小学奥数专题巧解三阶幻方A
三阶幻方最简单的口诀
三阶幻方最简单的口诀1. 幻方的魅力你有没有听说过三阶幻方?这东西可有意思了,简单来说,就是一个3×3的方阵,里面填上1到9的数字,要求每一行、每一列和两个对角线的数字加起来都得是同一个数。
听起来是不是有点复杂?别着急,咱们慢慢聊。
首先,咱们得知道,这个“同一个数”其实是15。
因为1+2+3+4+5+6+7+8+9加起来是45,而这个45再分成三组,每组15。
想想看,真的挺神奇的吧!这就像是数学里的魔法,既简单又有趣。
说到这,谁还没被这样的魔法吸引呢?2. 如何排列2.1 排列步骤要想轻松搞定三阶幻方,我们得有个简单的口诀。
听好了,首先,把数字1放在中间上方的格子里。
然后,接下来放的数字要遵循一个“左上右下”的原则。
具体点说,就是当你放了一个数字之后,接下来的数字应该在它的右上方,如果那个位置已经有数字了,那就往下移动一格,继续放。
2.2 举个例子比如说,第一步你放上1,然后接下来的数字2,你就要放在1的右上方,结果发现位置空着,就放上去。
接着放3,你会发现3的右上方位置又空着,继续放。
如果不小心越过了边界,别担心,直接从对面的边界进来就行。
记住,永远都不能让数字重叠。
这样排下去,慢慢的,你会发现所有的数字都能填满,最后的结果可真是让人眼前一亮。
虽然看起来好像有点绕,但其实只要试几次,你就能熟能生巧,像老手一样轻松掌握。
3. 幻方的乐趣3.1 朋友聚会的小把戏你可以想象一下,在朋友聚会的时候,突然用这个三阶幻方给大家来一段小表演,肯定能吸引眼球。
大家围过来,啊呀,怎么做到的呀!你就可以得意洋洋地跟他们说:“这可是我最近学会的绝活!”多么拉风啊,简直就像是从魔术师的手中变出来的一样。
3.2 学习中的好帮手而且,这三阶幻方还不仅仅是个游戏。
它还可以锻炼我们的逻辑思维,特别适合那些喜欢挑战自己的朋友们。
就像古人说的“开卷有益”,我们在玩乐中学习,顺便培养我们的耐心和专注力,真是一举两得。
在这个快节奏的生活中,抽出一点时间,和家人朋友一起围坐,动动脑筋,不仅能拉近彼此的距离,也能享受那种解谜后的成就感。
小学奥数三阶幻方讲解归纳(1)
返回
三阶幻方中的规律:
规律3:与中间数对应的上下Hale Waihona Puke 左 右、对角两个数字的和=中间 数×2
4 92
三
阶 3 57
幻
方 81 6
规律4:角上的数字=对角相 邻的两数字和的一半
492 3 57 816
提高:
?2
2a-1 2
a
a
?
1
2a-2 1
练一练:
完成下列三阶幻方:
3 4 -1
① -2 2 6
小学奥数三阶幻方讲 解归纳(1)
三阶幻方中的规律:
1、每行、每列、每条对角线上三个数 的和都相等,都等于幻和。 2、9个数的中位数在幻方的最中心。 3、幻和等于中间数的3倍。 4、每“对”数的连线都过“中心” 。
( 9个数从小到大排列,1,9位为“一对”,2,8位为“一对”, 3,7位
为“一对”,4,6 位为“一对”,)
生活中的幻方
谢谢!
5 01
10
②4 8
③
7
12 11 18
大数学家杨辉的构造方法:
早在公元1275年,宋朝的杨辉就对幻方 进行了系统的研究。他称这种图为“纵 横图”,他提出了一个构造三阶幻方的 秘诀:
九子斜排,上下对易,
左右相更,四维挺出
杨辉构造法
试一试
• 把2、3、4、5、6、7、8、9、10 分别填入三阶方格中,每个数只用 一次,使每一横行、竖列、对角线 上三个数的和都相等.
三阶幻方原理及填法
三阶幻方原理及填法嗨,朋友们!今天咱们来聊聊一个超级有趣的数学小玩意儿——三阶幻方。
这三阶幻方啊,就像是数学世界里的一个神秘小魔法阵,可有意思啦。
我先给你们说说啥是三阶幻方。
简单来讲,就是用1到9这九个数字,填在一个3×3的方格里面,使得每行、每列还有两条对角线上的数字之和都相等。
这个相等的和呢,就叫幻和。
你想啊,这九个数字就像九个调皮的小娃娃,要把它们安排在这九个格子里,还得让每行每列和对角线上的数字之和都一样,是不是感觉像在玩一个超级有挑战性的数字拼图游戏呢?那这个幻和是多少呢?这可不难算哦。
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45,因为三阶幻方有三行(或者三列),所以幻和就是45÷3 = 15。
这就像是我们找到了这个魔法阵的一个关键密码一样。
我有个朋友,之前第一次接触三阶幻方的时候,就皱着眉头跟我说:“这怎么填啊?感觉无从下手呢!”我就跟他说:“嘿,别急,这里面可有不少小窍门呢。
”有一种比较简单的填法。
咱们先把1放在这个3×3方格的最中间那一行最左边的那个格子里。
这就像是先在魔法阵里种下一颗数字的种子。
然后呢,按照斜着往上走的规则来填数字。
如果斜着往上走的时候,走出了这个方格,那就像这个数字小娃娃调皮地跑到方格外面去了,怎么办呢?这时候就把它拉回来,拉到这个方格相对应的另一边的位置上。
比如说,如果斜着往上走,数字跑到方格的左上角外面去了,那就把它放到右下角的格子里。
当我们按照这个方法填到数字3的时候,就会发现如果再斜着往上走,那个格子已经有数字1了。
这就像两个小娃娃抢一个小格子,那可不行。
这时候呢,我们就把数字3填在数字2的下面。
就像数字3说:“既然上面的地方被占了,那我就乖乖在2下面呆着吧。
”按照这个规则一直填下去,就能把这个三阶幻方填出来啦。
哇,当你把最后一个数字填好的时候,那种成就感就像是你自己创造了一个小奇迹一样。
不过呢,还有其他的填法哦。
小学奥数之三阶幻方讲义
三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
a bc def g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15 所以:()()()()a e i b e h c e g d e f +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45 所以45360+⨯=e36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
三阶幻方的解题技巧
三阶幻方的解题技巧三阶幻方的解题技巧1. 了解三阶幻方的基本概念和性质•三阶幻方是一个3x3的方阵,其中填充了1到9的数字,使得每行、每列以及两条对角线上的数字之和都相等。
•幻方的和等于15,即每行、每列和对角线上的数字之和都为15。
2. 掌握构造幻方的基本方法先将幻方的核心数字填入方阵中•幻方的核心数字是5,将其填入方阵的正中央。
•由于幻方的和为15,剩余的数字之和为10,因此将剩下的数字5个分散填入方阵的四个角和四个边中。
使用交叉填充法填充剩余数字•从幻方的核心数字开始,按照交叉填充的方式,填充剩余的数字。
•在填充时,优先选择未被填充的位置,按照特定的顺序分别填入剩余的数字,确保满足幻方的条件。
3. 借助数学规律优化解题过程交叉填充法的数学规律•在使用交叉填充法时,填入的每个数字都满足一个特定的数学规律。
•可以观察到,相邻的两个数字之和等于15。
例如,1和9、2和8、3和7等,它们的和都等于15。
•基于这个数学规律,可以在填入数字时,选择与已填数字的补数填入,使得每个新增的数字与已填数字的和都等于15。
对角线和行列和的对称性•幻方具有对角线和行列和的对称性,即对角线上的数字之和等于行或列上数字之和。
•可以利用这个对称性来简化解题过程。
确定方阵中的某些数字后,可以根据对称性推算出其他位置应填入的数字,进一步减少尝试的次数。
4. 通过举例练习提高解题能力•通过练习解题,掌握上述技巧的应用方法,提高解题效率和准确性。
•可以尝试解题网站或应用程序提供的三阶幻方题目,不断练习并思考解题过程中的技巧和方法。
5. 总结•三阶幻方的解题涉及到基本概念、构造方法和数学规律等多个方面的知识。
•理解这些知识并加以应用,可以有效地解题,并提高解题的效率和准确性。
注意:文章中的数字仅为示范用途,实际解题过程需要根据具体情况进行调整和计算。
三阶幻方问题的代数解法
三阶幻方问题的代数解法
三阶幻方是有趣的数学难题,也可以用代数的方法来解题。
代数解法更加简便,有助于省
去计算细节,同时也会使解题过程更加有趣。
首先,我们可以先创建一个空三阶方阵,这样,我们可以将其看做一个接受未知数的数学
模型。
接下来,我们可以用等式和未知数来填充这个空矩阵。
这里,三四个未知数即为这
个空方阵中所有元素的值,这里可以使用九个等式来定义他们,比如行和列之和为n的等式。
然后,我们可以用解方程的方法来求解三阶矩阵的所有解。
我们可以使用三元一次方程组,也就是九个等式,和我们提前定义的未知数的关系。
通过求解方程组,即可解出所有的解,如此也就简化了三阶迷宫问题的解法。
最后,我们可以利用代数手段轻松解决三元幻方问题。
这种方法减少了大量无谓的计算,
可以使解决三阶迷宫问题变得更加轻松。
加上高中学过的数学知识,就可以很轻易地解决
这样一个有趣的数学难题了。
小学奥数专题巧解三阶幻方APPT课件
7、 用3~11这九个数补全图2中的幻方,并求幻和。
48
6、 用1~9这九个数补全图1中的幻方,并求幻和。
5 26
图1
图3
5
图2
8、 在图3的空格中填入不大于15且互不相同 的自然数使每一横行、竖行和对角线上的三个 数之和都等于30。
9
12 3 8 94 76 5
方案一
12 3 654 789
方案二
五、练习
1、在图1中3×3的阵列里,第一行第三列的 位置上填5,第二行第一列的位置上填6,请 你在其它方格中填上适当的数,使方阵横、 纵、斜三个方向的三个数之和为36。
5
6
3、写出一个三阶幻方,使其幻和为24
图1
2、将 1 , 1 , 1 , 1 , 2 , 3 , 1 , 5 , 7 这九
2、中间数=与中间数同一直线上(含对角线)相邻两数的和÷ 2
M= (A+F)÷2 =(D+C)÷2 =(H+E)÷2 =(G+B)÷2
3、A=(B+C)÷2
E=(B+D)÷2
F=(G+D)÷2
H=(C+G)÷2
AG E DM C HBF
四、反三阶幻方及解法
反三阶幻方是在3×3的方格子里(即三行三列),按一定的要求填上九 个数,使每行、每列、及两条对角线上各自三数之和均不相等,这样的 3×3的数阵阵列称为反三阶幻方
赵老师教你学奥数
小学奥数专题
第一讲 三阶幻方
276 951 4 38
.
一、三阶幻方的定义
有关幻方问题的研究在我国已流传了两千多年,它是具有独特形式的 填数字问题.宋朝的杨辉将幻方命名为“纵横图.”并探索出一些解答幻方问 题的方法.随着历史的进展,许多人对幻方做了进一步的研究,创造了许 多绚丽多彩的幻方.
小学奥数 三阶幻方
三阶幻方(二)同学们:我们今天继续学习三阶幻方,通过上次学习,同学们初步掌握了求三阶幻方的方法。
下面我们就利用这些方法求三阶、四阶等幻方。
(一)学习指导与解答例1. 在下图的33⨯的阵列中填入了1~9的自然数,构成了大家熟悉的三阶幻方。
现在另有一个33⨯的阵列,请选择九个不同的自然数填入九个方格中,使其中最大者为20,最小者大于5,且每一横行,每一竖行及每条对角线上三个数的和都相等。
492357816152013141618191217图1 图2分析:所给的三阶幻方中填入的是1~9这九个不同的自然数,其中最大的为9,最小的为1,要使新编制的幻方中最大数为20,而91120+=,因此,如果在所给幻方中各数都增加11,就能构成一个新幻方,并且满足最大数为20,最小数大于5。
见图。
例2. 在33⨯的阵列中,第一行第三列的位置上填5,第二行第一列的位置上填6,如图3,请你在其它方格中填上适当的数,使方阵横、纵、斜三个方向的三个数之和为36。
56A B C D EFG56 图3图4分析:为了叙述方便,我们将其余空格的数字用字母表示,如图4。
因为幻和为36,所以可求出中心数为:36312÷=,即C =12从第二行可求出D =-+=3612618() 从对角线中可求出E =-+=3612519() 从第一列可求出A =-+=3661911() 从第一行可求出B =-+=3651120() 从第二列可求出F =-+=3620124() 从第三列可求出G =-+=3651813() 得到三阶幻方如下:112056121819413从上面的例题我们不难看出:要填出一个三阶幻方,中心数起着至关重要的作用。
利用幻和=中心数×3这个关系式,在已知幻和的情况下,可先求出中心数,在已知中心数的情况下,可求出幻和,以便其它数的求出。
例3. 将1~9这九个数字分别填入图1中所示的空格中,使得前两行所构成的两个三位数之和等于第三行的三个数,并且相邻(上下或左右)的两个数奇偶性不同。
小学奥数之三阶幻方讲义
小学奥数之三阶幻方讲义同学们:在3 3(三行三列)的正方形方格中,既不重复又不遗漏地填上1―9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在4 4(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在4 4方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
adbecfigh图1 图2分析:我们先用a、b、c、d、e、f、g、h、i分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a、c、g、i它们各自都要参加一行,一列及一条对角线的求和运算。
如果e以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和(1 2 3 4 5 6 7 8 9) 345 315(3)选择突破口,显然是e,看图2。
因为:a e i b e h c e g d e f 15 所以:(a e i) (b e h) (c e g) (d e f) 15 15 15 15 60也就是:(a b c d e f g h i) 3 e 60 又因为:a b c d e f g h i 45 所以45 3 e 603 e 60 45 e 5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
小学奥数专题巧解三阶幻方A
用3~11这九个数补全 图2中的幻方,并求幻和。
5
2 056
图1
图3
04
在图3的空格中填入不大
于15且互不相同的自然
数使每一横行、竖行和
对角线上的三个数之和
都等于30。
9
洛书所表示的幻方是在3×3的方格子里(即三行三列),按一定的要求填上 1~9这九个数,使每行、每列、及两条对角线上各自三数之和均相等,这样的 3×3的数阵阵列称为三阶幻方,又称九宫算。
一般地说,在n×n(n行n列)的方格里,既不重复又不遗漏地填上n2个连续 的自然数(一般从1开始,也可不从1开始)每个数占一格,并使排在任一行、任 一列和两条对角线上的n个自然数的和都相等,这样的数表叫做n阶幻方.这个和 叫做幻和,n叫做阶. .
2、中间数=与中间数同一直线上(含对角线)相邻两数的和÷ 2
M= (A+F)÷2 =(D+C)÷2 =(H+E)÷2 =(G+B)÷2
3、A=(B+C)÷2
E=(B+D)÷2
F=(G+D)÷2
H=(C+G)÷2
AG E DM C HBF
四、反三阶幻方及解法
反三阶幻方是在3×3的方格子里(即三行三列),按一定的要求填 上九个数,使每行、每列、及两条对角线上各自三数之和均不相等, 这样的3×3的数阵阵列称为反三阶幻方
这九
个数分别填入图1中,使每一横行,每一竖行,两条对角线中三个数的和都相等。
4、把3、7、11、15、19、23、27、31、35、39 这九个数填入下图,构造三阶幻方。
01
把3、7、11、15、19、 23、27、31、35、39 这九个数填入下图,构 造反三阶幻方。
小学奥数三阶幻方
三阶幻方三阶幻方就是将九个自然数填在3×3(三行三列)的正方形内,使每一行、每一列以及每一条对角线上的三个数的和都相等。
三阶幻方是一种特殊的数阵图。
例1 将1-9这九个数填入方格,使它成为一个三阶幻方。
分析:1+2+3+4+...+9=45 所以,每行、每列、每条对角线的三个数的和是45÷3=159+5+1,9+4+2 8+6+1,8+5+2,8+4+37+6+2,7+5+36+5+4这8个式子中5出现四次,所以5一定在中心。
8、6、4、2这四个数出现三次,所以在四个角上。
随堂练习1、用0-8这9个数构造一个三阶幻方。
2、将2,4,6,...,18填入3×3方格中,使它成为一个三阶幻方。
公式:三阶幻方中央的数=行(列)和÷3和=中央数×33、如果2、6、10、11、15、19、20、24、28可以组成一个三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央数是多少?4、如图,这是一个三阶幻方,请填出其它数。
(4) (5)5、已知图中,每一行、每一列、每条对角线上3个数的乘积都相等,请填出其它的数。
6、把下图三阶幻方补充完整。
练习题1、用3、6、9、12、15、18、21、24、27这9个数作一个三阶幻方。
2、用0、2、4、6、8、10、12、14、16这9个数作一个三阶幻方。
(第1题) (第2题)3、在空格中填数,使每一行、每一列、每条对角线的和是30。
(第3题) (第4题) (第5题)4、在空格中填数,使每一行、每一列、每条对角线的和是30。
5、用9个连续自然数组成三阶幻方,使每一行、每一列、每条对角线的和是60。
6、下图是一个三阶幻方,求?是多少。
(第6题) (第7题)7、从1-13这13个数中选12个数填到下图,使每一横行的4个数的和相等,每一竖列的3个数的和也相等。
这时所选的12个数是哪12个数?每一行的和是多少?每一列的和是多少?8、填完第7题的图。
小学奥数三阶幻方
三阶幻方三阶幻方就是将九个自然数填在3×3(三行三列)的正方形内,使每一行、每一列以及每一条对角线上的三个数的和都相等。
三阶幻方是一种特殊的数阵图。
例1 将1-9这九个数填入方格,使它成为一个三阶幻方。
分析:1+2+3+4+...+9=45 所以,每行、每列、每条对角线的三个数的和是45÷3=159+5+1,9+4+2 8+6+1,8+5+2,8+4+37+6+2,7+5+36+5+4这8个式子中5出现四次,所以5一定在中心。
8、6、4、2这四个数出现三次,所以在四个角上。
随堂练习1、用0-8这9个数构造一个三阶幻方。
2、将2,4,6,...,18填入3×3方格中,使它成为一个三阶幻方。
公式:三阶幻方中央的数=行(列)和÷3和=中央数×33、如果2、6、10、11、15、19、20、24、28可以组成一个三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央数是多少?4、如图,这是一个三阶幻方,请填出其它数。
(4) (5)5、已知图中,每一行、每一列、每条对角线上3个数的乘积都相等,请填出其它的数。
6、把下图三阶幻方补充完整。
练习题1、用3、6、9、12、15、18、21、24、27这9个数作一个三阶幻方。
2、用0、2、4、6、8、10、12、14、16这9个数作一个三阶幻方。
(第1题) (第2题)3、在空格中填数,使每一行、每一列、每条对角线的和是30。
(第3题) (第4题) (第5题)4、在空格中填数,使每一行、每一列、每条对角线的和是30。
5、用9个连续自然数组成三阶幻方,使每一行、每一列、每条对角线的和是60。
6、下图是一个三阶幻方,求?是多少。
(第6题) (第7题)7、从1-13这13个数中选12个数填到下图,使每一横行的4个数的和相等,每一竖列的3个数的和也相等。
这时所选的12个数是哪12个数?每一行的和是多少?每一列的和是多少?8、填完第7题的图。
奥数-13三阶幻方+答案
三阶幻方一、幻方的由来幻方起源于中国,传说在大禹治水时,有只神龟在洛水中浮起,龟背上有奇特的图案,如左图。
人们称之为洛书。
如果将龟背上的数字翻译出来,就是九个有规律排列的数字。
观察发现,上图的每行、每列,斜线上的三个数之和都是15。
像这样,将九个不同的自然数填在三行三列的正方形内,使每行、每列以及每条对角线上的三个数之和都相等,这样的图形就叫三阶幻方。
三阶幻方是一种特殊的数阵图。
上面的三阶幻方中,每条线上的三数之和15是这个幻方幻和,5是幻方最中心的数字,简称中心数。
二、三阶幻方的规律1、幻和=总和÷3;2、中间数=幻和÷3=总和÷93、三阶幻方性质:角块等于对角两棱块之和的一半。
c +(2d -b)=a +(2d -c) c -b =a -c c =(a +b)÷2三、填幻方的方法 1、凑一凑用九张纸片,分别写上九个数字(或者用九张扑克牌)在桌(地)面上摆出来,通过移动卡片使数字的排列符合题目的要求,此法是“凑”出来的。
2、排转换第一步把九个数字摆成图一,第二步让周围的八个数字绕着中心的数字依次转动一个位置,成图二,第三步将对角的数字进行对换,成图三。
这个方法归结为“一排,二转,三对换”。
3、杨辉法:4、阶梯法:(适用奇数幻方)①、构造阶梯②、按顺序斜排③、相互交换5、罗伯特法:(适用奇数幻方)1居上行正中央,依次斜填切莫忘,上出框界往下写,右出框是左边放,重复便在下格填,右上重复一个样。
6、中心开花法:①排列:1,2,3,4,5,6,7,8,9;②确定中心数,九个数之和÷9=5;③定四角数,位于这个数列偶数项的数,即2,4,6,8;④填余下的4个数(见右图)。
7、对角线法:1、按顺序写数。
2、对角互换(区分大对角和小对角)与幻方相反的问题是反幻方。
将九个数填入三行三列的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方。
小学三年级奥数-幻方
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
42
42
42
42
42
42
42
42
所以 幻和=42
同学们 你们真的好棒哦!不要骄傲, 继续加油哦!
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
换位
归位
三阶幻方有技巧, 3数斜着先排好, 上下左右要交换, 然后各自归位了!
01
如何填幻方(幻方的构成)
02
定中间数 填四角数 算其余数
定中间数,填四角数,算其余数
将1~9九个自然数填入下图的九个方格里,使每行、每列、每条对角线上的三个数的和都相等。 把九个数最中间的一个填在方格的正中央,第二、四、六、八个数分别填在四个角上。 幻和=(1+2+3+…+8+9) ÷3=15
9
9、
8、
7、
6、
5、
13
12、
11、
10、
一.三阶幻方的编制和补充
二.四阶幻方的编制和补充
三阶幻方有技巧, 3数斜着先排好, 上下左右要交换, 然后各自归位了!
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
三阶幻方的解法
三阶幻方的解法
三阶幻方,又称数学童子军,是一个众所周知的传统游戏,1850年,从瑞士布里多尔发明了三阶幻方。
每一行,列,以及对角线所组成的九个方格中要填入数字1到9,要求每个方格中的数字都不重复。
三阶幻方是一个数学游戏,要求玩家解决出方格中的数字,但是很多人认为它很难解决。
其实,三阶幻方的解法比较简单,只要按照以下几步来操作,就可以很快解出来:
首先,把这个问题分解成每一行,每一列,以及每个对角线有3个方格,要求每个方格里的数字要不重复。
接下来根据数字1-9的顺序,从左到右,从上到下依次填满每个方格,就可以解出三阶幻方了。
当你填完一行的三个方格之后,可以先检查它们是否满足条件;如果不满足,就要换一种数字组合,再检查,一直这样进行,直到三行的数字完全满足要求为止,整个三阶幻方就可以解出来了。
经过简单的计算和推理思考,三阶幻方也难不倒我们。
只要遵循上述步骤和规律,就能轻松解决这个数学游戏,可以让玩家体验出一种解决谜题带来的成就感。
三年级奥林匹克数学专题讲解三阶幻方理论A篇和练习B篇
三年级奥林匹克数学专题讲解——三阶幻方理论A 篇幻方实际上是一种填数游戏,它不仅有三阶,还有四阶、五阶……直到任意阶。
一般地,在n 行n 列的方格里,既不重复也不遗漏地填上n n ⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上n 个自然数的和相等,我们把这几个相等的和叫做幻和,n 叫做阶,这样排成的图形叫做n 阶幻方。
三阶幻方:在三行三列的正方形方格中,既不重复也不遗漏地填上33⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上3个自然数的和均相等。
通常这样的图形叫做三阶幻方。
三阶幻方的一些基本规律:幻和=九个数之和÷3,中间数=幻和÷3。
九个连续的自然数中,第五个数是中间数,第二、四、六、八个数是四个角上的数。
例题1 在下面的方格中填上适当的数,使每行、每列和每条对角线上的三个数的和都等于24。
分析: 解决问题的突破口:找出每行、每列和每条对角线上的任意两个数,就可以根据幻和求出第三个数。
例题2 下图中,每个字母代表一个数。
已知每行、每列、每条对角线上的三个数和都相等,若4,16,17,5a l d h ====。
求b 与f 为多少?分析: 根据幻和相等:a e l c e g b e h d e f ++=++=++=++,这4个算式中都有中间数e ,所以有:a l c g b h df +=+=+=+。
再代入4,16,17,5a l d h ====即可。
一、知识介绍二、例题讲解例题3 编出一个三阶幻方,使其幻和为27。
分析: 先根据幻和求中间数,然后填其他数。
请你试一试:调换数的位置,还可以得到几种答案?例题4 将1~9这九个自然数填在下面图中的九个方格里,使每行、每列、两条对角线上的三个数的和都相等。
分析: 先求幻和,再根据幻和求中间数,然后填其他数。
例题5 下图中,a g 7个字母,各代表7个数字,要使三阶幻方成立,“a ”所代表的数字是多少?分析: 根据幻方的概念:每一行、每一列以及每条对角线上3个自然数的和均相等。
小学奥林匹克辅导及答案 三阶幻方(含答案)-
三阶幻方同学们:在(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续33⨯的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均44⨯相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
a bc d ef g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15所以:()()()()a e ib e hc e gdef +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45所以45360+⨯=e 36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
3
1 6 7
2 5 8
方案二
3 4 9
8
7
9 4 6 5
方案一
五、练习
1、在图1中3×3的阵列里,第一行第三列的 位置上填5,第二行第一列的位置上填6,请 你在其它方格中填上适当的数,使方阵横、 纵、斜三个方向的三个数之和为36。 3、写出一个三阶幻方,使其幻和为24
5 6
图1 2、将
1 1 1 1 2 3 1 5 7 , , , , , , , , 这九 2 3 4 6 3 4 12 12 12
1、幻和=中间数×3 2、中间数=与中间数同一直线上(含对角线)相邻两数的和÷ 2 M= (A+F)÷2 =(D+C)÷2 =(H+E)÷2 =(G+B)÷2 3、A=(B+C)÷2 E=(B+D)÷2 F=(G+D)÷2 H=(C+G)÷2
A G E反三阶幻方是在3×3的方格子里(即三行三列),按一定的要求填上九 个数,使每行、每列、及两条对角线上各自三数之和均不相等,这样的 3×3的数阵阵列称为反三阶幻方
4 5
图2
6、 用1~9这九个数补全图1中的幻方,并求幻和。
8
8、 在图3的空格中填入不大于15且互不相同 的自然数使每一横行、竖行和对角线上的三个 数之和都等于30。
5 2
图1
图3
6
9
赵老师教你学奥数
小学奥数专题
第一讲 三阶幻方
2 7 6 9 5 1 4 3 8
一、三阶幻方的定义
有关幻方问题的研究在我国已流传了两千多年,它是具有独特形式的 填数字问题.宋朝的杨辉将幻方命名为“纵横图.”并探索出一些解答幻方问 题的方法.随着历史的进展,许多人对幻方做了进一步的研究,创造了许 多绚丽多彩的幻方. 据传说在夏禹时代,洛水中出现过一只神龟,背上有图有文,后人称 它为“洛书”。 洛书所表示的幻方是在3×3的方格子里(即三行三列),按一定的要 求填上1~9这九个数,使每行、每列、及两条对角线上各自三数之和均相 等,这样的3×3的数阵阵列称为三阶幻方,又称九宫算。 一般地说,在n×n(n行n列)的方格里,既不重复又不遗漏地填上n2 个连续的自然数(一般从1开始,也可不从1开始)每个数占一格,并使排 在任一行、任一列和两条对角线上的n个自然数的和都相等,这样的数表 叫做n阶幻方.这个和叫做幻和,n叫做阶. .
个数分别填入图1中,使每一横行,每一竖行, 两条对角线中三个数的和都相等。
4、把3、7、11、15、19、23、27、31、35、39 这九个数填入下图,构造三阶幻方。
5、把3、7、11、15、19、23、27、31、35、 39这九个数填入下图,构造反三阶幻方。
7、 用3~11这九个数补全图2中的幻方,并求幻和。
二、三阶幻方的解法
杨辉在《续古摘奇算法》中,总结洛书幻方构造方法时写到:“九子排 列,上下、左右相更,四维挺出.” 添耳法解三阶幻方: 例:用1~9这九个数完成下图中的三阶幻方。
八个方向,故有八种填法
3 2 6 5 4 7
填数方向及移动方法
2 7 6
9
1
8
9 5 1 4 3 8
完成效果图
三、三阶幻方的规律