-=,此时数列{}*21k a k N -∈()成等差数列. 2d = 当n 当为偶数时, 22n n a a +=,此时数列{}*2k a k N ∈()成等比数列 2q = ()()2{2nn n n a n ∴=为奇数为偶数(2)()()21221222121222142kkk k k k k k k b b a a a a k k k --++=+=-⋅++=⋅()()()21234212n n n S b b b b b b -=++++++23241222322n n S n ⎡⎤∴=⋅+⋅+⋅+⋅⎣⎦()2312241222122n n n S n n +⎡⎤=⋅+⋅++-+⋅⎣⎦12242222n n n S n +⎡⎤∴-=+++-⋅⎣⎦(3) ()()3121nnn C n =-+- ()()()()2121{ 2121nn nn n C n n -⋅-∴=-⋅+为奇为偶 ()()1111321212n n n n C n +=<≥-- n 为奇 ()()1111221212n n n n C +=<≥-+ n 为偶2.解析:(1) 2n 1n a 6S 9n 1+=++,()()2n n 1a 6S 9n 11n 2-=+-+≥,∴()22n 1n n a a 6a 9n 2+-=+≥,∴()22n 1n a a 3+=+ 且各项为正,∴()n 1n a a 3n 2+=+≥又3a 7=,所以2a 4=,再由221a 6S 91=++得1a 1=,所以21a a 3-=∴{}n a 是首项为1,公差为3的等差数列,∴n a 3n 2=-(2) 13b 1,b 4==∴n 1n b 2-=, ()n 1n n n c a b 3n 22-=⋅=-⋅①()01n 1n T 12423n 22-=⋅+⋅++-⋅,②()12n n 2T 12423n 22=⋅+⋅++-⋅∴()12n 1n T 13222--=++++ ()n 3n 22--⋅, ()n n T 3n 525=-⋅+()n 3n 52m -⋅⋅≥ ()2*6n 31n 35n 2,n N -+≥∈恒成立∴()2n 6n 31n 35m 3n 52-+≥-⋅ ()()()nn 3n 52n 72n 73n 522---==-⋅,即n 2n 7m 2-≥恒成立. 设n n 2n 7k 2-=, n 1n n 1nn 12n 52n 792nk k 222+++----=-= 当n 4≤时, n 1n k k +>; n 5≥时, n 1n k k +< ∴()n 55max 33k k 232===,∴3m 32≥. 点睛:本题主要考查了数列的综合应用问题,其中解答中涉及到等差数列的通项公式的求解,数列的乘公比错位相减法求和,数列的恒成立的求解等知识点的综合运用,试题有一定的综合性,属于中档试题,解答中准确运算和合理转化恒成立问题是解答的关键. 3.解:(1)设数列{}n a 的公比q ,由()4422332S a S a S a +=+++, 得()()42434232S S S S a a a -+-+=+,即424a a =,∴214q =. {}n a 是单调递减数列,∴12q =, ∴12nn a ⎛⎫= ⎪⎝⎭(2)由(1)知2n n nna =, 所以234112*********n n n n nT --=++++++,①232123412122222n n n n nT ---=++++++,②②-①得: 211112222n n n n nT -=++++-,1122212212nn n n n n T ⎛⎫- ⎪+⎝⎭=-=--,由()111112n n n n n T T n a ++++-=+=,得123n T T T T <<<<,故112n T T ≥=又2222n n n T +=-<,因此对于任意正整数n , 122n T ≤<点睛:本题主要考查了数列的综合应用和不等式关系证明问题,其中解答涉及到等比数列的基本量的运算,数列的乘公比错位相减法求和,以及放缩法证明不等式,突出考查了方程思想和错位相减法求和及放缩法的应用,试题综合性强,属于难题. 4.解析:(1)设等比数列{}n a 的公比为q由已知, 42302S S =≠.则1q ≠,则()()212414161{1301a q S q a q S q-==--==-,,两式相除得2q =±,∵数列{}n a 为递增数列,∴2q =,则12a =,所以2n n a =.(2)122log 22n n n n b n ==-⋅,()1231222322n n T n =-⋅+⋅+⋅++⋅ 设1231222322n n H n =⋅+⋅+⋅++⋅,① 23412222322n n H n +=+⋅+⋅++⋅,②①-②得:()1231121222222212n n n n n H n n ++--=++++-⋅=-⋅-,11222n n n n T +-=-⋅+-=,1250n n T n ++⋅>, 即111222250n n n n n +++-⋅+-+⋅>,1252n +>,∴正整数n 的最小值是5.点睛:本题主要考查了等比数列的求和公式及通项公式的应用,错位相减求和方法的应用,及指数不等式的求解.5.解析:(1)由已知()1111f a -=-=-,所以11a =.()21212f a a -=-+=,所以23a =.()312313f a a a -=-+-=-,所以35a =.(2)令1x =-,则()()()()2121111nn n f a a a -=-+-++-,①()()()()()21112111111nn n n n f a a a a +++-=-++-++-+-,②两式相减,得()()()1111?11n n n n a f f +++-=---= ()()()11?11?n nn n +-+--,所以()11n a n n +=++,即121n a n +=+, 又11a =也满足上式,所以数列{}n a 的通项公式为()211,2,3,n a n n =-=.(3)()233521n n f x x x x n x =++++-,所以()2311111352133333nn f n ⎛⎫⎛⎫⎛⎫⎛⎫=++++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,③()2341111111·3521333333n n f n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,④①-②得()2312111111222213333333nn n f n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以11133n n n f +⎛⎫=-⎪⎝⎭. 又1,2,3,n =,∴103nn +>,故113n f ⎛⎫< ⎪⎝⎭. 又1111210333n n n n f f +++⎛⎫⎛⎫--=> ⎪ ⎪⎝⎭⎝⎭, 所以13n f ⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭是递增数列,故1111333n f f ⎛⎫⎛⎫≥=⎪ ⎪⎝⎭⎝⎭. 所以11133n f ⎛⎫≤< ⎪⎝⎭. 【点睛】本题考查数列的前3项及通项公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.6.解析:(Ⅰ) 设数列{}n a 的公差为d ,由条件可得23111a a a =,即()()2222210d d +=+,解得3d =或0d =(舍去),则数列{}n a 的通项公式为()23131n a n n =+-=-,()()23113122n n n S n n +-==+. (Ⅱ)由(Ⅰ)得()121322n a n n b --==,则()1231223341225282312n n n n T a b a b a b a b n +=++++=⨯+⨯+⨯++-⨯,①()23412225282312n n T n +=⨯+⨯+⨯++-⨯,②将①-②得()123122323232312n n n T n +-=⨯+⨯+⨯++⨯--⨯()()211132324312834212n n n n n +++⨯-⨯=+--⨯=---⨯-,则()18342n n T n +=+-⨯.【易错点晴】本题主要考等差数列的通项公式、等比数列的求和公式、以及“错位相减法”求数列的和,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -.7.解析:(1)11,4n a == 当2n ≥时, 1,n n n a s s -=-得()1121n n a a +-=-,1121n n a a +-=-112,n n a --=得 121n n a -=- n a = 14,1{21,2n n n -=+≥(2)当1n =时, 123b = 当2n ≥时, 13nn b n ⎛⎫=⋅ ⎪⎝⎭当1n =时, 123T =当2n ≥时, 232111233333nn T n ⎛⎫⎛⎫⎛⎫=+⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令2311123333nM n ⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3411111233333n M n +⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴ 23M = 122111191833n n n +-⎡⎤⎛⎫+--⋅ ⎪⎢⎥⎣⎦⎝⎭ 2111111312323nn M n -⎡⎤⎛⎫∴=+--⋅ ⎪⎢⎥⎣⎦⎝⎭132311243n n n T +⎛⎫∴=-⋅ ⎪⎝⎭ 经检验1n =时, 1T 也适合上式. 132311243n n n T +∴=-⋅ ()*n N ∈ . 点睛:数列问题是高考中的重要问题,主要考查等差等比数列的通项公式和前n 项和,主要利用解方程得思想处理通项公式问题,利用分组求和、裂项相消、错位相减法等方法求数列的和.在利用错位相减求和时,要注意提高运算的准确性,防止运算错误. 8.解析:(1)设等差数列{}n a 的首项为1a ,公差为d , 则11121{{,.510151n a d a a n a d d +==⇒∴=+==由题意得1111122n n b b b n n +=⋅=+,,∴数列n b n ⎧⎫⎨⎬⎩⎭是等比数列,且首项和公比都是12, 2n n n b ∴=. (2)由(1)得231232222n n n T =+++⋅⋅⋅+, 2341112322222n n n T +=+++⋅⋅⋅+, 两式相减得: 23111111=222222n n n n T ++++⋅⋅⋅+-, 222n n n T +∴=-;()()()2122222n n n nn n S T n nS f n n +-+=∴==+;()()()()()221111121222n n n n n n n n n f n f n ++++++-+∴+-=-= 当3n ≥时, ()()10f n f n +-<;当3n <时, ()()10f n f n +-≥;()()()3311,2,322f f f === ∴()f n 存在最大值为32.点睛:数列问题是高考中的重要问题,主要考查等差等比数列的通项公式和前n 项和,主要利用解方程得思想处理通项公式问题,利用分组求和、裂项相消、错位相减法等方法求数列的和.在利用错位相减求和时,要注意提高运算的准确性,防止运算错误. 9.解析:(1)当1n =时, 11==3a S ;当2n ≥时, ()()221=212121n n n a S S n n n n n --=+----=+, 1=3a 也符合,∴数列{}n a 的通项公式为=21n a n +. (2)2211111=14441n n b a n n n n ⎛⎫==- ⎪-++⎝⎭,∴()111111111...1422314141n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 点睛:本题考查了等差数列的定义,求数列的前n 项和问题,属于中档题.解决数列的通项公式问题时,一般要紧扣等差等比的定义,利用方程思想求解,数列求和时,一般根据通项的特点选择合适的求和方法,其中裂项相消和错位相减法考查的比较多,主要是对通项的变形转化处理即可.10.解析:(1)设等比例列16.λ∴的最大值为的首项为1a ,公比为q依题意,有3112120{8a q a q a q +==,解之得12{ 2a q ==或132{ 12a q ==, 又数列{}n a 单调递增, 12{ 2.2n a a n q =∴∴==,(2)依题意, 12.log2.2,.2bn n n n n ==- 12222323.........2,Sn n n ∴-=⨯+⨯+⨯++①2122223324........21Sn n n -=⨯+⨯+⨯+++②由①—②得: 2222324......2.21Sn n n n =+++++-+()212.2112n n n -=-+-21.212n n n =+-+- , 1250n n S n +∴=⋅>,即12250,226n n +->∴>,当4n ≤时, 2241626n <=<;当5n ≥时,5223226n <=<, ∴使1250n n S n ++⋅>,成立的正整数n 的最小值为5.【 方法点睛】本题主要考查等比数列的通项公式与求和公式以及错位相减法求数列的的前n 项和,属于中档题.一般地,如果数列{}n a 是等差数列, {}n b 是等比数列,求数列{}n n a b ⋅的前n 项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解, 在写出“n S ”与“n qS ” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式.。
高中数学专题强化练习《数列求和》含答案解析
=2 -1,
1-2
=
∴Sn=(21-1)+(22-1)+…+(2n-1)
2 × (1 - 2)
-n=2n+1-n-2.故选
1-2
=
D.
2.B 由题意可得,当 n 为奇数时,an=f(n)+f(n+1)=n2-(n+1)2=-2n-1;
当 n 为偶数时,an=f(n)+f(n+1)=-n2+(n+1)2=2n+1.
公差不为 0,其前 n 项和为 Sn.若 a2,a4,a7 成等比数列,S3=12.
(1)求 an 及 Sn;
1
1
1
(2)已知数列{bn}满足+1-=an,n∈N*,b1=3,Tn 为数列{bn}的前 n 项和,
求 Tn 的取值范围.
答案全解全析
一、选择题
1.D ∵an=1+2+22+…+2n-1
又 a14=b4,所以 1+13d=1×33,解得 d=2,
( - 1)
1 - 3
2+3 - 1.
·2+
=n
2
1-3
2
所以数列{an+bn}的前 n 项和为 n+
8.答案 6
6
解析 设等比数列{an}的首项为 a1,公比为 q,由 a4=24,a6=96,得 q2=4
=4,所以 q=2 或 q=-2,
(n ≤ 6,n ∈ N*),
2
∴Tn= n2 - 11n + 60
(n ≥ 7,n ∈ N*).
2
=15+
高中数学--数列大题专项训练(含详解)
高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
2023-2024学年湖南省高中数学人教B版 必修二统计与概率强化训练-7-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年湖南省高中数学人教B 版 必修二统计与概率强化训练(7)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)在犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄有关”在犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄无关”有99% 以上的把握认为“是否愿意外派与年龄有关”有99% 以上的把握认为“是否愿意外派与年龄无关”1. 近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.某品牌公司一直默默拓展海外市场,在海外设了多个分支机构,现需要国内公司外派大量中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从中青年员工中随机调查了 位,得到数据如下表:愿意被外派不愿意被外派合计中年员工青年员工合计由并参照附表,得到的正确结论是( )附表:0.100.010.0012.7066.63510.828A. B. C. D. 分层抽样 系统抽样分层抽样 简单随机抽样系统抽样 简单随机抽样简单随机抽样 分层抽样2. 某工厂A ,B ,C 三个车间共生产2000个机器零件,其中A 车间生产800个,B 车间生产600个,C 车间生产600个,要从中抽取一个容量为50的样本,记这项调查为①:某学校高中一年级15名男篮运动员,要从中选出3人参加座谈会,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是( )A. B. C. D. 3. 2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着 的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结样本中的女生数量多于男生数量样本中有学物理意愿的学生数量多于有学历史意愿的学生数量样本中的男生偏爱物理样本中的女生偏爱历史论是不正确的()A. B. C. D. 频率/样本容量组距×频率频率样本数据4. 在频率分布直方图中,小长方形的面积是 ( )A. B. C. D. 甲同学:平均数为2,方差小于1乙同学:平均数为2,众数为1丙同学:中位数为2,众数为2丁同学:众数为2,方差大于15. 若某同学连续3次考试的名次(3次考试均没有出现并列名次的情况)不低于第3名,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次的数据,推断一定是尖子生的是( )A. B. C. D. 12346. 2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业增长呈现加速状态.根据该折线图,下列结论正确的个数为()①每年市场规模量逐年增加;②增长最快的一年为2013~2014;③这8年的增长率约为40%;④2014年至2018年每年的市场规模相对于2010年至2014年每年的市场规模,数据方差更小,变化比较平稳A. B. C. D. 数据4、4、6、7、9、6的众数是4一组数据的标准差是这组数据的方差的平方数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半频率分布直方图中各小长方形的面积等于相应各组的频数7. 下列说法正确的是 ( )A. B. C. D. 8. 执行如图所示的程序框图,设所有输出数据构成的集合为,若从集合中任取一个元素,则满足函数在区间内单调递增的概率为()A. B. C. D.9. 排球比赛的规则是2局3胜制(2局比赛中,优先取得3局胜利的一方,获得最终胜利,无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为 ,前2局中乙队以 领先,则最后乙队获胜的概率是( )A. B. C. D.0.310.650.86110. 受全球新冠疫情影响,2020东京奥运会延期至2021年7月23日到8月8日举行,某射箭选手积极备战奥运,在临赛前的一次训练中共射了1组共72支箭,下表是命中环数的部分统计信息环数<778910频数03a b 22已知该次训练的平均环数为9.125环,据此水平,正式比赛时射出的第一支箭命中黄圈(不小于9环)的概率约为( )A. B. C. D. 直方图中x 的值为0.004在被抽取的学生中,成绩在区间的学生数为30人估计全校学生的平均成绩为84分估计全校学生成绩的样本数据的80%分位数约为93分11. 耀华中学全体学生参加了主题为“致敬建党百年,传承耀华力量”的知识竞赛,随机抽取了400名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,下列说法正确的是( )A. B. C. D. 不可能事件与事件互斥必然事件与事件相互独立若 , 则12. 已知随机事件 , , 满足 , , , 则下列说法错误的是( )A. B. C. D. 13. 我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为 “阳爻”和 “阴爻”,如图就是重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 .14. 假设要考察某公司生产的袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数法抽取样本时,先将800袋牛奶按000,001,…,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个的样本个体的编号是.(下面摘取了随机数表第7行到第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5415. 某项羽毛球单打比赛规则是3局2胜制,运动员甲和乙进入了男子羽毛球单打决赛,假设甲每局获胜的概率为,则由此估计甲获得冠军的概率为 .16. 已知甲、乙二人能译出某种密码的概率分别为和,现让他们独立地破译这种密码,则至少有1人能译出密码的概率为.17. 2021年9月15日,安徽省举行新闻发布会,正式公布了高考综合改革方案.按照方案的要求,高考选科采用“3+1+2”的模式:“3”指语文、数学、外语三门统考学科,以原始分计入高考成绩;“1”指考生从物理、历史两门学科中“首选”一门学科,以原始分计入高考成绩;“2”指考生从政治、地理、化学、生物四门学科中“再选”两门学科,以等级分计入高考成绩.某校对其高一学生的首选学科意向进行统计,得到如下表格:科目性别物理历史合计男46040500女340160500合计8002001000(1) 令A=“从选历史的同学中任选一人,求此人是女生”,B=“从选物理的同学中任选一人,求此人是女生”,判断随机事件A,B的概率,的大小关系;(2) 按照方案,再选学科的等级分赋分规则如下,将考生原始成绩从高到低划分为A,B,C,D,E五个等级,各等级人数所占比例及赋分区间如下表:等级A B C D E人数比例15%35%35%13%2%赋分区间[86,100][71,85][56,70][41,55][30,40]将各等级内考生的原始分依照等比例转换法分别转换到赋分区间内,得到等级分,转换公式为,其中,分别表示原始分区间的最低分和最高分,,分别表示等级赋分区间的最低分和最高分,Y表示考生的原始分,T表示考生的等级分,规定原始分为时,等级分为,原始分为时,等级分为,计算结果四舍五入取整.该校某次化学考试的原始分最低分为50,最高分为98,呈连续整数分布,其频率分布直方图如图所示:①按照等级分赋分规则,估计此次考试化学成绩等级A的原始分区间;②用估计的结果近似代替原始分区间,若某学生化学成绩的原始分为90分,试计算其等级分.18. 某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男16女50合计(参考公式:,其中)0.400.250.150.100.050.0250.780 1.323 2.072 2.706 3.841 5.024(1) 求图中a的值;(2) 根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?(3) 将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望.19. 某心理教育测评研究院为了解某市市民的心理健康状况,随机抽取了n位市民进行心理健康问卷调查,将所得评分(百分制)按研究院制定的心理测评评价标准整理,得到频率分布直方图.已知调查评分在[70,80)中的市民有200人心理测评评价标准调查评分[0,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]心理等级E D C B A(1) 求n的值及频率分布直方图中t的值;(2) 在抽取的心理等级为D的市民中,按照调查评分的分组,分为2层,通过分层随机抽样抽取3人进行心理疏导.据以往数据统计,经心理疏导后,调查评分在[40,50)的市民的心理等级转为B的概率为,调查评分在[50,60)的市民的心理等级转为B的概率为,假设经心理疏导后的等级转化情况相互独立,求在抽取的3人中,经心理疏导后至少有一人的心理等级转为B的概率;(3) 该心理教育测评研究院建议该市管理部门设定预案:若市民心理健康指数的平均值不低于0.75,则只需发放心理指导资料,否则需要举办心理健康大讲堂.根据调查数据,判断该市是否需要举办心理健康大讲堂,并说明理由.(每组的每个数据用该组区间的中点值代替,心理健康指数=调查评分÷100)20. 某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1) 求这个样本数据的中位数和众数;(2) 以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.21. 某地为宣传防疫政策,组织专家建设题库供各单位学习,半个月后,当地电视台举办中小学学生防疫知识竞答闯关比赛,规则如下:每队三人,需要从题库中选三道题依次回答,每人一题.第一道题回答正确得10分,回答错误得0分;第二道题回答正确得20分,回答错误扣10分;第三道题回答正确得30分,回答错误扣20分.每组选手回答这三个问题的总得分不低于30分就算闯关成功.某校为了参加该闯关比赛,选拔了三位选手,这三位选手在进行题库训练时的正确率如下表:选手1号2号3号正确率80%80%90%假设选手答题结果互不影响,用频率代替概率.(1) 若学校安排1号、2号、3号依次出场回答,则“闯关成功”的概率是多少?(2) 如何安排出场顺序使“闯关成功”的概率最大?答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)(3)(1)(2)(3)20.(1)(2)21.(1)(2)。
高中数学-概率专题强化训练(解析版)
高中数学-概率专题强化训练学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.甲,乙两人下棋,甲不输的概率是0.8,两人下成平局的概率是0.5,则甲胜的概率是( ) A .0.2B .0.3C .0.5D .0.82.抛掷一枚质地均匀的骰子,记事件A =“出现的点数是1或2”,事件B =“出现的点数是2或3或4”,则事件“出现的点数是2”可以记为( ) A .A BB .A BC .A B ⊆D .A B =3.2020年起,山东省高考实行新方案.新高考规定:语文、数学、英语是必考科日,考生还需从思想政治、历史、地理、物理、化学、生物6个等级考试科目中选取3个作为选考科目.某考生已经确定物理作为自己的选考科目,然后只需从剩下的5个等级考试科目中再选择2个组成自己的选考方案,则该考生“选择思想政治、化学”和“选择生物、地理”为( ) A .相互独立事件 B .对立事件C .不是互斥事件D .互斥事件但不是对立事件4.同时投掷两颗质地均匀且大小相同的骰子,用(x ,y )表示结果,其中x 表示第一颗骰子出现的点数,y 表示第二颗骰子出现的点数,记A 为“所得点数之和小于5”,则事件A 包含的样本点个数是( ) A .3 B .4 C .5D .65.若某群体中的成员只用现金支付的概率为0.2,不用现金支付的概率为0.45,则既用现金支付也用非现金支付的概率为( ) A .0.35B .0.65C .0.25D .06.下列说法正确的是( )A .投掷一枚硬币1000次,一定有500次“正面朝上”B .若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定C .为了解我国中学生的视力情况,应采取全面调查的方式D .一组数据1、2、5、5、5、3、3的中位数和众数都是57.2013年华人数学家张益唐证明了孪生素数(素数即质数)猜想的一个弱化形式.素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷个素数p ,使得2p +是素数,素数对(),2p p +称为孪生素数.则从不超过15的素数中任取两个素数,这两个素数组成孪生素数对的概率为( ) A .115B .215 C .15D .4158.一袋中装有5个大小形状完全相同的小球,其中红球3个,白球2个,从中任取2个小球,若事件“2个小球全是红球”的概率为310,则概率为710的事件是( ) A .恰有一个红球 B .两个小球都是白球 C .至多有一个红球D .至少有一个红球9.已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .0.25B .0.2C .0.35D .0.410.甲、乙两人对同一个靶各射击一次,设事件A =“甲击中靶”,事件B =“乙击中靶”,事件E =“靶未被击中”,事件F =“靶被击中”,事件G =“恰一人击中靶”,对下列关系式(A 表示A 的对立事件,B 表示B 的对立事件):①E AB =,①F AB =,①F A B =+,①G A B =+,①G AB AB =+,①()()1P F P E =-,①()()()P F P A P B =+.其中正确的关系式的个数是( )A .3B .4C .5D .6二、多选题11.某人决定就近打车前往目的地前方开来三辆车,且车况分别为“好”“中”“差”他决定按如下两种方案打车.方案一:不乘第一辆车,若第二辆车好于第一辆车就乘此车,否则直接乘坐第三辆车:方案二:直接乘坐第一辆车.若三辆车开过来的先后次序等可能记方案一和方案二坐到车况为“好”的车的概率分别为1p ,2p ,则下列判断不正确的是( ) A .1212p p == B .1213p p ==C .112p =,213p =D .113p =,212p =12.甲、乙两人练习射击,命中目标的概率分别为p 和q ,甲、乙两人各射击一次,下列说法正确的是( ) A .目标未被命中的概率为1pq -B .目标恰好被命中一次的概率为p q +C .目标恰好被命中两次的概率为pqD .目标被命中的概率为1(1)(1)p q ---13.在25件同类产品中,有2件次品,从中任取3件产品,其中不是随机事件的是( ) A .3件都是正品 B .至少有1件次品 C .3件都是次品D .至少有1件正品14.下列说法错误的有( )A .随机事件A 发生的概率是频率的稳定值,频率是概率的近似值B .在同一次试验中,不同的基本事件不可能同时发生C .任意事件A 发生的概率()P A 满足()01P A <<D .若事件A 发生的概率趋近于0,则事件A 是不可能事件15.(多选)某工厂制造一种零件,甲机床的正品率是0.9,乙机床的正品率为0.8,分别从它们制造的产品中任意抽取一件,则( ) A .两件都是次品的概率为0.28 B .至多有一件正品的概率为0.72 C .恰有一件正品的概率为0.26 D .至少有一件正品的概率为0.98 三、填空题16.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从甲,乙,丙,丁4名医生志愿者中,随机选取2名医生赴湖北支援,则甲被选中的概率为_____.17.若分别以连续掷两枚骰子得到的点数m ,n 作为点M 的横坐标、纵坐标,则点M 落在圆229x y +=内的概率为______________.18.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为____.19.在一个不透明的袋中,装有6个红球和若干个绿球,若再往此袋中放入5个白球(袋中所有球除颜色外完全相同)摇匀后摸出一球,摸到红球的概率恰好为25,那么此袋中原有绿球________个.20.甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____.21.从3名男生和2名女生中随机选出2名志愿者,其中至少有1名男生的概率为______.22.甲、乙、丙三名奥运志愿者被随机分到A,B两个不同的岗位,且每个岗位至少1人,则甲、乙两人被分到同一岗位的概率为________.23.某班学生考试成绩统计如下:数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是_______.24.2021年7月9日,第18届中国(长春)国际汽车博览会正式启幕,某汽车企业以“与进取者同享”为主题,携旗下21款重磅车型震撼亮相,展示出该汽车企业的实力和对未来移动出行时代的前瞻性思考.某模特公司从甲、乙、丙、丁、戊5人中随机抽取3人作为该汽车企业A型车的车模,则甲、乙同时被抽到的概率为___________.25.下列四个命题:①样本方差反映的是所有样本数据与样本平均值的偏离程度;①基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;①某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为na mbm n;①如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交.其中真命题的序号是__________.四、解答题26.袋子中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,求下列事件的概率:(1)A=“第一次摸到红球”;(2)B=“第二次摸到红球”;(3)AB=“两次都摸到红球”.27.下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率; (2)求此人停留期间空气重度污染恰有1天的概率.28.为缓解城市垃圾带来的问题,许多城市实行了生活垃圾强制分类.为了加强学生对垃圾分类意义的认识以及养成良好的垃圾分类的习惯,某学校团委组织了垃圾分类知识竞赛活动.设置了四个箱子,分别标有“厨余垃圾”“有害垃圾”“可回收物”“其他垃圾”;另有写有垃圾名称的卡片若干张.每位参赛选手从所有写有垃圾名称的卡片中随机抽取20张,按照自己的判断,将每张卡片放入对应的箱子中.规定每正确投放一张卡片得5分,投放错误得0分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子得5分,放入其他箱子得0分.从所有参赛选手中随机抽取40人,将他们的得分分成以下5组:[]0,20,(]20,40,(]40,60,(]60,80,(]80,100,绘成如下频率分布直方图:(1)求得分的平均数(每组数据以中点值代表);(2)学校规定得分在80分以上的为“垃圾分类知识达人”.为促进社区的垃圾分类,学校决定从抽取的40人中的“知识达人”(其中含A ,B 两位同学)中选出两人利用节假日到社区进行垃圾分类知识宣讲,求A ,B 两人至少1人被选中的概率.29.某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各随机选购一种型号的电脑,有关报价信息如图.(1)写出所有选购方案;(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(直接写出结果即可)30.某数学兴趣小组有男生3名,记为1a ,2a ,3a ;有女生2名,记为1b ,2b .现从中任选2名学生去参加学校数学竞赛. (1)写出样本空间 所包含的样本点; (2)求参赛学生中恰好有1名男生的概率; (3)求参赛学生中至少有1名男生的概率.31.在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了15个,乙同学猜对了8个.假设猜对每道灯谜都是等可能的,设事件A 为“任选一灯谜,甲猜对”,事件B 为“任选一灯谜,乙猜对”.(1)任选一道灯谜,记事件C 为“恰有一个人猜对”,求事件C 发生的概率;(2)任选一道灯谜,记事件D 为“甲、乙至少有一个人猜对”,求事件D 发生的概率. 32.抛掷两颗骰子,求:(1)向上点数之和是4的倍数的概率; (2)向上点数之和大于5小于10的概率.33.为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如表(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级.(2)用简单随机抽样方法从这6条道路中抽取2条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过0.5的概率.34.从长度为1,3,5,7,9的5条线段中任取3条,求这三条线段能构成一个三角形的概率.35.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.参考答案:1.B 【解析】 【分析】甲不输分为甲胜乙和甲乙下成平局两种情况,其中甲胜乙和甲乙下成平局是互斥事件,根据互斥事件的概率加法公式进行求解即可. 【详解】甲不输棋的设为事件A ,甲胜乙设为事件B ,甲乙下成平局设为事件C ,则事件A 是事件B 与事件C 的和,显然B 、C 互斥,所以()()()P A P B P C =+,而()0.8P A =,()0.5P C =,所以()()()0.3P B P A P C =-=,所以甲胜的概率是0.3故选:B 2.B 【解析】根据事件A 和事件B ,计算A B ,A B ,根据结果即可得到符合要求的答案. 【详解】由题意可得:{}1,2A =,{}3,4B =,{}1,2,3,4A B ∴=,{}2A B ⋂=.故选B. 【点睛】本题主要考查的是古典概型的基本事件,考查交事件和并事件,需要借助于集合的运算,集合与集合的关系来解决,是基础题. 3.D 【解析】 【分析】本题首先可以根据题意得出考生选择的两个考试科目的所有可能情况,然后令这些选择构成的集合为Q ,A =“思想政治、化学”,B =“地理、生物”,最后根据A B Q 且A 和B不能同时发生即可得出结果. 【详解】由题意得,考生选择的两个考试科目可能为“思想政治、化学”、“思想政治、历史”、“思想政治、地理”、“思想政治、生物”、“历史、地理”、“历史、化学”、“历史、生物”、“地理、化学”、“地理、生物”、“化学、生物”,设这些选择构成的集合为Q,令A=“思想政治、化学”,B=“地理、生物”,则A B Q,且A和B不能同时发生,故该考生“选择思想政治、化学”和“选择生物、地理”是互斥事件但不是对立事件,故选:D.【点睛】本题考查互斥事件以及对立事件的相关性质,主要考查互斥事件以及对立事件的判定,考查推理能力,体现了基础性,是简单题.4.D【解析】【分析】根据题意列出所有情况即可得出.【详解】解析:由题可得“所得点数之和小于5”包含{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}共6个样本点.故选:D.5.A【解析】【分析】利用互斥事件的概率公式,计算结果.【详解】支付方式中包含3种方法:只用现金支付,不用现金支付,既用现金,也用非现金支付,这三种支付方法,并且是互斥事件,p=--=.所以既用现金,也用非现金支付的概率10.20.450.35故选:A6.B【解析】【分析】根据统计量,对各项分析判断即可得解.【详解】对于A ,因为每次抛掷硬币都是随机事件,所以不一定有500次“正面朝上”,故A 错误; 对于B ,因为方差越小越稳定,故B 正确;对于C ,为了解我国中学生的视力情况,应采取抽样调查的方式,故C 错误; 对于D ,数据1、2、5、5、5、3、3按从小到大排列后为1、2、3、3、5、5、5, 则其中位数为3,故D 错误, 故选:B. 7.C 【解析】 【分析】由题意得不超过15的素数有6个,满足题意的孪生素数对有3对,利用古典概型公式可得结果. 【详解】不超过15的素数有2,3,5,7,11,13,共6个,则从不超过15的素数中任取两个素数共有2615C =种根据素数对(),2p p +称为孪生素数,则由不超过15的素数组成的孪生素数对为(3,5),(5,7),(11,13), 共有3组, 能够组成孪生素数的概率为31155P == 故选:C 【点睛】本题考查古典概型概率公式,考查组合知识的应用,考查分析问题解决问题的能力,属于基础题. 8.C 【解析】根据题意可得概率为710的事件是“2个小球全是红球”的对立事件即可得出. 【详解】 因为7311010=-,所以概率为710的事件是“2个小球全是红球”的对立事件,应为:“一个红球一个白球”与“两个都是白球”的和事件,即为“至多有一个红球”.9.A 【解析】当三次投篮恰有两次命中时,就是三个数字xyz 中有两个数字在集合{}1,2,3,4,再逐个考察个数据,最后利用古典概型的概率公式计算可得. 【详解】解:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.共5组随机数,∴所求概率为510.25204==. 故选:A 【点睛】本题主要考查了随机事件概率的含义及其运算,以及用数值表示随机事件的意义,属于基础题. 10.B 【解析】 【分析】根据事件关系,靶为被击中即甲乙均未击中;靶被击中即至少一人击中,分为恰有一人击中或两人都击中,依次判定即可. 【详解】由题可得:①E AB =,正确;①事件F =“靶被击中”,AB 表示甲乙同时击中,F AB AB AB =++,所以①错误;①F A B =+,正确,①A B +表示靶被击中,所以①错误;①G AB AB =+,正确;①,E F 互为对立事件,()()1P F P E =-,正确;①()()()()P F P A P B P AB =+-,所以①不正确. 正确的是①①①①. 故选:B 【点睛】此题考查事件关系和概率关系的辨析,需要熟练掌握事件的关系及其运算,弄清事件特征及其概率特征准确辨析. 11.ABD【分析】用列表法列举基本事件,分别求概率,即可判断. 【详解】记“车况好、中、差”分别为A ,B ,C ,方案一包含的基本事件数为1n ,方案二包含的基本事件数为2n ,列表如下由表中所列事件数可知,13162p ==,22163p ==,所以选项C 正确.故选:ABD. 12.CD 【解析】 【分析】根据题意,结合概率的计算,逐项分析即可得解. 【详解】对A ,目标未被命中,则两次都不中,概率为(1)(1)1p q p q pq --=--+,故A 错误; 对B ,目标恰好被命中一次,则甲中乙不中,或乙中甲不中, 概率为(1)(1)2p q p q p q pq -+-=+-,故B 错误;对C ,目标恰好被命中两次,则两次都中,概率为pq ,故C 正确; 对D ,目标被命中,从反面考虑可得概率为1(1)(1)p q ---,故D 正确;13.CD 【解析】 【分析】根据题意25件产品中只有2件次品,所以不可能取出3件都是次品,且至少有1件正品,即可得解. 【详解】25件产品中只有2件次品,所以不可能取出3件都是次品, 则“3件都是次品”不是随机事件,是不可能事件,又25件产品中只有2件次品,从中任取3件产品,则“至少有1件正品”为必然事件, 而A ,B 是随机事件, 故选:CD 14.CD 【解析】 【分析】根据概率与频率的关系判断①正确,根据基本事件的特点判断①正确,根据必然事件,不可能事件,随机事件的概念判断①错误,根据小概率事件的概念判断①错误. 【详解】①随机事件A 发生的概率是频率的稳定值,频率是概率的近似值,①A 中说法正确; 基本事件的特点是任意两个基本事件是互斥的,①在同一次试验中,不同的基本事件不可能同时发生,①B 中说法正确;必然事件发生的概率为1,不可能事件发生的概率为0,随机事件发生的概率大于0且小于1.①任意事件A 发生的概率P (A )满足()01P A ≤≤.①C 中说法错误;若事件A 发生的概率趋近于0,则事件A 是小概率事件,但不是不可能事件,①D 中说法错误. 故选CD 【点睛】本题主要考查了概率的概念和有关性质,属于概念辨析题,对一些易混概念必须区分清. 15.CD【分析】根据独立事件和对立事件的概率公式计算概率后判断. 【详解】记事件A 为“从甲机床制造的产品中抽到一件正品”,事件B 为“从乙机床制造的产品中抽到一件正品”,事件C 为“抽取的两件产品中至多有一件正品”,事件D 为“抽取的两件产品中恰有一件正品”,事件E 为“抽取的两件产品中至少有一件正品”.由题意知A ,B 是相互独立事件,则()()()0.10.20.02P AB P A P B ==⨯=,故A 错误; ()()()()P C P AB P AB P AB =++()()()()()()0.90.20.10.80.10.20.28P A P B P A P B P A P B =++=⨯+⨯+⨯=,故B 错误;()()()()()()()0.90.20.10.80.26P D P AB P AB P A P B P A P B =+=+=⨯+⨯=,故C 正确; ()()110.020.98P E P AB =-=-=,故D 正确.故选:CD . 16.12【解析】 【分析】根据基本事件总数,与甲被选中包含的基本事件求解概率即可. 【详解】解:某医疗团队从甲,乙,丙,丁4名医生志愿者中,随机选取2名医生赴湖北支援, 基本事件有(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)共6个. 甲被选中包含的基本事件有(甲,乙),(甲,丙),(甲,丁)共3个, ①甲被选中的概率为p 3162==. 故答案为:12. 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题. 17.19【解析】求出以连续掷两枚骰子得到的点数m ,n 作为点M 的横坐标、纵坐标样本点的个数,列出在圆229x y +=内的样本点,即可求解. 【详解】分别以连续掷两枚骰子得到的点数m ,n 作为点M 的横坐标、纵坐标,样本点总数6636n =⨯=.点M 落在圆229x y +=内包含的样本点有()1,1,()1,2,()2,1,()2,2,共4个,故点M 落在圆229x y +=内的概率41369P ==. 故答案为:19.【点睛】本题考查古典概型的概率,常见类型事件样本点个数要多加归纳总结,属于基础题. 18.316【解析】 【分析】 【详解】试题分析:总的数对有4416⨯=,满足条件的数对(1,4),(4,1),(2,2)共有3个, 故概率为316P =考点:等可能事件的概率.点评:本题考查运用概率知识解决实际问题的能力,注意满足独立重复试验的条件,解题过程中判断概率的类型是难点也是重点,这种题目高考必考,应注意解题的格式 19.4 【解析】 【分析】设袋中原有x 个绿球,利用最终摸到红球的概率构建关系式,解得x 即可. 【详解】设此袋中原有绿球x 个,共有6+x 个,再往此袋中放入5个白球后,共11+x 个,其中红球6个,所以摇匀后摸出一球,摸到红球的概率为62 115x=+解得4x=,所以原有绿球4个,故答案为:4.【点睛】本题考查了古典概型的概率计算,属于基础题.20.0.3【解析】甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,利用独立事件的概率乘法公式和概率的加法公式能求出甲队以2:1获胜的概率.【详解】甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,则甲队以2:1获胜的概率是:0.60.50.60.40.50.60.3P=⨯⨯+⨯⨯=.故答案为:0.3.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.21.9 10【解析】【分析】首先设3名男生为A,B,C,2名女生为a,b,再用列举法列出全部基本事件,找到至少有1名男生的基本事件个数,即可得到答案.【详解】设3名男生为A,B,C,2名女生为a,b,从5名学生中选2名志愿者,共有:AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个基本事件.至少有1名男生共有9个基本事件,概率为9 10.故答案为:9 10【点睛】本题主要考查古典概型,列举法列出全部基本事件为解题的关键,属于简单题.22.1 3【解析】【分析】这是一个古典概型,利用列举法得到分配的基本事件总数,再找出甲、乙两人被分到同一岗位的基本事件数,代入公式求解.【详解】所有可能的分配方式如表:则样本空间共有6个样本点,令事件M为“甲、乙两人被分到同一岗位”,则事件M包含2个样本点,所以()2163p M==,故答案为:1 323.0.2【解析】【分析】设这个班有100人,根据题意可分析数学不及格有15人,语文不及格有5人,都不及格的有3人,因此可知一学生数学不及格,则他语文也不及格的为15人中有3人,计算概率即可.【详解】由题意设这个班有100人,则数学不及格有15人,语文不及格有5人,都不及格的有3人,则数学不及格的人里头有3人语文不及格,①已知一学生数学不及格,则他语文也不及格的概率为:30.215p==.故答案为:0.2.24.310##0.3【解析】【分析】列出从5人中随机抽取3人的所有的情况,由古典概型概率计算公式可得答案.【详解】从5人中随机抽取3人,所有的情况为(甲、乙、丙),(甲、乙、丁),(甲、乙、戊),(甲、丙、丁),(甲、丙、戊),(甲、丁、戊),(乙、丙、丁),(乙、丙、戊),(乙、丁、戊),(丙、丁、戊),共10种,其中满足甲、乙同时被抽到的情况有(甲、乙、丙),(甲、乙、丁),(甲、乙、戊),共3种,故答案为:3 10.25.①①.【解析】【分析】根据方差定义、互斥与对立概念、平均数计算方法以及线面位置关系确定命题真假.【详解】因为样本方差反映的是所有样本数据与样本平均值的偏离程度,所以①对因为基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B 不为互斥事件,所以①错;因为某校高三(1)班和高三(2)班的人数分别是,m n,若一模考试数学平均分分别是,a b,则这两个班的数学平均分为ma nbm n++,所以①错;因为如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行(同侧时)或相交(异侧时),所以①对. 因此真命题的序号是①①. 故答案为:①①.26.(1)25(2)25(3)110【解析】首先写出整个样本空间中的所有可能的结果,然后再分别列举出事件,,A B AB 所含的结果,再由概率公式计算概率. 【详解】解:将两个红球编号为1,2,三个黄球编号为3,4,5.第一次摸球时有5种等可能的结果,对应第一次摸球的每个可能结果,第二次摸球时都有4种等可能的结果,将两次摸球的结果配对,组成20种等可能的结果,用表表示.(1)第一次摸到红球的可能结果有8种(表中第1,2行),即()()()()()()()(){}1,2,1,3,1,4,1,5,2,1,2,3,2,4,2,5A =,所以()82205P A == (2)第二次摸到红球的可能结果也有8种(表中第1、2列),即()()()()()()()(){}2,1,3,1,4,1,5,1,1,2,3,2,4,2,5,2B =,所以()82205P B == (3)事件AB 包含2个可能结果,即()(){}1,2,2,1AB =,所以()212010P AB == 【点睛】本题考古典概型,属于基础题.解题关键是列举出样本空间中所有基本事件.27.(1)512 (2)512【解析】 【分析】(1)由图查出11月1日至11月12日中空气重度污染的天数,直接利用古典概型概率计算公式得到答案;(2)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案. 【详解】解:(1)某人随机选择11月1日至11月12日中的某一天到达该市,其到达日期的所有可能结果有1日,2日,3日,…,12日,共12种,其中此人到达当日空气重度污染的有1日,2日,3日,7日,12日,共5种,①此人到达当日空气重度污染的概率为512. (2)此人停留3天的所有可能结果有123(,,),234(,,),345(,,),456(,,),567(,,),678(,,),789(,,),8910(,,),91011(,,),101112(,,),111213(,,),121314(,,),共12种,其中恰有1天重度污染的有345(,,),567(,,),678(,,),789(,,),101112(,,)共5种, ①此人停留期间空气重度污染恰有1天的概率为512. 【点睛】本题考查了古典概型及其概率计算公式,训练了学生的读图能力,是基础题. 28.(1)56 (2)1328【解析】 【分析】(1)利用平均数公式即可求得结果;(2)列出所有基本事件,利用古典概型概率公式计算即可求得结果. (1)由频率分布直方图可求得各组的频率自左到右依次为:0.1,0.15,0.3,0.25,0.2, 所以得分的平均数100.1300.15500.3700.25900.256x =⨯+⨯+⨯+⨯+⨯=. (2)所抽取的40人中,得分在80分以上的有400.28⨯=人,。
2023-2024学年云南省高中数学人教B版 必修二统计与概率强化训练-7-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年云南省高中数学人教B 版 必修二统计与概率强化训练(7)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)5.0 5.2 5.4 5.61. 通过抽样调查得到某栋居民楼12户居民的月均用水量数量(单位:吨),如下表格:4.13.24.25.64.35.06.36.23.53.94.55.2则这12户居民的月均用水量的第75百分位数为( )A. B. C. D. 2. 学校举行秋季运动会,高一(1)班选出5名同学参加跳高、跳远、跳绳三个项目比赛,每个项目至少有一名同学参加,则甲不参加跳绳比赛的概率为( )A. B. C. D.甲得分的极差是11甲的单场平均得分比乙低甲有3场比赛的单场得分超过20乙得分的中位数是16.53. 甲、乙两名篮球运动员在8场比赛中的单场得分用茎叶图表示(如图一),茎叶图中甲的得分有部分数据丢失,但甲得分的折线图(如图二)完好,则下列结论正确的是( )A. B. C. D. 4. 设函数,若 是从 三个数中任取一个, 是从 五个数中任取一个,那么 恒成立的概率是( )A. B. C. D.5. “石头、剪刀、布”,又称“猜丁壳”,是一种流行多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在语音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小军和大明两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大明比赛至第四局小军胜出的概率是( )A. B. C. D.12346. 已知一个样本中的数据为1,2,3,4,5,则该样本的方差为( )A. B. C. D. 平均数众数中位数方差7. 有17名同学参加百米竞赛,预赛成绩各不相同,要取前8名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道17名同学成绩的( )A. B. C. D. 8. 甲乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b| ≤ 1,则称甲乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为A. B. C. D.9. 将一枚骰子抛掷3次,则最大点数与最小点数之差为3的概率是( )A. B. C. D.3060708010.为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ).根据所得数据画出了样本的频率分布直方图,那么在这100株树木中,底部周长小于110cm的株数是A. B. C. D. ,s 5 +2,s 2 5 +2,25s 2 ,25s 211. 如果数据x 1 , x 2 , …x n 的平均数为,方差为s 2 , 则5x 1+2,5x 2+2,…5x n +2的平均数和方差分别为( )A. B. C. D. 12. 为检测疫苗的有效程度,某权威部门对某种疫苗进行的三期临床效果比较明显的受试者,按照年龄进行分组,绘制了如图所示的样本频率分布直方图,其中年龄在内的有1400人,在内有800人,则频率分布直方图中的值为()0.0080.080.0060.06A. B. C. D.阅卷人二、填空13. 从四双不同的袜子中,任取五只,其中至少有两只袜子是一双,这个事件是 (填“必然”、“不可能”或“随机”)事件.14. 根据调查,某城市司机的酒后驾驶率为5%,交警部门使用的某型号酒精测试仪的误报率为1%,即饮酒的人有1%的概率被检测出酒精未超标,没饮酒的人有1%的概率被检测出酒精超标,则任意抽取该城市一名司机,其被检测出酒精超标的概率为 .15. 一个袋子中有形状和大小完全相同的3个白球与2个黑球,每次从中取出一个球,取到白球得2分,取到黑球得3分.甲从袋子中有放回地依次取出3个球,则甲三次都取到白球的概率为,甲总得分是7的概率为 .16. 某个品种的小麦麦穗长度(单位:cm)的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为 .17. 某中学共有500名教职工.其中男教师300名、女教师200名.为配合“双减政策”该校在新学年推行“”课后服务.为缓解教师压力,在2021年9月10日教师节大会上该校就是否实行“弹性上下班”进行了调查.另外,为鼓舞广大教职工的工作热情,该校评出了十位先进教师进行表彰﹑并从他们中间选出三名教师作为教师代表在教师节大会上发言.参考公式:,其中.参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.635(1) 调查结果显示:有的男教师和的女教师支持实行“弹性上下班”制,请完成下列列联表﹒并判断是否有的把握认为支持实行“弹性上下班”制与教师的性别相关?支持实行“弹性上下班”制不支持实行“弹性上下班”制合计男教师女教师合计(2) 已知十位先进教师足按“分层抽样”的模式评选的,用表示三位发言教师的女教师人数,求随机变量的分布列和数学期望.18. 某市为了了解人们对“中国梦”的伟大构想的认知程度,针对本市不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有人,按年龄分成5组,其中第一组:,第二组:,第三组:,第四组:,第五组:,得到如图所示的频率分布直方图,已知第一组有10人.(1) 根据频率分布直方图,估计这人的平均年龄和第80百分位数;(2) 现从以上各组中用分层随机抽样的方法抽取20人,担任本市的“中国梦”宣传使者.(i)若有甲(年龄38),乙(年龄40)两人已确定人选宣传使者,现计划从第四组和第五组被抽到的使者中,再随机抽取2名作为组长,求甲、乙两人至少有一人被选上的概率;(ii)若第四组宣传使者的年龄的平均数与方差分别为37和,第五组宣传使者的年龄的平均数与方差分别为43和1,据此估计这人中35~45岁所有人的年龄的方差.19. 有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.(1) 甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;(2) 摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
含解析高中数学《平面向量》专题训练30题(精)
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
高中数学 第九章 统计专题强化训练(含解析)新人教A版必修第二册-新人教A版高一必修第二册数学试题
专题强化训练(四) 统计一、选择题1.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量C[被抽查的个体是样本]2.已知总体容量为106,若用随机数法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105D[由随机数法抽取原则可知选D.]3.某农科所种植的甲、乙两种水稻,连续六年在面积相等的两块稻田中作对比试验,试验得出平均产量是x甲=x乙=415 kg,方差是s2甲=794,s2乙=958,那么这两种水稻中产量比较稳定的是()A.甲B.乙C.甲、乙一样稳定D.无法确定A[∵s2甲<s2乙,∴产量比较稳定的是甲,故选A.]4.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12]内的频数为()A.18 B.36C.54D.72B[易得样本数据在区间[10,12]内的频率为0.18,则样本数据在区间[10,12]内的频数为36.] 5.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:分组 [90,100) [100,110)[110,120)[120,130) [130,140)[140,150)频数1231031则这堆苹果中,质量不小于120克的苹果数约占苹果总数的( ) A .30% B .70% C .60%D .50%B [由数据分布表可知,质量不小于120克的苹果有10+3+1=14(个),占苹果总数的1420×100%=70%.]二、填空题6.下列一组数据的70%分位数是________. 78, 73, 76, 77, 68, 69, 76, 80, 82, 77.77.5[把数据按照从小到大的顺序排列可得 68,69,73,76,76,77,77,78,80,82,因为10×70%=7是整数,所以数据的70%分位数是77+782=77.5]7.某学习小组有男生56人,女生42人,一次测试后,用分层随机抽样的方法从该学习小组全体学生的测试成绩中抽取一个容量为28的样本,样本中男生的平均成绩为84分,女生样本的平均成绩为98分,则所抽取的这28人的平均成绩为________分.90[由题意可知样本中男生的人数为56×2856+42=16,女生的人数为42×2856+42=12,所以所抽取的这28人的平均成绩为1628×84+1228×98=90分.]8.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的X 围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.9[设样本容量为n ,则n ×(0.1+0.12)×1=11,所以n =50,故所求的城市数为50×0.18=9.]三、解答题9.某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:(1)求x 的值;(2)现用分层随机抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人? [解] (1)依题意有x1 000=0.15,解得x =150.(2)∵第一车间的工人数是173+177=350,第二车间的工人数是100+150=250, ∴第三车间的工人数是1 000-350-250=400. 设应从第三车间抽取m 名工人,则有m400=501 000,解得m =20,∴应在第三车间抽取20名工人. 10.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下表是该学生7次考试的成绩.(1)(2)他的数学成绩与物理成绩哪个更稳定?请给出你的证明. [解] (1)把数学成绩按照从小到大的顺序排列可得: 83,88,92,100,108,112,117,所以数学成绩的中位数是100. (2)x =100+-12-17+17-8+8+127=100,y =100+-6-9+8-4+4+1+67=100,∴s 2数学=17[(88-100)2+(83-100)2+(117-100)2+(92-100)2+(108-100)2+(100-100)2+(112-100)2]=142,s 2物理=17[(94-100)2+(91-100)2+(108-100)2+(96-100)2+(104-100)2+(101-100)2+(106-100)2]=2507,从而s 2数学>s 2物理,∴物理成绩更稳定.11.一组数据中的每一个数据都乘2,再减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A .40.6,1.1B .48.8,4.4C .81.2,44.4D .78.8,75.6A [设原来数据的平均数和方差分别为x 和s 2,则⎩⎪⎨⎪⎧ 4.4=22s 2,2x -80=1.2,得⎩⎪⎨⎪⎧s 2=1.1,x =40.6.]12.已知一组正数x 1,x 2,x 3的方差s 2=13(x 21+x 22+x 23-12),则数据x 1+1,x 2+1,x 3+1的平均数为( )A .2B .3C .4D .5B [由方差的计算公式可得s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]=1n [x 21+x 22+…+x 2n -2(x 1+x 2+…+x n )x -+n x -2] =1n (x 21+x 22+…+x 2n -2n x -2+n x -2) =1n(x 21+x 22+…+x 2n )-x -2, ∴由题意x 1,x 2,x 3的方差s 2=13(x 21+x 22+x 23-12),知x -2=4, 又x 1,x 2,x 3均为正数,故x -=2.所以数据x 1+1,x 2+1,x 3+1的平均数是2+1=3.]13.(一题两空)从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.0.0303[∵0.005×10+0.035×10+a×10+0.020×10+0.010×10=1,∴a=0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x,y,z人,则x100=0.030×10,解得x=30.同理,y=20,z=10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.] 14.统计局就某地居民的月收入(单位:元)情况调查了10 000人,并根据所得数据画出了样本频率分布直方图(如图),每个分组包括左端点,不包括右端点,如第一组表示月收入在[2 500,3 000)内.(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层随机抽样的方法抽出100人作进一步分析,则月收入在[4 000,4 500)内的应抽取多少人?(2)根据频率分布直方图估计样本数据的中位数;(3)根据频率分布直方图估计样本数据的平均数.[解](1)因为(0.000 2+0.000 4+0.000 3+0.000 1)×500=0.5,所以a=0.51 000=0.000 5.又0.000 5×500=0.25,所以月收入在[4 000,4 500)内的频率为0.25,所以100人中月收入在[4 000,4 500)内的人数为0.25×100=25.(2)因为0.000 2×500=0.1,0.000 4×500=0.2,0.000 5×500=0.25,0.1+0.2=0.3<0.5,0.1+0.2+0.25=0.55>0.5,所以中位数在区间[3 500,4 000)内,所以样本数据的中位数是3 500+0.5-(0.1+0.2)0.000 5=3 900(元).(3)样本平均数为(2 750×0.000 2+3 250×0.000 4+3 750×0.000 5+4 250×0.000 5+4 750×0.000 3+5 250×0.000 1)×500=3 900(元).15.某工厂有工人1 000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层随机抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A 类工人中和B 类工人中各抽查多少工人?(2)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如表1和表2.表1生产能力分组 [100,110)[110,120)[120,130)[130,140)[140,150]人数48x 53表2生产能力分组 [110,120)[120,130)[130,140) [140,150] 人数6y3618① 先确定x ,y ,再补全频率分布直方图(如图).就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)② 分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).A类工人生产能力的频率分布直方图B类工人生产能力的频率分布直方图[解](1)A类工人中和B类工人中分别抽查25名和75名.(2)①由4+8+x+5+3=25,得x=5.由6+y+36+18=75,得y=15.频率分布直方图如图:A类工人生产能力的频率分布直方图B类工人生产能力的频率分布直方图从图可以判断:B 类工人中个体间的差异程度更小.②x -A =425×105+825×115+525×125+525×135+325×145=123,x -B =675×115+1575×125+3675×135+1875×145=133.8, x -=25100×123+75100×133.8=131.1.A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.。
高中数学第七章复数考点专题训练(带答案)
高中数学第七章复数考点专题训练单选题1、若复数z =21+i ,其中i 为虚数单位,则z =( )A .1+iB .1−iC .−1+iD .−1−i答案:B分析:复数的除法运算,分子分母同时乘以分母的共轭复数,化简即可.z =21+i =2(1−i)(1+i)(1−i)=1−i 故选:B.2、设i 为虚数单位,a ∈R ,“复数z =a 22−i 20201−i 不是纯虚数“是“a ≠1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案:A分析:先化简z ,求出a ,再判断即可.z =a 22−i 20201−i =a 22−11−i =a 22−1+i (1−i )(1+i )=a 22−12−12i , z 不是纯虚数,则a 22−12≠0,所以a 2≠1,即a ≠±1,所以a ≠±1是a ≠1的充分而不必要条件.故选:A .小提示:本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.3、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,11z(a,b∈R),分别计算|z12|、|z1|2即可判断选项D,进而可得正确选项.对于选项A:取z1=2+i,z2=2−i,z12=(2+i)2=3+2i,z22=(2−i)2=3−2i,满足z12+z22=6>0,但z12与z22是两个复数,不能比较大小,故选项A不正确;对于选项B:取z1=2+i,z2=2−i,|z1−z2|=|2i|=2,而√(z1+z2)2−4z1⋅z2=√42−4(2+i)(2−i)=√16−20无意义,故选项B不正确;对于选项C:取,z2=i,则z12+z22=0,但是z1≠0,z2≠0,故选项C不正确;对于选项D:设z1=a+bi,(a,b∈R),则z12=(a+bi)2=a2−b2+2abi|z12|=√(a2−b2)2+4a2b2=√(a2+b2)2=a2+b2,z1=a−bi,|z1|=√a2+b2,所以|z1|2=a2+b2,所以|z12|=|z1|2,故选项D正确.故选:D.4、已知i为虚数单位,则i+i2+i3+⋅⋅⋅+i2021=()A.i B.−i C.1D.-1答案:A分析:根据虚数的运算性质,得到i4n+i4n+1+i4n+2+i4n+3=0,得到i+i2+i3+⋅⋅⋅+i2021=i2021,即可求解.根据虚数的性质知i4n+i4n+1+i4n+2+i4n+3=1+i−1−i=0,所以i+i2+i3+⋅⋅⋅+i2021=505×0+i2021=i.故选:A.5、已知复数z=1+i,z是z的共轭复数,若z·a=2+bi,其中a,b均为实数,则b的值为()A.-2B.-1C.1D.2答案:A分析:根据共轭复数的定义,结合复数的运算性质和复数相等的性质进行求解即可.因为z=1+i,所以z=1−i,因此z=2+bia =2a+bai=1−i,所以2a =1且ba=−1,则a=2,b=−2.11z故选:A6、在复平面内,复数z对应的点的坐标是(1,−2),则zi的共轭复数为()A.1−2i B.1+2i C.2+i D.2−i答案:D分析:依题意根据复数的几何意义得到z=1−2i,再根据复数代数形式的乘法运算及共轭复数的概念计算可得.解:由题知,z=1−2i,则zi=(1−2i)i=2+i,所以zi=2−i,故选:D.7、若i(1−z)=1,则z+z=()A.−2B.−1C.1D.2答案:D分析:利用复数的除法可求z,从而可求z+z.由题设有1−z=1i =ii2=−i,故z=1+i,故z+z=(1+i)+(1−i)=2,故选:D8、若z=1+i.则|iz+3z|=()A.4√5B.4√2C.2√5D.2√2答案:D分析:根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.因为z=1+i,所以iz+3z=i(1+i)+3(1−i)=2−2i,所以|iz+3z|=√4+4=2√2.故选:D.多选题9、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.10、欧拉公式e xi=cosx+isinx(其中i为虚数单位,x∈R)是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数之间的关系,在复变函数论里面占有非常重要的地位,被誉为“数学中的天桥”,依据欧拉公式,下列选项正确的是()A.复数e2i对应的点位于第三象限B.eπ2i为纯虚数C.复数xi√3+i 的模等于12D.eπ6i的共轭复数为12−√32i答案:BC分析:根据欧拉公式写出e2i=cos2+isin2、eπ2i=cosπ2+isinπ2、eπ6i=cosπ6+isinπ6,再判断复数所在象限、类型及求模长、共轭复数.由题知e2i=cos2+isin2,而cos2<0,sin2>0,则复数e2i对应的点位于第二象限,故A错误;eπ2i=cosπ2+isinπ2=i,则eπ2i为纯虚数,故B正确;xi √3+i =√3+i=√3−i)(√3+i)(√3−i)=√3cosx+sinx4+√3sinx−cosx4i,则xi√3+i的模为√(√3cosx+sinx4)2+(√3sinx−cosx4)2=√3cos2x+sin2x+3sin2x+cos2x16=12,故C正确;eπ6i=cosπ6+isinπ6=√32+12i,其共轭复数为√32−12i,故D错误.故选:BC11、设复数z1,z2满足z1+z2=0,则()A.z1=z2B.|z1|=|z2|C.若z1(2−i)=3+i,则z1z2=−2i D.若|z1−(1+√3i)|=1,则1≤|z2|≤3答案:BCD分析:由待定系数法先假设z1=a+bi,则z2=−a−bi,根据共轭复数的概念判断A选项,根据模长的公式判断B选项,根据复数的运算法则判断C选项,根据复数的几何意义判断D选项.设复数z1=a+bi,由z1+z2=0,所以z2=−a−bi,因此:z1=a−bi≠z2,故A选项错误;因为|z1|=√a2+b2,|z2|=√(−a)2+(−b)2=√a2+b2,所以B选项正确;因为z1(2−i)=3+i,所以z1=3+i2−i=1+i,则z2=−1−i所以z1z2=(1+i)(−1−i)=−2i,所以C选项正确;因为|z1−(1+√3i)|=1,根据复数的几何意义可知,复数z1=a+bi所表示的点(a,b)的轨迹是以(1,√3)为圆心,1为半径的圆,则由对称性可知,复数z2=−a−bi所表示的点(−a,−b)的轨迹是以(−1,−√3)为圆心,1为半径的圆,由|z2|的几何意义表示点(−a,−b)与(0,0)间的距离,由图可知:1≤|z2|≤3,故D选项正确;故选:BCD.小提示:本题主要考查了复数的几何意义以及复数的乘除运算,在求解过程中始终利用i2=−1对式子进行化简,而复数的几何意义有两个,一个是点对应,一个是向量对应,在解题中要清楚.12、对任意复数z=a+bi(a,b∈R),i为虚数单位,则下列结论中正确的是()A.z−z=2a B.|z|=|z|C.z+z=2a D.z+z=2bi答案:BC分析:写出共轭复数,然后计算判断各选项.由已知z=a−bi,因此z−z=2bi,z+z=2a,|z|=√a2+b2=|z|.故选:BC.13、欧拉公式e xi=cosx+isinx(其中i为虚数单位,x∈R),是由瑞士著名数学家欧拉创立的,公式将指数函数的定义域扩大到复数,建立了三角函数与指数的数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项能确的是()A.复数e2i对应的点位于第三象限B.eπi2为纯虚数C.eπi3的共轭复数为12−√32i;D.复数xi√3+i的模长等于12答案:BCD分析:对于A,e2i=cos2+isin2,根据2∈(π2,π),即可判断出;对于BCD,根据欧拉公式e xi=cosx+ isinx逐项计算,然后判断正误即可.解:对于A,由于e2i=cos2+isin2,∵2∈(π2,π),∴cos2∈(−1,0),sin2∈(0,1),∴e2i表示的复数在复平面中位于第二象限,故A错误;对于B,e π2i=cosπ2+isinπ2=i,可得eπ2i为纯虚数,故B正确;对于C,e π3i=cosπ3+isinπ3=12+√32i,∴eπ3i的共轭复数为12−√32i,故C正确.对于D,xi√3+i =√3+i=√3−i)(√3+i)(√3−i)=√3cosx+sinx4+√3sinx−cosx4i,可得其模的长为√(√3cosx+sinx4)2+(√3sinx−cosx4)2=√3cos2x+2√3sinxcosx+sin2x16+3sin2x−2√3sinxcosx+cos2x16=12,故D正确;故选:BCD.填空题14、已知复数z=√3+i(1−√3i)2,则z·z=________.答案:14分析:化简z,计算z·z即可.z=√3+i(1−√3i)2=√3i2(1−√3i)2=√3i)(1−√3i)2=1−√3i=√3i)(1−√3i)(1+√3i)=−√34+i4z=−√34−i4z⋅z=316+116=14所以答案是:1415、若非零复数x,y满足x2+xy+y2=0,则(xx+y )2020+(yx+y)2020的值是___________.答案:−1分析:由题设有xy =−1±√3i2、xy+1=−(xy)2易得(xy)3n=1,同理(yx)3n=1,n∈N∗,而xx+y=−yx,yx+y=−xy,由此可知(xx+y )2020+(yx+y)2020=yx+xy,即可求值.由题设有:(xy )2+xy+1=0,解得xy=−1±√3i2,且xy+1=−(xy)2,∴(xy )3=1,即(xy)3n=1,同理有(yx)3n=1,n∈N∗,x x+y =x(x+y)(x+y)2=x2+xyx2+2xy+y2,yx+y=y(x+y)(x+y)2=y2+xyx2+2xy+y2,又x2+xy+y2=0,∴xx+y =−y2xy=−yx,yx+y=−x2xy=−xy,∴(xx+y )2020+(yx+y)2020=(yx)2020+(xy)2020=(yx)3×673+1+(xy)3×673+1=yx+xy=−1,所以答案是:−1.16、若复数z1=sinπ3−icosπ6,z2=2+3i,则|z1|________|z2|(填“>”“<”或“=”).答案:<分析:由复数模的计算公式,分别计算出|z1|和|z2|,即可比较大小.|z1|=√sin2π3+cos2π6=√34+34=√62,|z2|=√22+32=√13.因为√62=√32<√13,所以|z1|<|z2|.所以答案是:<解答题17、已知复数z1=4-m2+(m-2)i,z2=λ+2sin θ+(cos θ-2)i(其中i是虚数单位,m,λ,θ∈R).(1)若z1为纯虚数,求实数m的值;(2)若z1=z2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m<0,解得m>1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m−4i|,解得m=3.综上可得:m=−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。
人教版高中数学必修第一册-二次函数在给定区间上最值问题-专题强化训练【含答案】
二次函数在给定区间上最值问题二次函数的单调性与对称轴和开口方向有关,往往来讲,二次函数的开口方向一般是给定的,在此情况下,二次函数的单调性就和对称轴与闭区间的位置关系有关。
因而在求最值时,往往需要讨论对称轴和区间的位置关系,这类题目在后续学习中经常遇见。
例题精讲:一.选择题(共7小题)1.若函数2()5f x x mx =++在区间[1,5]上单调递增,则m 的取值范围为()A .[2-,)+∞B .(-∞,2]-C .[10-,)+∞D .(-∞,10]-2.已知函数2247y x ax =++在区间[3-,1]-上是单调函数,则实数a 的取值范围是()A .(-∞,1]B .[6,)+∞C .(-∞,2][6 ,)+∞D .(-∞,1][3 ,)+∞3.若二次函数2()21f x ax ax =++在区间[2-,3]上的最大值为6,则(a =)A .13B .13-或5C .13或5-D .13-4.若函数2()43f x x x =--在区间[n ,]m 上的值域为[7-,2],则m n -的取值范围是()A .[1,5]B .[2,7]C .[3,6]D .[4,7]5.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为()A .0B .12C .1D .26.已知函数2()2(2)1f x ax a x =--+,[1x ∈-,3]是单调函数,则a 的取值范围是()A .[0,1]B .[1-,0]C .[1-,1]D .[1-,2]7.函数2()2f x x x =--在[a ,]b 上的值域是[3-,1],若1b =,则a b +的取值集合为()A .[3-,1]-B .[2-,0]C .[4-,0]D .[2-,1]二.解答题(共5小题)8.已知函数2()f x x ax=-(1)若在区间[1,)+∞上是增函数,求实数a 的取值范围;(2)求函数()f x 在区间[1,2]上的最小值.9.已知函数2()41f x x mx =-+,m R ∈.(1)若关于x 的不等式()0f x <解集为空集,求m 的取值范围;(2)若函数()f x 在区间[2-,)+∞上是单调增函数,求f (1)的最小值.10.山东新旧动能转换综合试验区是党的十九大后获批的首个区域性国家发展战略,也是中国第一个以新旧动能转换为主题的区域发展战略.济南新旧动能转换先行区肩负着山东新旧动能转换先行先试的重任,某制造企业落户济南先行区,该企业对市场进行了调查分析,每年固定成本1000万元,每生产产品x (百件),需另投入成本()R x 万元,且210300,060()10006103000,60x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩,由市场调研知,每件产品售价6万元,且全年内生产的产品当年能全部销售完.(1)求年利润()W x (万元)关于年产量x (百件)的函数解析式.(利润=销售额-成本)(2)年产量x 为多少(百件)时,企业所获利润最大?最大利润是多少?11.已知函数2()3f x x ax =+-.(1)若不等式()4f x >-的解集为R ,求实数a 的取值范围;(2)若不等式()26f x ax - 对任意[1x ∈,3]恒成立,求实数a 的取值范围.12.已知函数2()1f x x ax =-+.(1)求()f x 在[0,1]上的最大值;(2)当1a =时,求()f x 在闭区间[t ,1]()t t R +∈上的最小值.参考答案一.选择题(共7小题)1.【解答】解:2()5f x x mx =++ 在区间[1,5]上单调递增,12m∴-,故2m - .故选:A .2.【解答】解:函数的对称轴是x a =-,若函数在区间[3-,1]-上是单调函数,则3a -- 或1a -- ,解得:3a 或1a ,故选:D .3.【解答】解:显然0a ≠,有2()(1)1f x a x a =+-+,当0a >时,()f x 在[2-,3]上的最大值为f (3)151a =+,由1516a +=,解得13a =,符合题意;当0a <时,()f x 在[3-,2]上的最大值为(1)1f a -=-,由16a -=,解得5a =-,所以,a 的值为13或5-.故选:C .4.【解答】解:2()43f x x x =-- ,f ∴(2)7=-,(1)f f -=(5)2=,()f x 在区间[n ,]m 上的值域为[7-,2],∴当1n =-,2m =或2n =,5m =时m n -的最小值3,当1n =-,5m =时,m n -取得最大值6,故m n -的范围[3,6]故选:C .5.【解答】解:因为2()2a f x x ax =-+的开口向上,对称轴2ax =,①122a 即1a 时,此时函数取得最大值g (a )f =(1)12a=-,②当122a >即1a >时,此时函数取得最大值g (a )(0)2af ==,故g (a )1,12,12aa a a ⎧-⎪⎪=⎨⎪>⎪⎩ ,故当1a =时,g (a )取得最小值12.故选:B .6.【解答】解:当0a =时,函数()41f x x =+,为增函数,符合题意;当0a ≠时,函数2()2(2)1f x ax a x =--+的对称轴为2a x a-=,且函数在区间[1-,3]是单调函数,∴21a a -- ,或23a a- ,解得01a < 或10a -< .综上,实数a 的取值范围是[1-,1].故选:C .7.【解答】解:22()2(1)1f x x x x =--=-++,1x ∴=-时,()f x 取到最大值1,方程223x x --=-的根是3x =-或1.若1b =,则31a -- ,a b ∴+的取值集合围是:[2-,0].故选:B .二.解答题(共5小题)8.【解答】解:(1)函数()f x 的对称轴是2a x =,若在区间[1,)+∞上是增函数,则12a,解得:2a ;(2)①12a即2a 时,()f x 在[1,2]递增,故()min f x f =(1)1a =-,②122a <<即24a <<时,()f x 在[1,)2a 递减,在(2a,2]递增,故2()()24mina a f x f ==-,③22a即4a 时,()f x 在[1,2]递减,故()min f x f =(2)42a =-.9.【解答】解:(1)()0f x < 解集为空集,∴判别式△2160m m =- ,解得016m .(2)2()41f x x mx =-+,图象开口向上,对称轴8mx =,因为函数()f x 在区间[2-,)+∞上是单调增函数,所以28m- ,解得16m - ,f (1)4m =-是关于m 的减函数,所以当16m =-时,f (1)取最小值为20.10.【解答】解:(1)当060x <<时,22()600(10300)1000103001000W x x x x x x =-+-=-+-;当60x 时,10001000()600(6103000)1000102000W x x x x x x=-+--=--.2103001000,060()1000102000,60x x x W x x x x ⎧-+-<<⎪∴=⎨--+⎪⎩;(2)当060x <<时,22()10300100010(15)1250W x x x x =-+-=--+,当15x =时,()1250max W x =万元;当60x 时,()W x 单调递减,4150()(60)3max W x W ==.∴年产量x 为60(百件)时,企业所获利润最大,最大利润是41503万元.11.【解答】解:(1)由不等式()4f x >-的解集为R ,234x ax ∴+->-解集为R ,即210x ax ++>解集为R ,可得△0<,即240a -<,解得22a -<<,故a 的取值范围是(2,2)-.(2)由不等式()26f x ax - 对任意[1x ∈,3]恒成立,()26f x ax ∴- ,即2326x ax ax +-- 对任意[1x ∈,3]恒成立,即230x ax -+ 对任意[1x ∈,3]恒成立,3()min a x x ∴+ ,[1x ∈,3];3x x += ;当且仅当3x x=,即x =a ∴故a 的取值范围是(-∞,.12.【解答】解:(1)2()1f x x ax =-+的开口向上,对称轴2a x =,所以在区间[0,1]的哪个端点离对称轴远,则在哪个端点处取得最大值,当122a 即1a 时,()f x 取得最大值f (1)2a =-,当122a >即1a >时,()f x 的最大值(0)1f =,(2)当1a =时,2()1f x x x =-+的对称轴12x =,当12t 时,()f x 在[t ,1]t +上单调递增,所以2()()1min f x f t t t ==-+,当112t +即12t - 时,()f x 在[t ,1]t +上单调递减,2()(1)1min f x f t t t =+=++,当112t t <<+即1122t -<<时,()f x 在1(,)2t 上单调递减,在1(2,1)t +上单调递增,故13()()24min f x f ==,令()()min g t f x =,则2211,2311(),42211,2t t t g t t t t t ⎧-+⎪⎪⎪=-<<⎨⎪⎪++-⎪⎩.。
高中数学竞赛(强基计划)历年真题练习 专题7 解析几何 (学生版+解析版)
【高中数学竞赛真题·强基计划真题考前适应性训练】专题07解析几何真题专项训练(全国竞赛+强基计划专用〉一、单选题1. (2020·北京高三强基计划〉从圆~切J羔间的线段称为切J羔弦,贝0椭困C内不与任何切点弦相交的区域丽积为(〉-zA B.!!.3c.主4 D.前三个答案都2不对2. (2022·北京·高三校考强基计划〉内接于椭圆王→L=1的菱形周长的最大值和最小4 9值之利是(〉A. 4..{JjB.14.J]3c孚♂D上述三个选项都不对3. (2020湖北武汉·高三统考强基计划〉己知直线11:y=-..!.x,乌:y=..!.x ,动点户在椭2圆ι4= l(a > b > 0)上,作PM Ill,交12于点M,作PN I I以忏点N若。
--IPMl2 +IPN l2为定值,则(〉A.ab=2B.ab=3C.a=2bD.a=3b4. (2020北京·高三强基计划〉设直线y=3x+m与椭圆三+丘=I交于A,B两点,0为25 16坐标原点,贝I],.OAB面积的最大值为(〉A.88.JO c.12 D.前三个答案都不对s. (2022·贵州·高二统考竞赛〉如圈,c,,c2是离心率都为e的椭圆,点A,B是分别是C2的右顶点和上顶点,过A,B两点分别作c,�]切线,,' 12 .若直线l,,儿的斜率分别芳、J k, , k2,则lk儿|的值为(〉A .e 2 B.e 2 -1C.I-e2D.-i e 6. (2020湖北武汉·高三统考强基计划〉过椭圆!....+L =I 的中心作两条互相垂直的弦4 9A C 和B D ,顺次连接A ,B,C,D 得-四边形,则该四边形的丽积可能为(A. 10B. 12c. 14D. 167.(2019贵州高三校联考竞赛〉设椭圆C:牛牛!(a>b>O)的左、右焦点分别为。
2023-2024学年河南省驻马店高中数学人教B版 必修二统计与概率强化训练-7-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年河南省驻马店高中数学人教B 版 必修二统计与概率强化训练(7)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 某校为落实“双减”政策.在课后服务时间开展了丰富多彩的体育兴趣小组活动,现有甲、乙、丙、丁四名同学拟参加篮球、足球、乒乓球、羽毛球四项活动,由于受个人精力和时间限制,每人只能等可能的选择参加其中一项活动,则恰有两人参加同一项活动的概率为( )A. B. C. D.甲所得分数的极差为22乙所得分数的中位数为18两人所得分数的众数相等甲所得分数的平均数低于乙所得分数的平均数2. 如图是某赛季甲、乙两名篮球运动员9场比赛所得分数的茎叶图,则下列说法错误的是( )A. B. C. D. 频率分布直方图折线统计图扇形统计图统计表3. 某商业集团董事长想了解集团旗下五个超市的销售情况,通知五个超市经理把最近一周每的销售金额统计上报,要求既要反映一周内每天销售金额的多少,又能反映一周内每天销售金额的变化情况和趋势,则最好选用的统计图表为( )A. B. C. D. 4. 习近平总书记在安徽考察时指出,长江生态环境保护修复,一个是治污,一个是治岸,一个是治渔.为了保护长江渔业资源和生物多样性,我市从2020年1月1号起全面实施长江禁渔10年的规定.某科研单位需要从长江中临灭绝的白豚、长江江豚、达氏鲟、白鲟、中华鲟这5种鱼中随机选出3种进行调查研究,则白鲟和中华鲟同时被选中的概率是( )A. B. C. D.5. 某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次抽到的可能性为a ,第二次被抽到的可能性为b ,则( )a =,b =a =,b =a =,b =a =,b =A. B. C. D. ,,,,6. 4月23日是世界读书日, 中国新闻出版研究院每年发布全国国民阅读调查报告. 下面是年我国成年国民阅读情况折线图,记平均图书阅读率和平均数字化阅读方式接触率分别是和 , 相应的标准差分别是和 , 则下列说法正确的是()A. B. C. D. 400,40200,10400,80200,207. 已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A. B. C. D. 120,180,200100,120,280120,160,220100,180,2208. 某婴幼儿奶粉事件发生后,质检总局紧急开展了关于液态奶三聚氰胺的专项检查.假设甲,乙,丙三家公司生产的某批次液态奶分别是2400箱,3600箱和4000箱,现从中抽取500箱进行检验,则这三家公司生产的液态奶依次应被抽取的箱数是( )A. B. C. D. 102030409. 现用分层抽样的方法从甲、乙、丙、丁4所医院抽取100名医护人员赴抗疫一线工作,已知从甲、乙、丙、丁4所医院抽取的医护人员的比依次为,则丙医院需抽取的医护人员的数量为( )A. B. C. D. 66.56767.56810. 下图是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,则由直方图得到的25%分位数为()A. B. C. D. 11. 袋子中装有大小完全相同的6个红球和4个黑球,从中任取2个球,则所取出的两个球中恰有1个红球的概率为( )A. B. C. D.12. 有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为( )A. B. C. D.13. 树人中学举办以“喜迎二十大、永远跟党走、奋进新征程”为主题的演讲比赛,其中9人比赛的成绩为:85,86,88,88,89,90,92,94,98(单位:分),则这9人成绩的第80百分位数是 .14. 若的方差为3,则的方差为 .15. 已知一组数据按从小到大的顺序排列为:23,28,30,x,34,39,且其中位数是31,则x= .16. 为了普及安全教育,某校组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两班代表队狭路相逢,假设甲队每人回答问题正确的概率均为,乙队每人回答问题正确的概率分别为,,,且两队各人回答问题正确与否互不影响,则乙队总得分为3分的概率是,甲队总得分为2分且乙队总得分为3分的概率是 .17. 某跳绳训练队需对队员进行限时的跳绳达标测试.已知队员的测试分数y与跳绳个数x满足如下关系.测试规则:每位队员最多进行两次测试,每次限时1分钟,若第一次测完,测试成绩达到60分及以上,则以此次测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行两次,根据以往的训练效果,教练记录了队员甲在一分钟内时测试的成绩,将数据按,,,分成4组,并整理得到如下频率分布直方图:(1) 计算a值,并根据直方图计算队员甲在1分钟内跳绳个数的平均值;(同一组中的数据用该组区间中点值作为代表)(2) 将跳绳个数落入各组的频率作为概率,并假设每次跳绳相互独立,X表示队员甲在达标测试中的分数,求X的分布列与期望.18. 某家庭记录了未使用节水龙头30天的日用水量数据(单位:)和使用了节水龙头30天的日用水量数据,得到频数分布表如下:(一)未使用节水龙头30天的日用水量频数分布表日用水量频数238125(二)使用了节水龙头30天的日用水量频数分布表日用水量频数251166(1) 估计该家庭使用了节水龙头后,日用水量小于的概率;(2) 估计该家庭使用节水龙头后,平均每天能节省多少水?(同一组中的数据以这组数据所在区间中点的值作代表)19. 2020年10月,中共中央办公厅、国务院办公厅印发了《关于全面加强和改进新时代学校体育工作的意见》,某地积极开展中小学健康促进行动,发挥以体育智、以体育心功能,决定在2021年体育中考中再增加一定的分数,规定:考生须参加立定跳远、掷实心球、一分钟跳绳三项测试,其中一分钟跳绳满分20分.学校为掌握九年级学生一分钟跳绳情况,随机抽取了100名学生测试,其成绩均在间,并得到如图所示频率分布直方图,计分规则如下表:一分钟跳绳个数得分1617181920(1) 补全频率分布直方图,并根据频率分布直方图估计样本中位数;(2) 若两人可组成一个小队,并且两人得分之和小于35分,则称该小队为“潜力队”,用频率估计概率,求从进行测试的100名学生中任意选取2人,恰好选到“潜力队”的概率.20. 某学校为了了解学校食堂的服务情况,随机调查了50名就餐的教师和学生,根据这50名师生对食堂服务质量的评分,绘制出了如图所示的频率分布直方图,其中样本数据分组为[40,50),[50,60),…,[90,100].(1) 求频率分布直方图中a的值,以及该组数据的中位数(结果保留一位数).(2) 学校规定:师生对食堂服务质量评分不得低于75分.否则将进行内部调整,用每组数据的中点值,试估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.21. 为迎接“五一”节的到来,某单位举行“庆五一,展风采”的活动.现有6人参加其中的一个节目,该节目由两个环节可供参加者选择,为增加趣味性,该单位用电脑制作了一个选择方案:按下电脑键盘“Enter”键则会出现模拟抛两枚质地均匀骰子的画面,若干秒后在屏幕上出现两个点数n和m,并在屏幕的下方计算出的值.现规定:每个人去按“Enter”键,当显示出来的小于时则参加环节,否则参加B环节.(1) 求这6人中恰有2人参加该节目A环节的概率;(2) 用分别表示这6个人中去参加该节目两个环节的人数,记,求随机变量的分布列与数学期望.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)21.(1)(2)。
高中数学培优点07 隐圆、蒙日圆与阿基米德三角形(3大考点+强化训练)(习题版)
培优点07隐圆、蒙日圆与阿基米德三角形(3大考点+强化训练)在近几年全国各地的解析几何试题中可以发现许多试题涉及到隐圆、蒙日圆与阿基米德三角形,这些问题聚焦了轨迹方程、定值、定点、弦长、面积等解析几何的核心问题,难度为中高档.知识导图考点分类讲解考点一隐圆(阿波罗尼斯圆)“阿波罗尼斯圆”的定义:平面内到两个定点A(-a,0),B(a,0)(a>0)的距离之比为正数λ(λ≠1)的点的轨迹是以C |2aλλ2-1|为半径的圆,即为阿波罗尼斯圆.规律方法对于动点的轨迹问题,一是利用曲线(圆、椭圆、双曲线、抛物线等)的定义识别动点的轨迹,二是利用直接法求出方程,通过方程识别轨迹.【例1】(多选)(2023·贵州铜仁·模拟预测)古希腊数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:“平面内到两个定点A,B 的距离之比为定值m(0m >且1m ≠)的点的轨迹是圆”.人们将这个圆以他的名字命名为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系xOy 中,()2,0A -,()4,0B ,点P 满足12PA PB=.设点P 的轨迹为C,则下列结论正确的是()A.轨迹C 的方程为()22416x y ++=B.轨迹C 与圆M:()()222836x y -+-=有两条公切线C.轨迹C 与圆O:222x y +=的公共弦所在直线方程为14x =-D.当A,B,P 三点不共线时,射线PO 是∠APB 的平分线【变式1】(2023·四川成都·模拟预测)已知平面上两定点A,B,则所有满足PA PBλ=(0λ>且1λ≠)的点P 的轨迹是一个圆心在直线AB 上,半径为21AB λλ⋅-的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆.已知动点P 在棱长为6的正方体1111ABCD A B C D -的一个侧面11ABB A 上运动,且满足2PA PB =,则点P 的轨迹长度为()A.8π3B.4π3【变式2】(2023·四川成都·模拟预测)已知平面上两定点,A B ,则所有满足(0PA PBλλ=>且1)λ≠的点P的轨迹是一个圆心在直线AB 上,半径为21AB λλ⋅-的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称作阿氏圆.已知棱长为6的正方体1111ABCD A B C D -表面上的动点P 满足2PA PB =,则点P 的轨迹长度为()A.8π32+B.4π3+C.8π3+D.4π3【变式3】(多选)在平面直角坐标系中,A(-1,0),B(2,0),动点C 满足|CA||CB|=12,直线l:mx-y+m+1=0,则()A.动点C 的轨迹方程为(x+2)2+y 2=4B.直线l 与动点C 的轨迹一定相交C.动点C 到直线l 距离的最大值为2+1D.若直线l 与动点C 的轨迹交于P,Q 两点,且|PQ|=22,则m=-1考点二蒙日圆在椭圆x 2a 2+y2b 2=1(a>b>0)上,任意两条相互垂直的切线的交点都在同一个圆上,它的圆心是椭圆的中心,半径等于椭圆长半轴与短半轴平方和的算术平方根,这个圆叫蒙日圆.设P 为蒙日圆上任一点,过点P 作椭圆的两条切线,交椭圆于点A,B,O 为原点.性质1PA⊥PB.性质2k OP ·k AB =-b2a2.性质3k OA ·k PA =-b 2a 2,k OB ·k PB =-b 2a 2(垂径定理的推广).性质4PO 平分椭圆的切点弦AB.性质5延长PA,PB 交蒙日圆O 于两点C,D,则CD∥AB.性质6S △AOB 的最大值为ab 2,S △AOB 的最小值为a 2b2a 2+b 2.性质7S △APB 的最大值为a 4a 2+b 2,S △APB 的最小值为b4a 2+b 2.规律方法蒙日圆在双曲线、抛物线中的推广双曲线x 2a 2-y 2b 2=1(a>b>0)的两条互相垂直的切线PA,PB 交点P 的轨迹是蒙日圆:x 2+y 2=a 2-b 2(只有当a>b时才有蒙日圆).抛物线y 2=2px(p>0)的两条互相垂直的切线PA,PB 交点P 的轨迹是该抛物线的准线:x=-p 2(可以看作半径无穷大的圆).【例2】(23-24高三上·安徽·期末)法国数学家蒙日发现椭圆两条相互垂直的切线的交点的轨迹是圆,这个圆被称为“蒙日圆”,它的圆心与椭圆中心重合,半径的平方等于椭圆长半轴和短半轴的平方和.如图所示为稀圆()2222:10x y E a b a b+=>>及其蒙日圆O ,点,,P C D 均为蒙日圆与坐标轴的交点,,PC PD 分别与E相切于点,A B ,若PAB 与PCD 的面积比为4:9,则E 的离心率为()B.12D.2【变式1】(多选)(2024·山西吕梁·一模)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同中心的圆上,称此圆为该椭圆的蒙日圆.已知椭圆221222:1(0)x y C a b F F a b+=>>,,分别为椭圆的左、右焦点,)2F ,其短轴上的一个端点到2F 的距离A 在椭圆上,直线22:0l bx ay a b +--=,则()A.直线l 与蒙日圆相切B.椭圆C 的蒙日圆方程为222x y +=C.若点P 是椭圆C 的蒙日圆上的动点,过点P 作椭圆C 的两条切线12l l ,,分别交蒙日圆于M N ,两点,则MN 的长恒为4D.记点A 到直线l 的距离为d ,则2d AF -的最小值为22+【变式2】(2024·河南南阳·一模)在椭圆(双曲线)中,任意两条互相垂直的切线的交点都在同一个圆上,该圆的圆心是椭圆(双曲线)的中心,半径等于椭圆(双曲线)长半轴(实半轴)与短半轴(虚半轴)平方和(差)的算术平方根,则这个圆叫蒙日圆.已知椭圆2222:1(0)x y E a b a b +=>>的蒙日圆的面积为13π,该椭圆的上顶点和下顶点分别为12,P P ,且122PP =,设过点0,21Q ⎛⎫⎪⎝⎭的直线1l 与椭圆E 交于,A B 两点(不与12,P P 两点重合)且直线2:260l x y +-=.(1)证明:1AP ,2BP 的交点P 在直线2y =上;(2)求直线112,,AP BP l 围成的三角形面积的最小值.【变式3】(2023·合肥模拟)已知A 是圆x 2+y 2=4上的一个动点,过点A 作两条直线l 1,l 2,它们与椭圆x23+y 2=1都只有一个公共点,且分别交圆于点M,N.(1)若A(-2,0),求直线l 1,l 2的方程;(2)①求证:对于圆上的任意点A,都有l 1⊥l 2成立;②求△AMN 面积的取值范围.【变式4】定义椭圆C:x 2a 2+y 2b 2=1(a>b>0)的“蒙日圆”的方程为x 2+y 2=a 2+b 2,已知椭圆C 的长轴长为4,离心率为e=12.(1)求椭圆C 的标准方程和它的“蒙日圆”E 的方程;(2)过“蒙日圆”E 上的任意一点M 作椭圆C 的一条切线MA,A 为切点,延长MA 与“蒙日圆”E 交于点D,O 为坐标原点,若直线OM,OD 的斜率存在,且分别设为k 1,k 2,证明:k 1·k 2为定值.考点三阿基米德三角形抛物线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形.性质1阿基米德三角形底边上的中线MQ 平行于抛物线的轴.性质2若阿基米德三角形的底边即弦AB 过抛物线内的定点C,则另一顶点Q 的轨迹为一条直线.性质3抛物线以C 点为中点的弦平行于Q 点的轨迹.性质4若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点(若直线l 方程为:ax+by+c=0,则定点的坐标为性质5底边为a 的阿基米德三角形的面积最大值为a 38p.性质6若阿基米德三角形的底边过焦点,则顶点Q 的轨迹为准线,且阿基米德三角形的面积最小值为p 2.规律方法(1)椭圆和双曲线也具有多数上述抛物线阿基米德三角形类似性质;(2)当阿基米德三角形的顶角为直角时,阿基米德三角形顶点的轨迹为蒙日圆.【例3】(2024高三·全国·专题练习)AB 为抛物线()220x py p =>的弦,()11,A x y ,()22,B x y 分别过,A B作的抛物线的切线交于点00(,)M x y ,称AMB 为阿基米德三角形,弦AB 为阿基米德三角形的底边.若弦AB 过焦点F ,则下列结论错误的是()A.1202x x x +=B.底边AB 的直线方程为()000x x p y y -+=;C.AMB 是直角三角形;D.AMB 面积的最小值为22p .【变式1】(2024·吉林白山·二模)阿基米德三角形由伟大的古希腊数学家阿基米德提出,有着很多重要的应用,如在化学中作为一种稳定的几何构型,在平面设计中用于装饰灯等.在圆倠曲线中,称圆锥曲线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形.已知抛物线2:8C y x =的焦点为F ,顶点为O ,斜率为43的直线l 过点F 且与抛物线C 交于,M N 两点,若PMN 为阿基米德三角形,则OP =()B.【变式2】(多选)(23-24高三下·湖南长沙·阶段练习)抛物线的弦与弦的端点处的两条切线形成的三角形称为阿基米德三角形,该三角形以其深刻的背景、丰富的性质产生了无穷的魅力.设,A B 是抛物线2:4C x y =上两个不同的点,以()()1122,,,A x y B x y 为切点的切线交于P 点.若弦AB 过点()0,1F ,则下列说法正确的有()A.124x x =-B.若12x =,则A 点处的切线方程为10x y --=C.存在点P ,使得0PA PB ⋅>D.PAB 面积的最小值为4【变式3】(多选)(2023·南平模拟)过抛物线y 2=2px(p>0)的焦点F 作抛物线的弦与抛物线交于A,B 两点,M 为AB 的中点,分别过A,B 两点作抛物线的切线l 1,l 2相交于点P.下面关于△PAB 的描述正确的是()A.点P 必在抛物线的准线上B.AP⊥PBC.设A(x 1,y 1),B(x 2,y 2),则△PAB 的面积S 的最小值为p22D.PF⊥AB【变式4】已知抛物线C:x 2=2py(p>0)的焦点为F,且F 与圆M:x 2+(y+4)2=1上的点的距离的最小值为4.(1)求p;(2)若点P 在圆M 上,PA,PB 是C 的两条切线,A,B 是切点,求△PAB 面积的最大值.强化训练一、单选题1.(2023·四川·三模)19世纪法国著名数学家加斯帕尔•蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,椭圆()222210x y a b a b+=>>的蒙日圆方程为2222x y a b +=+.若圆()()2239x y b -+-=与椭圆2213x y +=的蒙日圆有且仅有一个公共点,则b 的值为()A.3±B.4±C.5±D.2.(2023·青海西宁·二模)法国数学家加斯帕·蒙日被称为“画法几何创始人”“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆被称为该椭圆的蒙日圆.若椭圆:22221x y a b+=(0a b >>)的蒙日圆为2224:3C x y a +=,则椭圆Γ的离心率为()A.2B.2C.3D.33.(2023·河北·三模)抛物线的弦与过弦的端点的两条切线所围成的三角形称为阿基米德三角形,在数学发展的历史长河中,它不断地闪炼出真理的光辉,这个两千多年的古老图形,蕴藏着很多性质.已知抛物线24y x =,过焦点的弦AB 的两个端点的切线相交于点M ,则下列说法正确的是()A.M 点必在直线2x =-上,且以AB 为直径的圆过M 点B.M 点必在直线=1x -上,但以AB 为直径的圆不过M 点C.M 点必在直线2x =-上,但以AB 为直径的圆不过M 点D.M 点必在直线=1x -上,且以AB 为直径的圆过M 点4.(2023·海南·模拟预测)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:过椭圆外一点作椭圆的两条互相垂直的切线,那么这一点的轨迹是以椭圆中心为圆心的圆,这个圆被称为该椭圆的蒙日圆.已知椭圆22:154x y C +=的蒙日圆为圆1C ,若圆1C 不透明,则一束光线从点()4,3A -出发,经x 轴反射到圆1C 上的最大路程是()A.2B.4C.5D.85.(23-24高三上·安徽六安·阶段练习)椭圆()222210,0,x y a b a b a b+=>>≠任意两条相互垂直的切线的交点轨迹为圆:2222x y a b +=+,这个圆称为椭圆的蒙日圆.在圆()()()222430x y r r -+-=>上总存在点P ,使得过点P 能作椭圆2213y x +=的两条相互垂直的切线,则r 的取值范围是()A.[]1,7B.[]1,9C.[]3,7D.[]3,96.(2023·广西·模拟预测)阿波罗尼斯是古希腊著名数学家,与阿基米德、欧几里得并称为亚历山大时期数学三巨匠,他研究发现:如果一个动点P 到两个定点的距离之比为常数λ(0λ>且1λ≠),那么点P 的轨迹为圆,这就是著名的阿波罗尼斯圆.若点P 到()2,0A ,()2,0B -P 到直线l :0y -=的距离的最大值是()A.B.2+C.D.7.(2023·湖北襄阳·模拟预测)数学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数(0λλ>且1)λ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -,动点M 满足2=MA MO ,得到动点M 的轨迹是阿氏圆C .若对任意实数k ,直线():1l y k x b =-+与圆C 恒有公共点,则b 的取值范围是()A.33⎡-⎢⎥⎣⎦B.33⎡-⎢⎣⎦C.33⎡-⎢⎣⎦D.44,33⎡⎤-⎢⎥⎣⎦8.(2023·青海西宁·二模)抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形.阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的斜率之积为定值.设抛物线22(0)y px p =>,弦AB 过焦点,△ABQ 为阿基米德三角形,则△ABQ 的面积的最小值为()A.22p B.2p C.22p D.24p二、多选题1.(22-23高三下·江苏南京·开学考试)加斯帕尔•蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).已知长方形R 的四边均与椭圆22:163x y C +=相切,则下列说法正确的是()A.椭圆C 的离心率为2e =B.椭圆C 的蒙日圆方程为226x y +=C.椭圆C 的蒙日圆方程为229x y +=D.长方形R 的面积最大值为182.(22-23高三上·云南保山·期末)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点,A B 的距离之比为定值(0λλ>且1)λ≠的点的轨迹是一个圆,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()()1,0,2,0A B -,点P 满足12PA PB=,设点P 的轨迹为曲线C ,下列结论正确的是()A.曲线C 的方程为22(2)4x y ++=B.曲线C 与圆22:(2)4C x y +-='外切C.曲线C 被直线:0l x y +=截得的弦长为D.曲线C 上恰有三个点到直线:0m x =的距离为13.(2024高三下·江苏·专题练习)(多选)如图,PAB 为阿基米德三角形.抛物线()220x py p =>上有两个不同的点()()1122,,,A x y B x y ,以A,B 为切点的抛物线的切线,PA PB 相交于点P.给出如下结论,其中正确的为()A.若弦AB 过焦点,则ABP 为直角三角形且90APB ︒∠=B.点P 的坐标是1212,22x x x x +⎛⎫⎪⎝⎭C.PAB 的边AB 所在的直线方程为()121220x x x py x x +--=D.PAB 的边AB 上的中线与y 轴平行(或重合)三、填空题1.(23-24高三上·广东湛江·期末)法国数学家加斯帕·蒙日被称为“画法几何创始人”“微分几何之父”.他发现椭圆的两条互相垂直的切线的交点的轨迹是以该椭圆的中心为圆心的圆,这个圆被称为该椭圆的蒙日圆.若椭圆2222:1(0)x y C a b a b+=>>的蒙日圆为22273x y b +=,则C 的离心率为.2.(23-24高三上·河北沧州·期末)古希腊著名数学家阿波罗尼斯发现了平面内到两个定点的距离之比为定值(1)λλ≠的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.已知(0,4)P ,Q 为直线3y x =-上的动点,R 为圆22:4O x y +=上的动点,则1||||2RQ PR +的最小值为.3.(2023高三·全国·专题练习)抛物线的弦与过弦端点的两条切线所围成的三角形被称为阿基米德三角形.设抛物线为24y x =,弦AB 过焦点,ABQ 为阿基米德三角形,则ABQ 的面积的最小值为.四、解答题1.(2024·全国·模拟预测)在圆224x y +=上任取一点T ,过点T 作x 轴的垂线段TD ,垂足为D .当点T 在圆上运动时,线段TD 的中点P 的轨迹是椭圆C .(1)求该椭圆C 的方程.(2)法国数学家加斯帕尔·蒙日(1746—1818)发现:椭圆上任意两条互相垂直的切线的交点,必在一个与椭圆同心的圆上,称此圆为该椭圆的“蒙日圆”.若椭圆C 的左、右焦点分别为12,,F F P 为椭圆C 上一动点,直线OP 与椭圆C 的蒙日圆相交于点,M N ,求证:12||||||||PM PN PF PF ⋅⋅为定值.2.(23-24高三下·山东青岛·开学考试)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,阿波罗尼斯圆指的是已知动点M 与两定点Q Q,P 的距离之比MQMP λ=(0λ>且1λ≠),λ是一个常数,那么动点M 的轨迹就是阿波罗尼斯圆,圆心在直线PQ 上.已知动点M 的轨迹是阿波罗尼斯圆,其方程为224x y +=,定点分别为椭圆C :()222210x y a b a b +=>>的右焦点F 与右顶点A ,且椭圆C 的离心率为12e =.(1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为()0k k >的直线l 与椭圆C 相交于B ,D (点B 在x 轴上方),点S ,T 是椭圆C 上异于B ,D 的两点,SF 平分BSD ∠,TF 平分BTD ∠.①求BS DS 的取值范围;②设BFT 、DFT 的面积分别为1S 、2S ,当1212S S =时,求直线l 的方程.3.(2023·陕西西安·一模)数学家加斯帕尔·蒙日创立的《画法几何学》对世界各国科学技术的发展影响深远.在双曲线2222:1(0,0)x y C a b a b-=>>中,任意两条互相垂直的切线的交点都在同一个圆上,它的圆心是双曲线的中心,半径等于实半轴长与虚半轴长的平方差的算术平方根,这个圆被称为蒙日圆.已知双曲线C的实轴长为,其蒙日圆方程为224x y +=.(1)求双曲线C 的标准方程;(2)设点()3,1P 关于坐标原点的对称点为Q ,不过点P 且斜率为13的直线与双曲线C 相交于,M N 两点,直线PM 与QN 交于点()00,D x y ,求直线OD 的斜率值.4.(2023·河南·模拟预测)在椭圆C :22221x y a b+=(0a b >>)中,其所有外切矩形的顶点在一个定圆Γ:2222x y a b +=+上,称此圆为椭圆的蒙日圆.椭圆C 过()22P ,1(2Q .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若OM k ,ON k 存在,证明:OM ON k k ⋅为定值.5.(2023·广西·模拟预测)在椭圆C :22221x y a b+=(0a b >>)中,其所有外切矩形的顶点在一个定圆Γ:2222x y a b +=+上,称此圆为椭圆的蒙日圆.椭圆C 过A ⎝⎭,B ⎛ ⎝⎭(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若OM k ,ON k 存在.证明:OM ON k k ⋅为定值.。
高中数学函数大题强化训练(解析版)
高中数学专题22 函数大题强化训练1.设,且对任意实数b均有,求a的取值范围.【答案】【解析】解1:,对于,所以只要考虑.(1)当时,即,此时函数的最值在拋物线的左右端点取得,对任意有,所以,解得(2)当时,即,此时函数的最值在拋物线的顶点和右端点取得,而对b=0有.(3)当时,即时,此时函数的最值在拋物线的顶点和左端点取得,而对b=0有.(4)当时,即,此时函数的最值在拋物线的左右端点取得,对任意,所以,解得.综上或.解2:设,则有依题意,,或.2.求解函数的最大最小值.【答案】最大值为最小值为.【解析】易知函数定义域为全体实数,由于,令,则,所以,因此;函数y最大值为最小值为.3.函数是数学中重要的概念之一,同学们在初三、高一分别学习过,也知晓其发展过程.1692年,德国数学家莱布尼茨首次使用function这个词,1734年瑞士数学家欧拉首次使用符号f(x)表示函数.1859年我国清代数学家李善兰将function译作函数,“函”意味着信件,巧妙地揭示了对应关系.密码学中的加密和解密其实就是函数与反函数.对自变量恰当地赋值是处理函数问题,尤其是处理抽象函数问题的常用方法之一.请你解答下列问题.已知函数f(x)满足:对任意的整数a,b均有f(a+b)=f(a) +f(b)+ab+2,且f(-2)=-3.求f(96)的值.【答案】4750【解析】在f(a+b)=f(a)+f(b)+ab+2中,令a=b=a,得f(0)=f(0)+f(0)+0+2,于是f(0)=-2.在f(a+b)=f(a)+f(b)+ab+2中,令a=2,b=-2,得f(0)=f(2)+f(-2)-4+2.∴-2=f(2)_3-4+2,f(2)=3.在f(a+b)=f(a)+f(b)+ab+2中,令a=n-2,b=2,得f(n)=f(n-2)+f(2)+2(n-2)+2=f(n-2)+3+2(n-2)+2=f(n-2)+2n+l.∴f(n)-f(n-2)=2n+1.∴f(96)-f(94)=2×96+1,f(94)-f(92)=2×94+1,f(94)-f(92)=2×94+1,……上述等式左右两边分别相加,得f(96)-f(2)=2(96+94+…+4)+47.∴.4.已知函数,求该函数的值域.【答案】【解析】令u=x-1,则,则设,则,且当u>0时,.由于0<t≤1,故函数单调递减,所以y≥1+2+3=6当u<0时,(当且仅当,即时取等号)所以函数的值域为.故答案为:5.已知函数.(1)若,求的单调区间;(2)若在区间上是增函数,求实数的取值范围.【答案】(1)减区间为;增区间为;(2).【解析】试题分析:(1)当时,,由可得函数的定义域为,结合图象可得函数的减区间为,增区间为。
高中数学文化情景题专题7 笛卡尔 (以笛卡尔为背景的高中数学考题题组训练)解析版
【高中数学数学文化鉴赏与学习】专题7 笛卡尔(以笛卡尔为背景的高中数学考题题组训练)一、单选题1.笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A 关于x 轴对称的点的坐标是( )A .()1,1,1--B .()1,1,1C .()1,1,1-D .()1,1,1---【答案】B 【解析】 【分析】由图写出点A 的坐标,然后再利用关于x 轴对称的点的性质写出对称点的坐标. 【详解】由图可知,点(1,1,1)A --,所以点A 关于x 轴对称的点的坐标为(1,1,1). 故选:B.2.如果两个正整数a 和b ,a 的所有真因数(即不是自身的因数)之和等于b ,b 的所有真因数之和等于a ,则称a 和b 是一对“亲和数”.约两千五百年前,古希腊数学家毕达哥拉斯发现第一对亲和数:284和220.历史中不少数学家们都曾参与寻找亲和数,其中包括笛卡尔、费马、欧拉等.1774年,欧拉向全世界宣布找到30对亲和数,并以为2620和2924是最小的第二对亲和数,可到了1867年,意大利的16岁中学生白格黑尼,竟然发现了数学大师欧拉的疏漏——在284和2620之间还有一对较小的亲和数1184和1210.我们知道220的所有真因数之和为:1245101120224455110284++++++++++=,284的所有真因数之和为:12471142220++++=,若从284的所有真因数中随机抽取一个数,则该数为奇数的概率为()A.13B.25C.411D.35【答案】B【解析】【分析】根据284的真因数,结合古典概型的计算公式进行求解即可.【详解】因为1,2,4,71,142是284的真因数,共5个,其中1,71是奇数,共2个,所以从284的所有真因数中随机抽取一个数,则该数为奇数的概率为25,故选:B3.笛卡尔是世界著名的数学家,他因将几何坐标体系公式化而被认为是解析几何之父.据说在他生病卧床时,还在反复思考一个问题:通过什么样的方法,才能把“点”和“数”联系起来呢?突然,他看见屋顶角上有一只蜘蛛正在拉丝织网,受其启发建立了笛卡尔坐标系的雏形.在如图所示的空间直角坐标系中,单位正方体顶点A关于y轴对称的点的坐标是()A .()1,1,1--B .()1,1,1-C .()1,1,1--D .()1,1,1---【答案】A 【解析】由图写出点A 的坐标,然后再利用关于y 轴对称的点的性质写出对称点的坐标. 【详解】由图可知,点(1,1,1)A --,所以点A 关于y 轴对称的点的坐标为(1,1,1)--. 故选:A.4.“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔()ReneDescartes 创制的,直到19世纪虚数才真正闻人数的领域,虚数不能像实数一样比较大小.已知复数z ,1z =且(1i)0z ⋅+>(其中i 是虚数单位),则复数z =( )A BC D 【答案】C 【解析】 【分析】根据条件,设i z a b =+,再列式求,a b ,即可得到复数. 【详解】设i z a b =+,221a b +=,①()()()()i 1i i>0a b a b a b ++=-++,得0a b +=,且0a b -> ①,由①①解得:a =2b =,所以z =. 故选:C5.“虚数”这个词是17世纪著名数学家、哲学家笛卡尔创制的,当时的观念认为这是不存在的数.人们发现,最简单的二次方程210x +=在实数范围内没有解.已知复数z 满足240z i +=,则z =( )A.4 B .2 C D .1【答案】B 【解析】 【分析】利用复数模的运算性质求解即可. 【详解】解:因为240z i +=, 所以24z i =-, 故22|||||4|4z z i ==-=, 所以||2z =. 故选:B .6.1614年苏格兰数学家纳皮尔在研究天文学的过程中为了简化计算而发明了对数方法;1637年法国数学家笛卡尔开始使用指数运算;1770年瑞士数学家欧拉发现了指数与对数的互逆关系,指出:对数源于指数,对数的发明先于指数.若25x =,lg 20.3010≈,则x 的值约为( )A .2.301B .2.322C .2.507D .2.699【答案】B 【解析】 【分析】根据指对数互化公式得2log 5x =,再结合换底公式计算即可得答案. 【详解】解:由指对数互化公式得2lg 51lg 210.3010log 5 2.322lg 2lg 20.3010x --===≈≈ 故选:B7.1614年纳皮尔在研究天文学的过程中,为了简化计算而发明对数;1637年笛卡尔开始使用指数运算;1707年欧拉发现了指数与对数的互逆关系.对数源于指数,对数的发明先于指数,这已成为历史珍闻.若 2.5x e =,lg 20.3010=,lg 0.4343e =,根据指数与对数的关系,估计x 的值约为( ) A .0.4961 B .0.6941 C .0.9164 D .1.469【答案】C 【解析】利用对数式与指数式的互化可得 2.5x ln =,再利用换底公式即可求出x 的近似值. 【详解】 解: 2.5x e =,52.55212222.50.9164lglg lg lg lg x ln lge lge lge lge--∴=====≈,故选:C . 【点睛】本题主要考查了对数式与指数式的互化,考查了换底公式的应用;8.伟大的法国数学家笛卡儿(Descartes1596~1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点,因此直角坐标系又被称为“笛卡尔系”;直角坐标系的引入,将诸多的几何学的问题归结成代数形式的问题,大大降低了问题的难度,而直角坐标系,在平面向量中也有着重要的作用;在正三角形ABC 中,D 是线段BC 上的点,3AB =,2BD =,则AB AD ⋅=( ). A .3 B .6 C .9 D .12【答案】B 【解析】以AB 、AC 为一组基底,表示出AD ,再根据向量的数量积的定义及运算律计算可得; 【详解】解:在正三角形ABC 中,D 是线段BC 上的点,3AB =,2BD =,所以()22123333AD AB BC AB AC AB AB AC =+=+-=+ 所以22121212133363333332AB AD AB AB AC AB AC AB ⎛⎫⋅=⋅+=+⋅=⨯+⨯⨯⨯= ⎪⎝⎭故选:B9.伟大的法国数学家笛卡儿()15961650Descartes ~创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点,因此直角坐标系又被称为“笛卡尔系”;直角坐标系的引入,将诸多的几何学的问题归结成代数形式的问题,大大降低了问题的难度,而直角坐标系,在平面向量中也有着重要的作用;已知直角梯形ABCD 中,//AB CD ,90BAD ∠︒=,60BCD ∠︒=,E 是线段AD 上靠近A 的三等分点,F 是线段DC 的中点,若2AB =,AD =,则EB EF ⋅=( )A .73B .113 C .79D .119【答案】A 【解析】过B 作BM DC ⊥于M ,根据向量的加减的几何意义和向量的数量积公式计算即可. 【详解】过B 作BM DC ⊥于M ,故2AB DM ==,因为BM AD ==60BCD ∠=︒, 故1CM =,则32DF =()()EB EF EA AB ED DF EA ED AB DF ⋅=+⋅+=⋅+⋅37(1)2=23-+⨯【点睛】本题以数学文化为背景,考查向量的线性运算及几何意义、向量的数量积,考查计算求解能力,属于基础题.10.笛卡尔是法国著名的数学家、哲学家、物理学家,他发明了现代数学的基础工具之一——坐标系,将几何与代数相结合,创立了解析几何.相传,52岁时,穷困潦倒的笛卡尔恋上了18岁的瑞典公主克里斯蒂娜,后遭驱逐,在寄给公主的最后一封信里,仅有短短的一个方程:()1sin r a θ=-,拿信的公主早已泪眼婆娑,原来该方程的图形是一颗爱心的形状.这就是著名的“心形线”故事.某同学利用几何画板,将函数()f x =()g x =-图形,当0x >时,()g x 的导函数()g x '的图像为( )A .B .C .D .【答案】A【分析】根据题干已知图像判断x >0时g (x )图像的形状,根据g (x )图像的单调性和切线斜率变化即可判断其导数的图像. 【详解】根据f (x )和g (x )的解析式可知f (x )和g (x )均为偶函数,图像关于y 轴对称,当x >0时,()f x =设y =()2211x y -+=,①此时f (x )对应的图像是题干中图像在第一部分的半圆,①x >0时,g (x )对应题干中的图像在第四象限的部分,①该部分图像单调递增,故()g x '的值恒为正,即()g x '图像始终在x 轴上方,故排除选项BC ;且()g x 该部分图像的切线斜率先减小后增大,故()g x '的值先减小后增大,由此对应的只有A 图像满足. 故选:A .11.1614年纳皮尔在研究天文学的过程中为了简化计算而发明对数;1637年笛卡尔开始使用指数运算;1770年,欧拉发现了指数与对数的互逆关系,指出:对数源于指数,对数的发明先于指数,称为数学史上的珍闻,对数函数与指数函数互为反函数,即对数函数()log a f x x =(0a >且1a ≠)的反函数为()1xf x a -=(0a >且1a ≠).已知函数()e x g x =,()()21F x x kg x -=+,则对于任意的210x x >>,有()()21212022F x F x x x ->-恒成立,则实数k 的取值范围为( )A .(],2-∞B .[)2,+∞C .()1011,∞+D .21011,2∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】 【分析】依据题意构造函数()2ln 2022h x x k x x =+-为增函数,并利用导数得到关于实数k 的不等式,进而求得实数k 的取值范围 【详解】由题意,()e xg x =的反函数()1ln gx x -=.对于任意的210x x >>,有()()21212022F x F x x x ->-,即()()()21212022F x F x x x ->-,可转化为()()221120222022F x x F x x ->-,则函数()22022ln 2022y F x x x k x x =-=+-在()0,∞+上单调递增.设()2ln 2022h x x k x x =+-,则()220220kh x x x'=+-≥在(0,)+∞上恒成立 即222022k x x ≥-+在(0,)+∞上恒成立又2222101110111011220222222x x x ⎛⎫-+=--+≤ ⎪⎝⎭,则210112k ≥, 故选:D . 二、多选题12.17世纪初,约翰·纳皮尔为了简化计算而发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡尔的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z 的形式,两边取常用对数,则有lg lg N n a =+,现给出部分常用对数值(如下表),则下列说法中正确的有( )A .103在区间()4510,10内B .502是15位数C .若50210(110,)m a a m -=⨯≤<∈Z ,则16m =-D .若()32mm *∈N 是一个35位正整数,则12m =【答案】ACD 【解析】 【分析】根据对数运算法则对选项一一判断即可. 【详解】对A ,令103x =,10lg lg 310lg 3 4.77x === 所以()4.77451010,10x =∈,A 正确;对B ,令502y =,50lg lg 250lg 215.05y === 所以()15.0515161010,10y =∈,则502是16位数, B 错;对C ,令502z -=,50lg lg 250lg 215.05z -==-=-又因为50210(110,)m a a m -=⨯≤<∈Z ,所以15.051010m a -=⨯ 则15.05011010,10ma --⎡⎤=∈⎣⎦,所以16m =-,C 正确;对D ,令32k m =,32lg lg 32lg k m m ==,因为()32m m *∈N 是一个35位正整数,所以3432lg 35m <<,则3435lg 3232m <<,即1.063lg 1.094m <<, 所以12m =,D 正确; 故选:ACD13.“虚数”这个词是17世纪著名数学家、哲学家笛卡尔创制的,当时的观念认为这是不存在的数.人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题,像210x +=这样最简单的二次方程,在实数范围内没有解.引进虚数概念以后,代数方程的求解问题才得以解决.设t 是方程210x x ++=的根,则( ) A .31t =B .1t t +=-C .t -是该方程的根D .2021t 是该方程的根【答案】ABD 【解析】 【分析】根据每个选项的描述进行判断,即可得出结果. 【详解】解:对于A 选项,由于t 是方程的根,则210t t ++=,而()()321110t t t t -=-++=,故31t =,选项A 正确;对于B 选项,由虚根成对定理可知,t 也是方程210x x ++=的根,故1t t +=-,选项B 正确;对于C ,0t ≠且210t t -+≠,故t -不是该方程的根,选项C 错误;对于D ,()6732021322t t t t =⋅=,而321t t t t ==,代入方程得,22211110t t t t t ++⎛⎫++== ⎪⎝⎭, ∴1t 是该方程的根,即2021t 是该方程的根,选项D 正确.故选:ABD.14.卵形曲线也叫卵形线,是常见曲线的一种,分笛卡尔卵形线和卡西尼卵形线.卡西尼卵形线是平面内与两个定点(叫做焦点)距离之积等于常数的点的轨迹.设焦点12(0)(0)F c F c -,,,是平面内两个定点,212||||PF PF a ⋅=(a 是定长),特别地,当c a =时的卡西尼卵形线又称为伯努利双纽线,某同学通过类比椭圆与双曲线的研究方法,对伯努利双纽线进行了相关性质的探究,得到下列结论,其中正确的是( ) A .曲线过原点B .关于原点中心对称且关于坐标轴成轴对称C .方程为222222()2()x y a x yD .曲线上任意点00()P x y ,,0[]x a a ∈-,,0[]22a a y ∈-, 【答案】ABC【解析】【分析】根据212||||PF PF a ⋅=得到轨迹方程为222222()2()x y a x y 得到ABC 正确,验证知),0在曲线上,故D 错误,得到答案. 【详解】设(),P x y ,c a =时,212||||PF PF a ⋅==, 化简得到:222222()2()x y a x y ,故C 正确;曲线过原点,A 正确;关于原点中心对称且关于坐标轴成轴对称,B 正确;验证知),0在曲线上,故D 错误. 故选:ABC.15.笛卡尔是西方哲学思想的奠基人之一,“我思故我在”便是他提出的著名的哲学命题;同时,笛卡尔也是一位家喻户晓的数学家,除了发明坐标系以外,笛卡尔叶形线也是他的杰出作品,其方程为x 3+y 3=3axy ,a 为非零常数.下列关于笛卡尔叶形线的说法中正确的是( )A .图象关于直线y =x 对称B .图象与直线x +y +a =0有2个交点C .当a >0时,图象在第三象限没有分布D.当a =1,x 、y >0时,y 【答案】ACD【解析】【分析】设(,)P x y 是曲线上任意一点,由点的变换得方程的变化,从而确定曲线的性质,判断A ;用解方程组的思想判断B ;用反证法即证明满足0,0x y <<的点不在曲线上,判断C ;利用基本不等式确定y 的最大值,判断D .【详解】把,x y 互换后,曲线方程不变,因此曲线关于直线y x =对称,A 正确;x a y +=-代入曲线方程得223x xy y xy -+=-,0x y +=,与0x y a +=-≠矛盾,因此无交点,B 错;0a >时,第三象限点(,)x y 满足0,0x y <<,但此时330x y +<,30axy >,不适合曲线方程,C 正确;1a =时,333x y xy +=,0,0x y >>,333222322y y y y x x x x x =+=++≥所以y ≤322y x x =,x =D 正确.故选:ACD16.作为平面直角坐标系的发明者,法国数学家笛卡尔也研究了不少优美的曲线,如笛卡尔叶形线,其在平面直角坐标系xOy 下的一般方程为3330x y axy +-=.某同学对1a =情形下的笛卡尔叶形线的性质进行了探究,得到了下列结论,其中正确的是( )A .曲线不经过第三象限B .曲线关于直线y x =对称C .曲线与直线1x y +=-有公共点D .曲线与直线1x y +=-没有公共点【答案】ABD【解析】【分析】A :当,0x y <时,判断3330x y xy +-=是否可能成立即可;B :将点(y ,x )代入方程,判断与原方程是否相同即可;C 、D :联立直线和曲线方程,判断方程组是否有解即可.【详解】当,0x y <时,3330x y xy +-<,故第三象限内的点不可能在曲线上,A 选项正确; 将点(),y x 代入曲线有程得3330x y xy +-=,故曲线关于直线y x =对称,B 选项正确;联立3330,1,x y xy x y ⎧+-=⎨+=-⎩其中()()3322330x y xy x y x y xy xy +-=++--=, 将1x y +=-代入得2()0x y -+=,即0x y +=,则方程组无解,故曲线与直线1x y +=-无公共点,C 选项错误,D 选项正确.故选:ABD.17.发现土星卫星的天文学家乔凡尼卡西尼对把卵形线描绘成轨道有兴趣.像笛卡尔卵形线一样, 笛卡尔卵形线的作法也是基于对椭圆的针线作法作修改,从而产生更多的卵形曲线.卡西尼卵形线是由下列条件所定义的:曲线上所有点到两定点(焦点)的距离之积为常数.已知:曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数2(1)a a >的点的轨迹,则下列命题中正确的是( )A .曲线C 过坐标原点B .曲线C 关于坐标原点对称C .曲线C 关于坐标轴对称D .若点在曲线C 上,则12F PF 的面积不大于212a 【答案】BCD【解析】【分析】动点坐标为(),x y ,根据题意可得曲线C 的方程为()()2222411x y x y a ⎡⎤⎡⎤++⋅-+=⎣⎦⎣⎦,对各个选项逐一验证,即可得出结论.【详解】由题意设动点坐标为(),x y ,2a =,即22224(1)(1)x y x y a ⎡⎤⎡⎤++-+=⎣⎦⎣⎦,若曲线C 过坐标原点()0,0,将点()0,0代入曲线C 的方程中可得21a =与已知1a >矛盾,故曲线C 不过坐标原点,故A 错误;把方程中的x 被x -代换,y 被y -代换,方程不变,故曲线C 关于坐标原点对称,故B 正确;因为把方程中的x 被x -代换,方程不变,故此曲线关于y 轴对称,把方程中的y 被y -代换,方程不变,故此曲线关于x 轴对称,故曲线C 关于坐标轴对称,故C 正确;若点P 在曲线C 上,则212PF PF a =,122121211sin 22F PF S PF PF F PF a =∠≤,当且仅当1290F PF ∠=︒时等号成立, 故12F PF △的面积不大于212a ,故D 正确. 故选:BCD .【点睛】关键点点睛:本题考查圆锥曲线新定义,轨迹方程的求法,关键是读懂题意,并能正确运用新定义是解题的关键,属于中档题型.三、填空题18.笛卡尔坐标系是直角坐标系与斜角坐标系的统称,如图,在平面斜角坐标系xOy 中,两坐标轴的正半轴的夹角为60︒,1e ,2e 分别是与x 轴,y 轴正方向同向的单位向量,若向量12a xe ye =+,则称有序实数对(),x y 为a 在该斜角坐标系下的坐标.若向量m ,n 在该斜角坐标系下的坐标分别为()3,2,()2,k ,当k =_______时,11m n ⋅=.【答案】67【解析】【分析】根据斜角坐标定义写出向量(用两个已知单位向量表示),然后由向量数量积计算可得.【详解】由已知1232m e e =+,122n e ke =+,12111cos602e e ⋅=⨯⨯︒=, 22121211221(32)(2)6(34)26(34)2112m n e e e ke e k e e ke k k ⋅=+⋅+=++⋅+=+++=, 解得:67k =. 故答案为:67. 19.笛卡尔、牛顿都研究过方程()()()123x x x xy ---=,关于这个方程的曲线有下列说法:①该曲线关于y 轴对称;①该曲线关于原点对称;①该曲线不经过第三象限;①该曲线上有且只有三个点的横、纵坐标都是整数.其中不正确的是___________.【答案】①①①【解析】【分析】将点(,)x y -,(,)x y --得到的方程是否与原方程一样,进而可判断①①,根据第三象限的取值判断①,求曲线的点的坐标,判断①.【详解】因为(,)x y 满足方程()()()123x x x xy ---=,则将点(,)x y -代入方程有()()()123x x x xy +++=,原方程不成立,所以该曲线不关于y 轴对称;将点(,)x y --代入方程有()()()123x x x xy +++=-,原方程不成立,所以该曲线不关于原点对称;当0,0x y <<时,()()()1230,0x x x xy ---<>,所以方程()()()123x x x xy ---=不可能成立,所以该曲线不经过第三象限;令1x =-易得12y =即(1,12)-满足题意,同理可得(1,0)(2,0)(3,0),,符合题意, 所以该曲线上有且只有三个点的横、纵坐标都是整数是错误的;故答案为:①①①.20.阿波罗尼奥斯(Apollonius )(公元前262~公元前190),古希腊人,与欧几里得和阿基米德齐名,他的著作《圆锥曲线论》凭一己之力将圆锥曲线研究殆尽,致使后人没有任何可插足之地;直到17世纪,笛卡尔和费马的坐标系之后,数学家建立起了解析几何体系,圆锥曲线的研究才有了突破.阿波罗尼奥斯在他的著作里得到了这样的结论:平面内到两个定点的距离之比为定值的点的轨迹是圆,也称阿氏圆.已知动点P 到点()2,0M -与到点()1,0N 的距离之比为2:1,则动点P 的轨迹方程为________.【答案】()2224x y -+=【解析】【分析】根据题意得设(),P x y ,则PM =PN 求解即可.【详解】解:设(),P x y ,则PM =PN =因为动点P 到点()2,0M -与到点()1,0N 的距离之比为2:1,21=, 所以2222(2)4(1)x y x y ⎡⎤++=-+⎣⎦,化简得2240x y x +-=,即()2224x y -+=,所以动点P 的轨迹方程为()2224x y -+=.故答案为:()2224x y -+=四、双空题21.阿波罗尼奥斯(Apollonius )(公元前262~公元前190),古希腊人,与欧几里得和阿基米德齐名,他的著作《圆锥曲线论》凭一己之力将圆锥曲线研究殆尽,致使后人没有任何可插足之地;直到17世纪,笛卡尔和费马的坐标系之后,数学家建立起了解析几何体系,圆锥曲线的研究才有了突破.阿波罗尼奧斯在他的著作里得到了这样的结论:平面内到两个定点的距离之比为定值的点的轨迹是圆,也称阿氏圆.已知动点P 到点()2,0M -与到点()1,0N 的距离之比为2①1,则动点P 的轨迹方程为______;若动点A 满足2MA MP =,则动点A 的轨迹方程为______.【答案】 22(2)4x y -+= 22(6)16x y -+=【解析】【分析】直接设出点P 的坐标,列出关系式,化简即可得答案,设出点A ,然后由2MA MP =表示出点P 的坐标代入点P 的轨迹方程中化简可得动点A 的轨迹方程【详解】设(,)P x y,则PM PN因为动点P 到点()2,0M -与到点()1,0N 的距离之比为2①1,21=, 所以2222(2)4[(1)]x y x y ++=-+,化简得2240x y x +-=,即22(2)4x y -+=,所以动点P 的轨迹方程为22(2)4x y -+=设点(,)A x y ,00(,)P x y ,则00(2,),(2,)MA x y MP x y =+=+,因为2MA MP =,所以0022(2)2x x y y +=+⎧⎨=⎩,得0011212x x y y ⎧=-⎪⎪⎨⎪=⎪⎩所以221112422x y ⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭,化简得22(6)16x y -+=, 所以动点A 的轨迹方程为22(6)16x y -+=,故答案为:22(2)4x y -+=,22(6)16x y -+=22.17世纪,笛卡尔在《几何学》中,通过建立坐标系,引入点的坐标的概念,将代数对象与几何对象建立关系,从而实现了代数问题与几何问题的转化,打开了数学发展的新局面,创立了新分支——解析几何.我们知道,方程1x =在一维空间中,表示一个点;在二维空间中,它表示一条直线,那么在三维空间中,它表示______,过点(1,1,2)-P 且法向量为(1,2,3)=v 的平面的方程是______.【答案】 一个平面 2350x y z ++-=【解析】【分析】根据空间直角坐标系的特征判断即可,再由在空间直角坐标系中,若法向量为(),,n A B C =,且平面过点()000,,x y z ,那么平面方程为()()()0000A x x B y y C z z -+-+-=计算可得;【详解】解:依题意可得1x =在三维空间中,它表示一个平面,在这个平面上所有点的横坐标都为1,过点(1,1,2)-P 且法向量为(1,2,3)=v 的平面的方程为()()()1121320x y z -+++-=,整理得2350x y z ++-=故答案为:一个平面;2350x y z ++-=。
高考数学专题训练之阿基米德多面体 (以阿基米德多面体为背景的高中数学考题题组训练)(含答案解析)
阿基米德多面体一、单选题1半正多面体亦称“阿基米德多面体”是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由八个正三角形和六个正方形构成的(如图所示),则异面直线AB 与CF 所成的角为()A.π6B.π4C.π3D.π22“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以一正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为1,则经过该多面体的各个顶点的球的表面积为()A.8πB.4πC.3πD.2π3半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,它是由正方体的各条棱的中点连接形成的几何体、它由八个正三角形和六个正方形围成(如图所示),若它所有棱的长都为2,则下列说法错误的是()A.该二十四等边体的表面积为24+83B.QH⊥平面ABEC.直线AH与PN的夹角为60°D.该半正多面体的顶点数V、面数F、棱数E,满足关系式V+F-E=24“阿基米德多面体”也称为半正多面体,半正多面体是由两种或多种正多边形面组成,而又不属于正多面体的凸多面体.如图,某广场的一张石凳就是一个阿基米德多面体,它是由正方体截去八个一样的四面体得到的.若被截正方体的棱长为40cm,则该阿基米德多面体的表面积为()A.4800+16003cm2 B.4800+48003cm2C.3600+36003cm2 D.3600+12003cm25“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则该多面体中具有公共顶点的两个正三角形所在平面的夹角正切值为()A.22B.1C.2D.226如图,将正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,截取后的剩余部分称为“阿基米德多面体”,它是一个24等边半正多面体.从它的棱中任取两条,则这两条棱所在的直线为异面直线的概率为()A.1023B.1223C.2969D.50697半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.下图是棱长为2的正方体截去八个一样的四面体,得到的一个半正多面体,则下列说法错误的是()A.该半正多面体是十四面体B.该几何体外接球的体积为4π3C.该几何体的体积与原正方体的体积比为5∶6D.原正方体的表面积比该几何体的表面积小8“阿基米德多面体”这称为半正多面体(semi-regularsolid),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.已知AB=32 2,则该半正多面体外接球的表面积为()A.18πB.16πC.14πD.12π9中国有悠久的金石文化,印信是金石文化代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”.半正多面体是由两种或两种以上的正多边形围成的多面体,古希腊著名数学家阿基米德研究过此类多面体的性质,故半正多面体又被称为“阿基米德多面体”.半正多面体体现了数学的对称美,如图,是一个棱数为24的半正多面体,它的所有顶点都在同一个正方体的棱上,且此正方体的棱长为1.则下列关于该多面体的说法中错误的是()A.多面体有12个顶点,14个面B.多面体的表面积为3C.多面体的体积为56D.多面体有外接球(即经过多面体所有顶点的球)10半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形围成(如图所示),若它所有棱的长都为2,则()A.BC ⊥平面ABEB.该二十四等边体的体积为3223C.ME 与PN 所成的角为45°D.该二十四等边体的外接球的表面积为16π11有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.若点E 为线段BC 上的动点,则直线DE 与直线AF 所成角的余弦值的取值范围为()A.13,22B.13,32C.12,22D.12,3212半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,它是由正方体的各条棱的中点连接形成的几何体.它由八个正三角形和六个正方形围成(如图所示),若它的棱长为2,则下列说法错误的是()A.该二十四等边体的外接球的表面积为16πB.该半正多面体的顶点数V 、面数F 、棱数E ,满足关系式V +F -E =2C.直线AH 与PN 的夹角为60°D.QH ⊥平面ABE13“阿基米德多面体”是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为2,则其外接球的表面积为()A.16πB.8πC.16π3D.32π314“阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以一正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”,若该多面体的棱长为1,则经过该多面体的各个顶点的球的体积为()A.43π B.82π3C.4πD.8π15有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.若点E为线段BC上的动点,则下列结论不正确的是()A.存在点E、使得A、F、D、E四点共面;B.存在点E,使DE⊥DF;C.存在点E,使得直线DE与平面CDF所成角为π3;D.存在点E,使得直线DE与直线AF所成角的余弦值3510.二、多选题16半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,半正多面体有且只有13种.最早用于1970年世界杯比赛的足球就可以近似看作是由12个正五边形和20个正六边形组成的半正面体,半正多面体体现了数学的对称美.如图所示的二十四等边体就是一种半正多面体,它由8个正三角形和6个正方形围成,它是通过对正方体进行八次切截而得到的.若这个二十四等边体的棱长都为2,则下列结论正确的是()A.MQ与平面AEMH不可能垂直B.异面直线BC和EA所成角为60°C.该二十四等边体的体积为402D.该二十四等边体外接球的表面积为18π317“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥,得到的半正多面体的表面积为12+43,则关于该半正多面体的下列说法中正确的是( ).A.AB =2B.该半正多面体的外接球的表面积为6πC.AB 与平面BCD 所成的角为π4 D.与AB 所成的角是π3的棱共有16条18半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美,二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则()A.BF ⊥平面EABB.AB 与PF 所成角为45°C.该二十四等边体的体积为203D.该二十四等边体多面体有12个顶点,14个面19“阿基米德多面体”也称为半正多面体,它是由边数不全相同的正多边形为面围成的多面体,体现了数学的对称美.如图,将正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥,得到的半正多面体的表面积为12+43,则关于该半正多面体的下列说法中正确的是()A.AB 与平面BCD 所成的角为π4B.AB =22C.与AB 所成的角是π3的棱共有16条 D.该半正多面体的外接球的表面积为6π20半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形围成(如图所示),若它所有棱的长都为2,则()A.BC ⊥平面ABEB.该二十四等边体的体积为4023C.ME 与NP的夹角为60°D.该二十四等边体的外接球的表面积为16π21有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.若点E 为线段BC 上的动点(包含端点),则下列说法正确的是()A.该半正多面体的体积为163B.当点E 运动到点B 时,DE ⎳FGC.当点E 在线段BC 上运动时(包含端点),AH 始终与DE 垂直D.直线DE 与平面AFHG 所成角的正弦值的取值范围为0,2222很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为22的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的.下列结论正确的有()A.该半正多面体的表面积为48+323B.AG⊥平面BCDGC.点B到平面ACD的距离为433D.若E为线段BC的中点,则异面直线DE与AF所成角的余弦值为351023很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得,则下列各选项正确的是()A.该半正多面体的体积为203B.A,C,D,F四点共面C.该半正多面体外接球的表面积为12πD.若点E为线段BC上的动点,则直线DE与直线AF所成角的余弦值的取值范围为12,2 224半正多面体亦称“阿基米德体”,是由边数不全相同的正多边形为面的多面体.如图,将正四面体每条棱三等分,截去顶角所在的小正四面体,得到一个有八个面的半正多面体.点A、B、C是该多面体的三个顶点,且棱长AB=2,则下列结论正确的是()A.该多面体的表面积为243B.该多面体的体积为4623C.该多面体的外接球的表面积为22πD.若点M是该多面体表面上的动点,满足CM⊥AB时,点M的轨迹长度为4+43三、填空题25很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.若E 为线段BC 的中点,则直线DE 与直线AF 所成角的余弦值为.26“阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.二十四等边体就是一种半多正多面体.如图,棱长为1的正方体截去八个一样的四面体,就得到二十四等边体,则该几何体的体积为.27半正多面体亦称“阿基米德体”“阿基米德多面体”,是以边数不全相同的正多边形为面的多面体.某半正多面体由4个正三角形和4个正六边形构成,其可由正四面体切割而成,如图所示.已知MN =1,若在该半正多面体内放一个球,则该球表面积的最大值为.28半正多面体亦称“阿基米德体”“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体.某半正多面体由4个三角形和4个正六边形构成,其可由正四面体切割而成,如图所示.若点G 在直线BC 上,且BG =5BC,BC =1,则直线EF 与直线AG 所成角的余弦值为.29半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则正确的序号是.①BF ⊥平面EAB ; ②AB 与PF 所成角为45°;③该二十四等边体的体积为203; ④该二十四等边体外接球的表面积为8π.30将棱长为12的正四面体沿棱长的三等分点处截去四个小正四面体后,所得的多面体称为阿基米德体,如图所示.若点N 在阿基米德体的表面上运动,且直线MN 与直线AB 始终满足MN ⊥AB ,则动点N 的轨迹所围成平面图形的面积是.四、双空题31半正多面体(又称作“阿基米德体”),是由两种或两种以上的正多边形围成的多面体,其构成体现了数学的对称美.如图,这是一个棱数为24,棱长为2的半正14面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体沿共顶点的三条棱的中点截去八个相同的三棱锥所得,则这个半正多面体的体积为﹔若点E 为线段BC 上的动点,则直线DE 与平面AFG 所成角的正弦值的取值范围为32阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为;若M,N是该阿基米德多面体表面上任意两点,则M,N两点间距离的最大值为.33“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个棱长为2正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则该多面体的表面积为;其外接球的表面积为.34有很多立体图形都体现了数学的对称美,其中半正多面体是由两种成两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长为2的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得,这个正多面体的表面积为.若点E为线段BC上的动点,则直线DE与直线AF 所成角的余弦值的取值范围为.35如图,将正四面体每条棱三等分,截去顶角所在的小正四面体,余下的多面体就成为一个半正多面体,亦称“阿基米德体”.点A,B,M是该多面体的三个顶点,点N是该多面体外接球表面上的动点,且总满足MN⊥AB,若AB=4,则该多面体的表面积为;点N轨迹的长度为.阿基米德多面体一、单选题1半正多面体亦称“阿基米德多面体”是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由八个正三角形和六个正方形构成的(如图所示),则异面直线AB 与CF 所成的角为()A.π6B.π4C.π3D.π2【答案】C【分析】依题意将图形放到正方体中,如图所示,由正方体的性质可得∠PQM 为异面直线AB 与CF 所成的角,即可得解;【详解】解:二十四等边体可认为是由正方体切去八个全等的三棱锥得到的,如图所示,可知AB ⎳PQ ,CF ⎳MQ ,所以∠PQM 为异面直线AB 与CF 所成的角,因为△PQM 是等边三角形,所以∠PQM =π3,故异面直线AB 与CF 所成的角为π3;故选:C2“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以一正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为1,则经过该多面体的各个顶点的球的表面积为()A.8πB.4πC.3πD.2π【答案】B【分析】将该多面体补形为正方体,得到经过该多面体的各个顶点的球为正方体ABCD-EFGH的棱切球,求出该正方体的边长,求出棱切球的半径,得到表面积.【详解】将该多面体补形为正方体,则由OR=1,AO=AR,AO⊥AR,所以由勾股定理得:AO=AR=22,所以正方体的边长为22×2=2,所以经过该多面体的各个顶点的球为正方体ABCD-EFGH的棱切球,所以棱切球的直径为该正方体的面对角线,长度为2×2=2,故过该多面体的各个顶点的球的半径为1,球的表面积为4π×12=4π.故选:B3半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,它是由正方体的各条棱的中点连接形成的几何体、它由八个正三角形和六个正方形围成(如图所示),若它所有棱的长都为2,则下列说法错误的是()A.该二十四等边体的表面积为24+83B.QH⊥平面ABEC.直线AH与PN的夹角为60°D.该半正多面体的顶点数V、面数F、棱数E,满足关系式V+F-E=2【答案】B【分析】由三角形和正方形面积公式即可求出二十四等边体的表面积,线面垂直判定定理,利用平移求异面直线夹角,推理分析即可判断结果.【详解】对于A,S□ABCD=22=4,S△ABE=12×32×2×2=3,S表=6S□ABCD+8S△ABE=6×4+8×3=24+83,故A正确;对于B,由图可知QH⎳BF,BF⊥EB,但BF与AB和AE都不垂直,所以QH不可能与平面ABE垂直,故B错误;对于C,由图可知AH⎳AD,而直线AH与AD的夹角为60°,所以直线AH与PN的夹角为60°,故C正确;对于D,该半正多面体的顶点数为12、面数为14、棱数为24,满足12+14-24=2,故D正确;故选:B.4“阿基米德多面体”也称为半正多面体,半正多面体是由两种或多种正多边形面组成,而又不属于正多面体的凸多面体.如图,某广场的一张石凳就是一个阿基米德多面体,它是由正方体截去八个一样的四面体得到的.若被截正方体的棱长为40cm,则该阿基米德多面体的表面积为()A.4800+16003cm2 B.4800+48003cm2C.3600+36003cm2 D.3600+12003cm2【答案】A【分析】通过图形可知阿基米德多面体是由六个全等的正方形和八个全等的等边三角形构成,分别求解正方形和等边三角形面积,加和即可.【详解】由题意知:阿基米德多面体是由六个全等的正方形和八个全等的等边三角形构成,其中正方形边长和等边三角形的边长均为202+202=202;∴阿基米德多面体的表面积S=6×2022+8×12×202×202×32=4800+16003cm2.故选:A.5“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则该多面体中具有公共顶点的两个正三角形所在平面的夹角正切值为()A.22B.1C.2D.22【答案】D【分析】将该多面体放在正方体中,利用空间向量的坐标运算,求出平面EFG 和平面GHK 的法向量,即可求平面EFG 和平面GHK 夹角的余弦值,进而可求解.【详解】将该“阿基米德多面体”放入正方体中,如图,平面EFG 和平面GHK 为有公共顶点的两个正三角形所在平面,建立如图所示空间直角坐标系,设正方体的棱长为2,则E (1,0,2),F (2,1,2),G (2,0,1),H (2,1,0),K (1,0,0),设平面EFG 的法向量为m=(x ,y ,z ),EF =(1,1,0),EG =(1,0,-1),所以EF ⋅m=x +y =0EG ⋅m=x -z =0,令x =1,y =-1,z =1,所以m =(1,-1,1),设平面GHK 的法向量为n=(a ,b ,c ),GH =(0,1,-1),GK =(-1,0,-1),所以GH ⋅n=b -c =0GK ⋅n=-a -c =0,令a =1,b =-1,c =-1,所以n =(1,-1,-1),设平面平面EFG 和平面GHK 的夹角为θ,则cos <m ,n >=m ⋅n m ⋅n=13×3=13,因为平面EFG 和平面GHK 的夹角为锐角,所以cos θ=cos <m ,n > =13,所以sin θ=1-cos 2θ=223,tan θ=sin θcos θ=22,故选:D6如图,将正方体沿交于同一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,截取后的剩余部分称为“阿基米德多面体”,它是一个24等边半正多面体.从它的棱中任取两条,则这两条棱所在的直线为异面直线的概率为()A.1023B.1223C.2969D.5069【答案】B【分析】分一条直线位置于上(或下)底面,另一条不在底面;两条直线都位于上下底面时;两条直线都不在上下底面时计数,再根据古典概型公式求解即可.【详解】解:当一条直线位置于上(或下)底面,另一条不在底面时,共有10×8=80对异面直线,当两条直线都位于上下底面时,有4×2=8对异面直线,当两条直线都不在上下底面时,有7×8=56对异面直线,所以,两条棱所在的直线为异面直线的概率为P=80+56+8C224=1223故选:B7半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.下图是棱长为2的正方体截去八个一样的四面体,得到的一个半正多面体,则下列说法错误的是()A.该半正多面体是十四面体B.该几何体外接球的体积为4π3C.该几何体的体积与原正方体的体积比为5∶6D.原正方体的表面积比该几何体的表面积小【答案】D【分析】由题意求该几何体的体积与表面积,由外接球的半径求体积,对选项逐一判断即得.【详解】由图可知该半正多面体的表面是由6个正方形和8个等边三角形构成,所以为十四面体,该半正多面体是十四面体,故A正确;该几何体外接球的球心为原正方体的中心,故外接球半径为1,外接球的体积为4π3,故B正确;对于C,该几何体的体积V=V正方体-8V四面体=(2)3-8×13×12×12×22=523,正方体体积为22,故该几何体的体积与原正方体的体积比为5∶6,故C正确;对于D,该几何体有6个面为正方形,8个面为等边三角形,S表=6×12+8×34×1=6+23<12,即原正方体的表面积比该几何体的表面积大,故D 错误.故选:D .8“阿基米德多面体”这称为半正多面体(semi -regularsolid ),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.已知AB =322,则该半正多面体外接球的表面积为()A.18πB.16πC.14πD.12π【答案】A【分析】根据正方体的对称性可知:该半正多面体外接球的球心为正方体的中心O ,进而可求球的半径和表面积.【详解】如图,在正方体EFGH -E 1F 1G 1H 1中,取正方体、正方形E 1F 1G 1H 1的中心O 、O 1,连接E 1G 1,OO 1,OA ,O 1A ,∵A ,B 分别为E 1H 1,H 1G 1的中点,则E 1G 1=2AB =32,∴正方体的边长为EF =3,故OO 1=O 1A =32,可得OA =OO 21+O 1A 2=322,根据对称性可知:点O 到该半正多面体的顶点的距离相等,则该半正多面体外接球的球心为O ,半径R =OA =322,故该半正多面体外接球的表面积为S =4πR 2=4π×3222=18π.故选:A .9中国有悠久的金石文化,印信是金石文化代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”.半正多面体是由两种或两种以上的正多边形围成的多面体,古希腊著名数学家阿基米德研究过此类多面体的性质,故半正多面体又被称为“阿基米德多面体”.半正多面体体现了数学的对称美,如图,是一个棱数为24的半正多面体,它的所有顶点都在同一个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.函数f (x )=12x 2-ln x 的最小值为( )A 。
12B .1C .0D .不存在解析:选A 。
因为f ′(x )=x -1x =x 2-1x ,且x >0。
令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1。
所以f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln1=12。
2.若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a 的值为( )A .e -12B .2e -12C .e 12D .2e 12解析:选B 。
依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0,ax 0=2ln x 0+1,解得⎩⎪⎨⎪⎧x 0=e ,a =2e -123.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B 。
⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C 。
由题意得f ′(x )=2x +a +3x =2x 2+ax +3x ≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0⇔-26≤a ≤26或a ≥-4⇔a ≥-26。
4.若函数f (x )=x +bx (b ∈R )的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 。
由题意知,f ′(x )=1-bx2,因为函数f (x )=x +bx (b ∈R )的导函数在区间(1,2)上有零点,令1-bx 2=0,得b =x 2,又x ∈(1,2),所以b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞). 因为b ∈(1,4),所以(-∞,-2)符合题意.5.已知函数f (x )=e x -12x 2-mx 有极值点,则实数m 的取值范围是( )A .m ≥1B .m >1C .0≤m ≤1D .0<m <1解析:选B 。
因为f (x )=e x -12x 2-mx ,所以f ′(x )=e x -x -m ,因为f (x )=e x -12x 2-mx 有极值点,所以关于x的方程e x -x -m =0有实根,且该实根使f ′(x )左右异号,设g (x )=e x -x ,y =m ,而g ′(x )=e x -1,所以当x <0时,g ′(x )<0;当x >0时,g ′(x )>0,所以函数g (x )=e x -x 在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以函数g (x )=e x -x 的极小值点为0,所以g (0)=1为g (x )=e x -x 的最小值,所以实数m 的取值范围是m >1,故选B 。
6.已知f (x )=ln x -x 4+34x ,g (x )=-x 2-2ax +4,若对任意的x 1∈(0,2],存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,则a 的取值范围是( )A 。
⎣⎡⎭⎫54,+∞B 。
⎣⎡⎭⎫-18,+∞ C 。
⎣⎡⎦⎤-18,54 D 。
⎝⎛⎦⎤-∞,-54 解析:选A 。
因为f ′(x )=1x -14-34x 2=-x 2+4x -34x 2=-(x -1)(x -3)4x 2, 易知,当x ∈(0,1)时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0, 所以f (x )在(0,1)上单调递减,在(1,2]上单调递增, 故f (x )min =f (1)=12。
对于二次函数g (x )=-x 2-2ax +4,易知该函数开口向下, 所以g (x )在区间[1,2]上的最小值在端点处取得, 即g (x )min =min{g (1),g (2)}.要使对任意的x 1∈(0,2],存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,只需f (x 1)min ≥g (x 2)min , 即12≥g (1)且12≥g (2), 所以12≥-1-2a +4且12≥-4-4a +4,解得a ≥54。
二、填空题7。
⎠⎛1e ⎝⎛⎭⎫x +1x d x =________.解析:⎠⎛1e ⎝⎛⎭⎫x +1x d x =⎪⎪⎝⎛⎭⎫x 22+ln x e 1=e 22+1-12=e 2+12。
答案:e 2+128.(高考全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________。
解析:y ′=(ax +1+a )e x ,由曲线在点(0,1)处的切线的斜率为-2,得y ′|x =0=(ax +1+a )e x |x =0=1+a =-2,所以a =-3。
答案:-39.已知函数f (x )=-x 2+2ln x ,g (x )=x +ax ,若函数f (x )与g (x )有相同的极值点,则实数a 的值为________.解析:因为f (x )=-x 2+2ln x ,所以f ′(x )=-2x +2x =-2(x +1)(x -1)x (x >0),令f ′(x )=0,得x =1或x =-1(舍去),又当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以x =1是函数f (x )的极值点.因为g (x )=x +ax ,所以g ′(x )=1-a x 2。
又函数f (x )与g (x )=x +ax 有相同极值点,所以x =1也是函数g (x )的极值点,所以g ′(1)=1-a =0,解得a =1。
经检验,当a =1时,函数g (x )取到极小值.答案:1 三、解答题10.已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43=0, 即3a ×169+2×⎝⎛⎭⎫-43=16a 3-83=0, 解得a =12。
(2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x , 令g ′(x )=0,解得x =0或x =-1或x =-4。
当x <-4时,g ′(x )<0, 故g (x )为减函数;当-4<x <-1时,g ′(x )>0,故g (x )为增函数;当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)上为减函数,在(-4,-1)和(0,+∞)上为增函数. 11.已知函数f (x )=ln xx -1。
(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值. 解:(1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2, 由⎩⎪⎨⎪⎧f ′(x )>0,x >0得0<x <e ; 由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e 。
所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e2时,(m ,2m )⊆(0,e),函数f (x )在区间[m ,2m ]上单调递增,所以f (x )max =f (2m )=ln2m2m-1;②当m <e<2m ,即e2<m <e 时,(m ,e)⊆(0,e),(e ,2m )⊆(e ,+∞),函数f (x )在区间(m ,e)上单调递增,在(e ,2m )上单调递减, 所以f (x )max =f (e)=lne e -1=1e-1;③当m ≥e 时,(m ,2m )⊆(e ,+∞),函数f (x )在区间[m ,2m ]上单调递减,所以f (x )max =f (m )=ln mm -1。
综上所述,当0<m ≤e 2时,f (x )max =ln2m 2m -1;当e 2<m <e 时,f (x )max =1e -1;当m ≥e 时,f (x )max =ln mm -1。
12.已知常数a ≠0,f (x )=a ln x +2x 。
(1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围. 解:(1)由已知得f (x )的定义域为(0,+∞), f ′(x )=ax +2=a +2x x 。
当a =-4时,f ′(x )=2x -4x。
所以当0<x <2时,f ′(x )<0, 即f (x )单调递减;当x >2时,f ′(x )>0,即f (x )单调递增.所以f (x )只有极小值,且在x =2时,f (x )取得极小值f (2)=4-4ln2。
所以当a =-4时,f (x )只有极小值4-4ln2。
(2)因为f ′(x )=a +2xx, 所以当a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在x ∈(0,+∞)上单调递增,没有最小值; 当a <0时,由f ′(x )>0得,x >-a2,所以f (x )在⎝⎛⎭⎫-a2,+∞上单调递增; 由f ′(x )<0得,x <-a2,所以f (x )在⎝⎛⎭⎫0,-a2上单调递减. 所以当a <0时,f (x )的最小值为极小值,即f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a2-a 。
根据题意得f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a2-a ≥-a , 即a [ln(-a )-ln2]≥0。