初中正方形试题
初三正方形典型题
正方形的典型题目
题目:在正方形ABCD中,E是BC的中点,F是CD上一点,且CF = (1/4)CD。
求证:∠EAF = 45°。
证明:
第一步,由题目信息,可知正方形ABCD中,AB=BC=CD=DA,且∠B=∠C=∠D=90°。
第二步,连接AC,取AC的中点为O,连接EO和FO。
第三步,根据正方形的性质,可知AC⊥BD,且AC、BD互相平分。
所以,EO为三角形ABC 的中位线,FO为三角形ADC的中位线。
第四步,由三角形中位线的性质,有EO=1/2AB,FO=1/2AD。
而AB=AD,所以EO=FO。
第五步,因为EO=FO,且O为AC的中点,所以∠EOF=90°。
又因为∠BAC=45°,所以∠EAF=∠EOF-∠BAC=45°。
综上,∠EAF = 45°。
这道题考察了正方形的性质、三角形中位线的性质以及角度的计算等知识点。
在解题过程中,我们巧妙地利用了正方形和三角形的性质来找到解题的突破口。
中考数学一轮复习正方形试题
正方形制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日知识考点:理解正方形的性质和断定,并能利用它进展有关的证明和计算。
精典例题:【例1】如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,且EF ∥AC ,在DA 的延长线上取一点G ,使AG =AD ,EG 与DF 相交于点H 。
求证:AH =AD 。
分析:因为A 是DG 的中点,故在△DGH 中,假设AH =AD ,当且仅当△DGH 为直角三角形,所以只须证明△DGH 为直角三角形〔证明略〕。
评注:正方形除了具备平行四边形的一般性质外,还特别注意其直角的条件。
本例中直角三角形的中线性质使此题证明简单。
例1图例2图【例2】如图,在正方形ABCD 中,P 、Q 分别是BC 、CD 上的点,假设∠PAQ =450,求证:PB +DQ =PQ 。
分析:利用正方形的性质,通过构造全等三角形来证明。
变式:假设条件改为PQ =PB +DQ ,那么∠PAQ =?你还能得到哪些结论? 探究与创新:【问题一】如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,过A 作AG ⊥EB 于G ,AG 交BD 于点F ,那么OE =OF ,对上述命题,假设点E 在AC 的延长线上,AG ⊥EB ,交EB 的延长线于点G ,AG 的延长线交DB 的延长线于点F ,其它条件不变,那么结论“OE =OF 〞还成立吗?假如成立,请给出证明;假如不成立,说明理由。
问题一图1 O F G EDC BA问题一图2分析:对于图1通过全等三角形证明OE =OF ,这种证法是否能应用到图2的情境中去,从而作出正确的判断。
结论:〔2〕的结论“OE =OF 〞仍然成立。
提示:只须证明△AOF ≌△BOE 即可。
评注:此题以正方形为背景,打破了单纯的计算与证明,着重考察了学生观察、分析、判断等多种才能。
【问题二】操作,将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑行,直角的一边始终经过点B ,另一边与射线DC 相交于点Q 。
全国初中数学联赛 专题 正方形
ABCDE FGO 专题20 正方形阅读与思考矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的平行四边形,而且是邻边相等的特殊矩形,也是有一个角是直角的菱形,因此,我们可以利用矩形、菱形的性质来研究正方形的有关问题.正方形问题常常转化为三角形问题解决,在正方形中,我们最容易得到特殊三角形、全等三角形,熟悉以下基本图形.例题与求解【例l 】 如图,在正方形纸片ABCD 中,对角线AC ,BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB ,AC 于点E ,G .下列结论:①05.112=∠AGD ;②2=AEAD;③OGD AGD S S ∆∆=;④四边形AEFG 是菱形;⑤OG BE 2=. 其中,正确结论的序号是______________. (重庆市中考试题)解题思路:本题需综合运用轴对称、菱形判定、数形结合等知识方法.【例2】如图1,操作:把正方形CGEF 的对角线CE 放在正方形ABCD 的边BC 的延长线上)(BC CG >,取线段AE 的中点M .连MD ,MF .(1)探究线段MD ,MF 的关系,并加以证明. (2)将正方形CGEF 绕点C 旋转任意角后(如图2),其他条件不变. 探究线段MD ,MF 的关系,并加以证明.(大连市中考题改编) 解题思路:由M 为AE 中点,想到“中线倍长法”再证三角形全等.图2图1MFEGMFGABDCECD BA【例3】如图,正方形ABCD 中,E ,F 是AB ,BC 边上两点,且FC AE EF +=,EF DG ⊥于G ,求证:DA DG =.(重庆市竞赛试题)解题思路:构造FC AE +的线段是解本例的关键.GF B CA DE【例4】 如图,正方形ABCD 被两条与边平行的线段EF 、GH 分割成四个小矩形,P 是EF 与GH 的交点,若矩形PFCH 的面积恰是矩形AGPE 面积的2倍,试确定HAF ∠的大小,并证明你的结论.(北京市竞赛试题) 解题思路:先猜测HAF ∠的大小,再作出证明,解题的关键是由条件及图形推出隐含的线段间的关系.【例5】 如图,在正方形ABCD 中,E ,F 分别是边BC ,CD 上的点,满足DF BE EF +=,AF AE ,分别与对角线BD 交于点N M ,.求证:(1)045=∠EAF ;(2)222DN BM MN +=. (四川省竞赛试题)解题思路:对于(1),可作辅助线,创造条件,再通过三角形全等,即可解答;对于(2),很容易联想到直角三角形三边关系.M NEBCDAFA B CDE F GHP【例6】已知 :正方形ABCD 中,045=∠MAN ,MAN ∠绕点A 顺时针旋转,它的两边分别交CB ,DC (或它们的延长线)于点N M ,.当MAN ∠绕点A 旋转到DN BM =时(如图1),易证MN DN BM =+.(1)当MAN ∠绕点A 旋转到DN BM ≠时(如图2),线段DN BM ,和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段DN BM ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.(黑龙江省中考试题)解题思路:对于(2),构造BM DN −是解题的关键.能力训练A 级1. 如图,若四边形ABCD 是正方形,CDE ∆是等边三角形,则EAB ∠的度数为__________.(北京市竞赛试题)2. 四边形ABCD 的对角线BD AC 、相交于点O ,给出以下题设条件: ①DA CD BC AB ===;②BD AC DO CO BO AO ⊥===,; ③BD AC DO BO CO AO ⊥==,,;ABCDMN图3ABCDMN图2ABCDMN图1④DA CD BC AB ==,.其中,能判定它是正方形的题设条件是______________. (把你认为正确的序号都填在横线上)(浙江省中考试题)3.如图,边长为1的两个正方形互相重合,按住一个不动,将另一个绕顶点A 顺时针旋转030,则这两个正方形重叠部分的面积是__________.(青岛市中考试题)B CDA E第1题图 第3题图 第4题图4.如图,P 是正方形ABCD 内一点,将ABP ∆绕点B 顺时针方向旋转至能与'CBP ∆重合,若3=PB ,则'PP =__________. (河南省中考试题)5.将n 个边长都为cm 1的正方形按如图所示摆放,点n A A A Λ,,21分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为( )A .241cm B .24cm n C. 241cm n − D. 2)41(cm n(晋江市中考试题)A 5A 3A 4A 2A 1OB F ECA第5题图 第6题图ABCDPP ''ABCDC 'D 'A '6. 如图,以BCA Rt ∆的斜边BC 为一边在BCA ∆的同侧作正方形BCEF ,设正方形的中心为O ,连接AO ,如果26,4==AO AB ,则AC 的长为( )A . 12B .8 C.34 D. 28(浙江省竞赛试题)7.如图,正方形ABCD 中,035,=∠=MCE MN CE ,那么ANM ∠是( ) A .045 B .055 C. 065 D. 0758.如图,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,CEF Rt ∆的面积为200,则BE 的值是( )A .15B .12C .11D .10第8题图第7题图ABMBCD ACD E FNE9.如图,在正方形ABCD 中,E 是AD 边的中点,BD 与CE 交于F 点,求证:BE AF ⊥.FEB CDA10. 如图,在正方形ABCD 中,E 是AB 边的中点,F 是AD 上的一点,且AD AF 41= . 求证:CE 平分BCF ∠.BCADE F11. 如图,已知P 是正方形ABCD 对角线BD 上一点,F E BC PF DC PE ,,,⊥⊥分别是垂足. 求证:EF AP =.(扬州市中考试题)FEBCAD P12.(1)如图1,已知正方形ABCD 和正方形)(BC CG CGEF >,G C B ,,在同一条直线上,M 为线段AE 的中点.探究:线段MF MD ,的关系.(2)如图2,若将正方形CGEF 绕点C 顺时针旋转045,使得正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上,M 为AE 的中点.试问:(1)中探究的结论是否成立?若成立,请证明;若不成立,请说明理由.(大连市中考试题)图1 图2B 级1. 如图,在四边形ABCD 中,090,=∠=∠=ABC ADC DC AD ,AB DE ⊥于E ,若四边形ABCDEFGMABCDEFGMABCD 的面积为8,则DE 的长为__________.2.如图,M 是边长为1的正方形ABCD 内一点,若02290,21=∠=−CMD MB MA ,则=∠MCD __________.(北京市竞赛试题)第3题图第1题图第2题图OCB EBC AE B DADMFAC3.如图,在ABC Rt ∆中,3,900==∠AC C ,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O ,且24=OC ,则BC 的长为__________.(“希望杯”邀请赛试题)4.如图:边长一定的正方形ABCD ,Q 是CD 上一动点,AQ 交BD 于M ,过M 作AQ MN ⊥交BC 于N 点,作BD NP ⊥于点P ,连接NQ ,下列结论:①MN AM =;②BD MP 21=; ③NQ DQ BN =+;④BMBNAB +为定值,其中一定成立的是( )A . ①②③B .①②④ C. ②③④ D. ①②③④ 5.如图,ABCD 是正方形,AC BF //,AEFC 是菱形,则ACF ∠与F ∠度数的比值是( ) A . 3 B .4 C. 5 D. 不是整数6.一个周长为20的正方形内接于一个周长为28的正方形,那么从里面正方形的顶点到外面正方形的顶点的最大距离是( )A .58 B .527C. 8D. 65E.35(美国高中考试题)第7题图第5题图第4题图第6题图Q BCFABPNMBC DACDDA QE P7.如图,正方形ABCD 中,8=AB ,Q 是CD 的中点,设α=∠DAQ ,在CD 上取一点P ,使α2=∠BAP ,则CP 的长度等于 ( )A . 1B .2 C. 3 D.3(“希望杯”邀请赛试题)8.已知正方形ABCD 中,M 是AB 中点,E 是AB 延长线上一点,DM MN ⊥且交CBE ∠平分线于N (如图1)(1)求证:MN MD =;(2)若将上述条件中的“M 是AB 中点”改为“M 是AB 上任意一点”其余条件不变(如图2),(1)中结论是否成立?如果成立,请证明;如果不成立,请说明理由;(3)如图2,点M 是AB 的延长线上(除B 点外)的任意一点,其他条件不变,则(1)中结论是否成立?如果成立,请证明;如果不成立,请说明理由;(临汾市中考试题)E 图3图2图1N NAB N M ABA B DCCDEDCE MM`9.已知,10,10<<<<b a 求证:22)1()1()1()1(22222222≥−+−+−+++−++b a b a b a b a .10.如果,点N M ,分别在正方形ABCD 的边CD BC ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数. (“祖冲之杯”邀请赛试题)A BDC MN11.如图,两张大小适当的正方形纸片,重叠地放在一起,重叠部分是一个凸八边形ABCDEFGH ,对角线CG AE ,分这个八边形为四个小的凸四边形,请你证明:CG AE ⊥,且CG AE =.(北京市竞赛试题)CBAHGFED12.如图,正方形MNBC 内有一点A ,以AC AB ,为边向ABC ∆外作正方形ABRT 和正方形ACPQ ,连接BP RM ,.求证:RM BP //.(武汉市竞赛试题)MNPQT BCAR。
正方形精选试题
正方形精选试题一.填空题.1.如图,E为边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC,PR⊥BE,则PQ+PR的值为。
2.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是。
3.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是cm2.4.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是度.5.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AB、BC上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为cm.6.如图,边长为4的正方形ABCD中,E为AD的中点,连接CE交BD于F,连接AF,过A 作AM⊥AF交CE的延长线于M,则DM的长为.7.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是______.8.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将∆FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE 时,BM=2√26,AE=8,则ED=______.9.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为。
二.解答题1.正方形ABCD中,点O是对角线DB的中点,点P在DB所在的直线上,PE△BC于E,PF△DC 于F.(1)如图1,当点P与点O重合时,延长FP交AB于点M,求证:AP=EF;(2)如图2,当点P在线段DB上(不与点D、O、B重合)时,延长FP交AB于点M,求证:AP=EF;(3)如图3,当点P在DB的延长线上时,请你猜想AP与EF的数量关系及位置关系,直接写出结论;若不成立,请写出相应的结论.2.在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE=√2 BM;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是BD+2DE=√2BM;(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G,连接CG.若DE=√2,且AF:FD=1:2时,求线段DG的长.3.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是相等;结论2:DM、MN的位置关系是垂直;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.4.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,△EMB的度数是否发生变化?若不变化,求出△EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN△MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系:CM=√2 BN.5.如图,正方形ABCD中,点E从点A出发沿着AD向D运动,(点E不与点A,点D重合)同时点F从点D出发沿着线段DC向C运动,(点F不与点D,点C重合)点E与F点运动速度相同,当点E停止运动时,另一动点F随之停止运动,设BE与AF相交于点P,连接PC 请研究:(1)AF=BE,AF△BE;(2)当点E运动到AD中点位置时:①PA:PB的值是多少?②PC和BC又怎样的数量关系?并证明你的结论.6.正方形ABCD的对角线AC、BD相交于O,直角三角板EFG的直角顶点E在线段AC上,EF、EG与BC、CD边相交于M、N.(1)如图1,若E点与O点重合,求证:EM=EN;(2)如图2,若E点不与O点重合:①EM还等于EN吗?说明理由;②试找出MC、CN、EC三者之间的等量关系,并说明理由.7.如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.(1)求证:BF=DF;(2)连接CF,请直接写出BE:CF的值(不必写出计算过程).8.如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF△AC交AD 于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求BE2的值.9.已知:如图,正方形ABCD,BM、DN分别平分正方形的两个外角,且满足△MAN=45°,连接MN.(1)若正方形的边长为a,求BM•DN的值.(2)若以BM,DN,MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.10.已知点O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM 与DF有怎样的数量及位置关系?请判断并直接写出结果;(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.11.感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB△△CFD.探究:如图2,在图1中的基础上作△ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.应用:如图3,在直角梯形ABCD中,AD△BC(BC>AD),△B=90°,AB=BC.E是AB上一点,且△DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.12.如图,正方形ABCD中,E,F分别是边AD,CD上的点,DE=CF,AF与BE相交于O,DG△AF,垂足为G.(1)求证:BE△AF;(2)若正方形ABCD的边长为4,EH△DG,垂足为H,且GO/DE=4/5,求DE的长.13.已知,正方形ABCD中,△MAN=45°,△MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH△MN于点H.(1)如图①,当△MAN点A旋转到BM=DN 时,请你直接写出AH与AB的数量关系:AH=AB;(2)如图②,当△MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已△MAN=45°,AH△MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)14.如图甲,在△ABC中,△ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,△BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,△BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF△BC(点C、F重合除外)?并说明理由.15.如图所示,在正方形ABCD中,AB=2,两条对角线相交于点O,以OB、OC为邻边作第1个正方形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个正方形A1B1C1C 对角线相交于点O1;再以O1B1、O1C1为邻边作第3个正方形O1B1B2C1,…依此类推.(1)求第1个正方形OBB1C的边长a1和面积S1;(2)写出第2个正方形A1B1C1C和第3个正方形的边长a2,a3和面积S2,S3;(3)猜想第n个正方形的边长an和面积Sn.(不需证明).16.如图,正方形ABCD中,对角线AC与BD相交于O,△ADE=15°,过D作DG△ED于D,且AG=AD,过G作GF△AC交ED的延长线于F.(1)若ED=4√6 ,求AG(2)求证:2DF+ED=BD.17.已知:如图,点O是平面直角坐标系的原点,点A的坐标为(0,-4),点B为x轴上一动点,以线段AB为边作正方形ABCD(按逆时针方向标记),正方形ABCD随着点B的运动而随之相应变动.点E为y轴的正半轴与正方形ABCD某一边的交点,设点B的坐标为(t,0),线段OE的长度为m.(1)当t=3时,求点C的坐标;(2)当t>0时,求m与t之间的函数关系式;(3)是否存在t,使点M(-2,2)落在正方形ABCD的边上?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.18.已知,正方形ABCD的边长为1,直线l1△直线l2,l1与l2之间的距离为1,l1、l2与正方形ABCD的边总有交点.(1)如图1,当l1△AC于点A,l2△AC交边DC、BC分别于E、F 时,求△EFC的周长;(2)把图1中的l1与l2同时向右平移x,得到图2,问△EFC与△AMN 的周长的和是否随x的变化而变化,若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由;(3)把图2中的正方形饶点A逆时针旋转α,得到图3,问△EFC与△AMN的周长的和是否随α的变化而变化?若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由.19.在数学活动课中,小辉将边长为√2和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.20.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,△AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)FC/EF的值为多少;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.21.(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP△△DCE;(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.①若CD=2PC时,求证:BP△CF;②若CD=n•PC(n 是大于1的实数)时,记△BPF的面积为S1,△DPE的面积为S2.求证:S1=(n+1)S2.22.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE△MN 于点E,过点B作BF△MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.23.如图,P为正方形ABCD的边AD上的一个动点,AE△BP,CF△BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM△FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.24.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求(2)如图2,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG△BD,BG=BD.求证:BG=DE;△BD的度数;(3)在(2)的条件下,当正方形ABCD的边长为√2 时,请直接写出正方形CEFG 的边长.25.如图,△ABC是等腰直角三角形,△BAC=90°,BC=2,D是线段BC上一点,以AD为边,在AD的右侧作正方形ADEF.直线AE与直线BC交于点G,连接CF.(1)猜想线段CF与线段BD的数量关系和位置关系,并说明理由;(2)连接FG,当△CFG是等腰三角形时,①当BD <1时求BD的长.②当BD>1时,BD的长度是否改变,若改变,请直接写出BD的长度.26.阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,△EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,△BAD=90°点E,F分别在边BC,CD上,△EAF=45°.若△B,△D都不是直角,则当△B与△D满足△B+△D=180°关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,△BAC=90°,AB=AC,点D、E均在边BC 上,且△DAE=45°,若BD=1,EC=2,求DE的长.27.如图,在正方形ABCD中,AB=5,P是BC边上任意一点,E是BC延长线上一点,连接AP,作PF△AP,使PF=PA,连接CF,AF,AF交CD边于点G,连接PG.(1)求证:△GCF=△FCE;(2)判断线段PG,PB与DG之间的数量关系,并证明你的结论;(3)若BP=2,在直线AB 上是否存在一点M,使四边形DMPF是平行四边形?若存在,求出BM的长度;若不存在,说明理由.28.如图,在正方形ABCD中,点P是CD边上的点,连结BP,将△BCP绕点C按顺时针方向旋转90°,得到△DCE,连结EP并延长,交AD于点F,连结BF、FC.(1)证明△CEP是等腰直角三角形;(2)若CD=2CP,证明:四边形CEDF是平行四边形;(3)若CD=kCP(k是常数,k>0),记△BPF的面积为s1,△DEP的面积为s2,证明:s1=(k+1)s2.29.如图,四边形ABCD是正方形,点E是BC的中点,△AEF=90°,EF交正方形外角的平分线CF于F,连接AC、AF、DF,求证:(1)AE=EF;(2)△ABE△△ACF;(3)△DFC是等腰直角三角形.30.如图,在正方形ABCD中,点P为AD边上一点,PC的垂直平分线交PC于E交CB的延长线于F,连接PF交AB于G,连接CG.(1)如图1,求证:GC平分△PGB;(2)如图2连接AN,试判断线段PC与AN的数量关系,并给予证明.31.如图,直线MN经过正方形ABCD的一个顶点A,过点B作BE△MN于点E,过点C作CF△MN于点F,当直线MN经过点D(如图1)时,易证:AF+CF=2BE.当直线MN不经过点D时,线段AF、CF、BE又有怎样的数量关系?请直接写出你的猜想,并选择图(2)、图(3)中的一种情况给予证明.32.如图,已知正方形ABCD,点P为射线BA上的一点(不和点A,B重合),过P作PE△CP,且CP=PE,过E作EF△CD交射线BD于F点,EC交直线BD于G点.(1)求证:EF=AB;(2)请探究BF,DG和CD这三条线段之间的数量关系,并证明你的结论.。
正方形综合试题选
正方形综合试题选1.如图,直线MN经过正方形ABCD的一个顶点A,过点B作BE⊥MN于点E,过点C作CF⊥MN于点F,当直线MN经过点D(如图1)时,易证:AF+CF=2BE.当直线MN不经过点D时,线段AF、CF、BE又有怎样的数量关系?请直接写出你的猜想,并选择图(2)、图(3)中的一种情况给予证明.2.已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.3.(本溪二模)已知直线l经过正方形ABCD的顶点A,过点C作CE⊥直线l于点E,连接BE (1)如图1,当直线l∥BC时,CE+AE= BE;(2)如图2,当直线l绕着点A,逆时针旋转到如图位置时,请判断线段BE、AE、CE三者数量关系,并证明;(3)如图3,当直线l绕着点A,逆时针旋转到如图位置时,请补全图形并判断线段BE、AE、CE 三者数量关系,不必证明.4.(天桥区一模)如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时AD=CF.AD⊥CF成立.(1)正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?若成立,请证明;若不成立,请说明理由.(2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,求证:AD⊥CF.(3)在(2)小题的条件下,AD与OC的交点为G,当AO=3,OD= 2时,求线段CF的长.5.如图,四边形ABCD是正方形,点G是直线BC上的任意一点,DE⊥AG于点E,BF∥DE,交AG于F.(1)当点G在线段BC上时,如图1,求证:DE-BF=EF;(2)当点G在线段CB的延长线上时,如图2,判断线段DE、BF、EF之间的数量关系是;(3)在(2)的条件下,连接AC,过F作FP∥GC,交AC于点P,连接DP,若∠ADE=30°,GB= 4,求DP的长.336.(黑龙江)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.7.(盐城)如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)8.(黔南州)如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.(1)求EC:CF的值;(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.9.(青海)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FEC∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC 延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.10.(锦州)已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC-CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.(4)在(3)的条件下,AD与AB满足什么条件时?△AOC是等边三角形.11.(黑龙江)在△ABC中,∠BAC=90°,AB=AC,若点D在线段BC上,以AD为边长作正方形ADEF,如图1,易证:∠AFC=∠ACB+∠DAC;(1)若点D在BC延长线上,其他条件不变,写出∠AFC、∠ACB、∠DAC的关系,并结合图2给出证明;(2)若点D 在CB延长线上,其他条件不变,直接写出∠AFC、∠ACB、∠DAC 的关系式.12.(东营)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.13.(永州)探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠.又AG=AE,AF=AF∴△GAF≌∴=EF,故DE+BF=EF.(2)方法迁移:1∠DAB.试如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=2猜想DE,BF,EF之间有何数量关系,并证明你的猜想.(3)问题拓展:1∠DAB,试如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=2猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).14.(营口)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)15.(咸宁)(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG 与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=32,求AG,MN的长.16.(阜新)如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.17.(赤峰)如图(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,交BC的延长线于点N,FN⊥BC.(1)若点E是BC的中点(如图1),AE与EF相等吗?(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y.①求y与x的函数关系式;②当x取何值时,y有最大值,18.(天水)在正方形ABCD中,点P是CD边上一动点,连接PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足分别为E、F,如图①.(1)请探究BE、DF、EF这三条线段的长度具有怎样的数量关系?若点P在DC的延长线上,如图②,那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD的延长线上呢,如图③,请分别直接写出结论;(2)就(1)中的三个结论选择一个加以证明.19.(义乌市)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;1,求BE2+DG2的值.(3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k=220.(海南)如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.(1)求证:△ADE≌△CDE;(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.21.(大连)如图①,小明在研究正方形ABCD的有关问题时,得出:“在正方形ABCD中,如果点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD,那么EF⊥AE”.他又将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件不变,发现仍然有“EF⊥AE”结论.你同意小明的观点吗?同意,请结合图④加以证明;若不同意,请说明理由.22.(大连)如图,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.探究:线段MD、MF的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分.①DM的延长线交CE于点N,且AD=NE;②将正方形CGEF绕点C逆时针旋转45°(如图),其他条件不变;③在②的条件下,且CF=2AD.附加题:将正方形CGEF绕点C旋转任意角度后(如图),其他条件不变.探究:线段MD、MF的23.(东城区一模)阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC=2,求DE的长.24.(本溪一模)如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN 的数量关系:.25.(密云县一模)已知:正方形ABCD中,∠MAN=45°,绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.(3)若CN=6,BM=2,求正方形ABCD的边长.26.(怀柔区一模)探究:(1)如图1,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,试判断BE、DF 与EF三条线段之间的数量关系,直接写出判断结果:(2)如图2,若把(1)问中的条件变为“在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F1∠BAD”,则(1)问中的结论是否仍然成立?若成立,请分别是边BC、CD上的点,且∠EAF=2给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF绕点A逆时针旋转,当点分别E、F运动到BC、CD延长线上时,如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明.27.(莆田质检)在矩形ABCD中,AB=4,AD=6,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点.(1)若点N在BC边上时,如图1.①求证:PN=QN;PM是否②请问为定值?若是定值,PN求出该定值;若不是,请举反例说明;(2)当△PBN与△NCQ的面积相等时,求AP的值.28.(高淳区一模)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠AOB=α,将△DOC 按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD为矩形时,如图1.求证:△AOC′≌△BOD′.(2)当四边形ABCD为平行四边形时,设AC=kBD,如图2.①猜想此时△AOC′与△BOD′有何关系,证明你的猜想;②探究AC′与BD′的数量关系以及∠AMB与α的大小关系,并给予证明.29.(宝安区二模)如图1,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,连接DF,且P是线段DF的中点,连接PG,PC.(1)如图1中,PG与PC的位置关系是,数量关系是;(2)如图2将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD和矩形BEFG”其它条件不变,求证:PG=PC;(3)如图3,若将条件“正方形ABCD和正方形BEFG”改为“菱形ABCD和菱形BEFG”,点A,B,E在同一条直线上,连接DF,P是线段DF的中点,连接PG、PC,且∠ABC=∠BEF=60°,求PG:PC 的值.30.在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,则AB= .31.如图,四边形ABCD和四边形CGEF都是正方形,连接AE,M是AE的中点,连接MD、MF.探究线段MD、MF的关系,并加以说明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,你可以从下列(1)、(2)中选取一个补充已知条件,完成你的证明.注意:选取(1)完成证明得10分;选取(2)完成证明得7分.①如图2,正方形CGEF的对角线CE与正方形ABCD的边BC在同一条直线上;②如图3,正方形CGEF的边CG与正方形ABCD的边BC在同一条直线上,CF=2AD.32.如图1,若四边形ABCD、GFED都是正方形,显然图中有AG=CE,AG⊥CE.(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明,若不成立,请说明理由;(2)当正方形GFED绕D旋转到B,D,G在一条直线(如图3)上时,连结CE,设CE分别交AG、AD于P、H.①求证:AG⊥CE;②如果,AD=25 ,DG=10 ,求CE的长.33.【观察发现】如图1,四边形ABCD和四边形AEFG都是正方形,且点E在边AB上,连接DE和BG,猜想线段DE与BG的数量关系,以及直线DE与直线BG的位置关系.(只要求写出结论,不必说出理由)【深入探究】如图2,将图1中正方形AEFG绕点A逆时针旋转一定的角度,其他条件与观察发现中的条件相同,观察发现中的结论是否还成立?请根据图2加以说明.【拓展应用】2、如图3,直线l上有两个动点A、B,直线l外有一点O,连接OA,OB,OA,OB长分别为2 4,以线段AB为边在l的另一侧作正方形ABCD,连接OD.随着动点A、B的移动,线段OD的长也会发生变化,在变化过程中,线段OD的长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.(线段OD长的最大值为8).34.(济宁三模)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A 逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;(3)在(2)小题的条件下,AC 与BG的交点为M,当AB=4,AD= 2时,求线段CM的长.35.(德州)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).36.(黑河/东营)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.37.(农垦牡丹江管理局)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD=____________,CB=____________.。
人教版八年级数学上册正方形练习题
人教版八年级数学上册正方形练习题题目1
一块房地产开发商计划在一块长方形土地上建造一个正方形小区。
已知土地的长为100米,宽为80米。
请回答以下问题:
1. 该土地合适建造正方形小区吗?为什么?
回答:该土地合适建造正方形小区。
因为正方形的特点是四边相等,正好适应了土地的长和宽两个方向。
2. 若建造正方形小区,该正方形的边长是多少?小区的面积是多少?
回答:若建造正方形小区,该正方形的边长应为80米。
小区的面积是80米×80米=6400平方米。
题目2
正方形的对角线有什么特点?
回答:正方形的对角线具有以下特点:
- 对角线长度等于边长乘以√2;
- 对角线将正方形分为两个等边直角三角形。
题目3
在一个正方形中,顶点A的坐标是(3,2),顶点B的坐标是(7,2),请计算正方形的边长和面积。
回答:根据顶点A和B的坐标,可以计算出正方形的边长为4。
面积等于边长的平方,所以正方形的面积为16平方单位。
题目4
已知一个正方形的周长是36,求其边长和面积。
回答:已知周长为36,因为正方形的四条边相等,所以边长应为9。
正方形的面积等于边长的平方,所以面积为9乘以9,即81平方单位。
题目5
若一个正方形的面积是49,求其周长和对角线长度。
回答:已知面积为49,可以求得边长为7。
正方形的周长等于边长的4倍,所以周长为28。
对角线长度等于边长乘以√2,所以对角线长度为7乘以√2。
最新2019-2020年度北师大版九年级数学上册《正方形》同步练习及答案解析-精品试题
《1.3 正方形》一、选择题1.正方形具有而菱形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等2.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为()A.2cm2B.4cm2C.6cm2D.8cm23.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:94.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是()A.45° B.22.5°C.67.5°D.75°5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+16.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.67.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7 D.78.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个B.2个C.3个D.4个9.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对10.已知:如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第6个正方形的面积S6是()A.256 B.900 C.1024 D.4096二、填空题11.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= .12.▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:,使得▱ABCD 为正方形.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE 的中点.若△CEF的周长为18,则OF的长为.14.如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为.15.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.16.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是.三、解答题18.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.19.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.20.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.22.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.《1.3 正方形》参考答案与试题解析一、选择题1.正方形具有而菱形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【考点】正方形的性质;菱形的性质.【分析】先回顾一下菱形和正方形的性质,知道矩形的特殊性质是正方形具有而菱形不具有的性质,根据矩形的特殊性质逐个判断即可.【解答】解:菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角,正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A、菱形和正方形的对角线都互相垂直,故本选项错误;B、菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C、菱形和正方形的对角线互相平分,故本选项错误;D、菱形和正方形的对角都相等,故本选项错误;故选B.【点评】本题考查了矩形的性质,正方形的性质,菱形的性质的应用,主要考查学生的理解能力和辨析能力,能熟练地运用性质进行判断是解此题的关键.2.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为()A.2cm2B.4cm2C.6cm2D.8cm2【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.【解答】解:如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∵∠PAF+∠FAN=∠FAN+∠NAE=90°,∴∠PAF=∠NAE,∴△PAF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选B.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.3.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.4.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是()A.45° B.22.5°C.67.5°D.75°【考点】正方形的性质;等腰三角形的性质.【专题】数形结合.【分析】根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP的度数,从而就可求得∠ACP的度数.【解答】解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=67.5°,∴∠ACP=∠BCP﹣∠BCA=67.5°﹣45°=22.5°.故选B.【点评】此题主要考查了正方形的性质,解答本题的关键是掌握正方形的对角线平分对角的性质,及等腰三角形的性质,难度一般.5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1【考点】正方形的性质.【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.6.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【考点】正方形的性质;翻折变换(折叠问题).【分析】根据折叠可得DH=EH,在直角△CEH中,设CH=x,则DH=EH=9﹣x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.7.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7 D.7【考点】正方形的性质.【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS 证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF=∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.【点评】本题考查了正方形的判定与性质、全等三角形的判定与性质;熟练掌握正方形的判定与性质,证明三角形全等是解决问题的关键.8.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个B.2个C.3个D.4个【考点】正方形的性质;全等三角形的判定与性质.【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF ﹣∠HDC=180°;③同②证明△EHF≌△DHC即可;④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.9.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′.由此即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.10.已知:如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第6个正方形的面积S6是()A.256 B.900 C.1024 D.4096【考点】正方形的性质.【专题】规律型.【分析】判断出△OA1B1是等腰直角三角形,求出第一个正方形A1B1C1A2的边长为1,再求出△B1C1B2是等腰直角三角形,再求出第2个正方形A2B2C2A3的边长为2,然后依次求出第3个正方形的边长,第4个正方形的边长第5个正方形的边长,第6个正方形的边长,再根据正方形的面积公式列式计算即可得解.【解答】解:∵∠MON=45°,∴△OA1B1是等腰直角三角形,∵OA1=1,∴正方形A1B1C1A2的边长为1,∵B1C1∥OA2,∴∠B2B1C1=∠MON=45°,∴△B1C1B2是等腰直角三角形,∴正方形A2B2C2A3的边长为:1+1=2,同理,第3个正方形A3B3C3A4的边长为:2+2=4,第4个正方形A4B4C4A5的边长为:4+4=8,第5个正方形A5B5C5A6的边长为:8+8=16,第6个正方形A6B6C6A7的边长为:16+16=32,所以,第6个正方形的面积S6是:322=1024.故选C.【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,得出后一个正方形的边长等于前一个正方形的边长的2倍是解题的关键.二、填空题11.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= 45°.【考点】正方形的性质.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.【点评】本题考查了正方形的性质、折叠的性质;熟练掌握正方形和折叠的性质是解决问题的关键.12.▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:∠BAD=90°,使得▱ABCD为正方形.【考点】正方形的判定;平行四边形的性质.【分析】根据正方形的判定定理添加条件即可.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴▱ABCD是菱形,当∠BAD=90°时,▱ABCD为正方形.故答案为:∠BAD=90°.【点评】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【考点】正方形的性质;直角三角形斜边上的中线;勾股定理;三角形中位线定理.【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC ﹣CE )=(12﹣5)=.故答案为:.【点评】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.14.如图为正三角形ABC 与正方形DEFG 的重叠情形,其中D 、E 两点分别在AB 、BC 上,且BD=BE .若AC=18,GF=6,则F 点到AC 的距离为 6﹣6 .【考点】正方形的性质;等边三角形的性质.【分析】过点B 作BH ⊥AC 于H ,交GF 于K ,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE 是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC ∥DE ,再根据正方形的对边平行得到DE ∥GF ,从而求出AC ∥DE ∥GF ,再根据等边三角形的边的与高的关系表示出KH ,然后根据平行线间的距离相等即可得解.【解答】解:如图,过点B 作BH ⊥AC 于H ,交GF 于K ,∵△ABC 是等边三角形,∴∠A=∠ABC=60°,∵BD=BE ,∴△BDE 是等边三角形,∴∠BDE=60°,∴∠A=∠BDE ,∴AC ∥DE ,∵四边形DEFG 是正方形,GF=6,∴DE ∥GF ,∴AC ∥DE ∥GF ,∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故答案为:6﹣6.【点评】本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.15.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13 cm.【考点】正方形的性质;菱形的性质.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.16.(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20 .【考点】正方形的性质;等腰三角形的性质.【专题】分类讨论.【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),=2,同理可知OB∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.三、解答题18.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】先取AB的中点H,连接EH,根据∠AEF=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.【解答】证明:取AB的中点H,连接EH;∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,,∴△AHE≌△ECF(ASA),∴AE=EF.【点评】此题考查了正方形的性质和全等三角形的判定与性质,解题的关键是取AB的中点H,得出AH=EC,再根据全等三角形的判定得出△AHE≌△ECF.19.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE和△DAF全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠DAB=∠C=90°,∴∠FAD=180°﹣∠DAB=90°.在△DCE和△DAF中,,∴△DCE≌△DAF(SAS),∴DE=DF.【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用全等三角形对应边相等证明线段相等是常用的方法之一,一定要熟练掌握并灵活运用.20.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.【考点】正方形的性质;全等三角形的判定与性质;旋转的性质.【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出S EGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.【解答】(1)证明:∵EP⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,,∴△ABE≌△EGF(AAS);(2)解:∵△ABE≌△EGF,AB=2,∴AB=EG=2,S△ABE=S△EGF,∵S△ABE=2S△ECF,∴S EGF=2S△ECF,∴EC=CG=1,∵四边形ABCD是正方形,∵BC=AB=2,∴BE=2﹣1=1.【点评】此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,正方形的性质,三角形的面积,熟练掌握判定与性质是解本题的关键.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ【点评】本题主要考查了正方形以及全等三角形,解决问题的关键是掌握:正方形的四条边相等,四个角都是直角.解题时需要运用:有两角和其中一角的对边对应相等的两个三角形全等,以及全等三角形的对应边相等.22.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.【点评】本题考查了正方形的性质.全等三角形的判定及性质、等腰直角三角形的性质以及角的计算,解题的关键是:(1)根据判定定理SAS证明△ABF≌△CBE;(2)通过角的计算得出∠CEF=90°.本题属于中档题,难度不大,解决该题型题目时,通过正方形和等腰三角形的性质找出相等的边,再通过角的计算找出相等的角,以此来证明两三角形全等是关键.。
中考复习《矩形、菱形、正方形》测试题(含答案)
中考复习《矩形、菱形、正方形》测试题(含答案)一、选择题(每题4分,共24分)1.[2015·泸州]菱形具有而平行四边形不具有的性质是(D) A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.[2015·衢州]如图28-1,已知某菱形花坛ABCD的周长是24 m,∠BAD=120°,则花坛对角线AC的长是(B)A.6 3 m B.6 m图28-1 C.3 3 m D.3 m【解析】易知△ABC为等边三角形,所以AC=AB=6 m.3.[2015·益阳]如图28-2,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D) A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD图28-2 图28-34.[2014·福州]如图28-3,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(C) A.45°B.55°C.60°D.75°【解析】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE 是等边三角形, ∴AE =AD =DE ,∠DAE =60°, ∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°, ∴∠ABE =(180°-150°)÷2=15°, 又∵∠BAC =45°, ∴∠BFC =45°+15°=60°.5.[2015·临沂]如图28-4,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连结EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是 (B) A .AB =BEB .BE ⊥DCC .∠ADB =90°D .CE ⊥DE【解析】 因为四边形ABCD 为平行四边形,所以AD 綊BC ,因为DE =AD ,所以DE 綊BC所以四边形EDBC 为平行四边形,A .假若AB =BE ,因为AB =BE ,AD =DE ,BD =BD ,所以△ADB ≌△EDB ,所以∠BDE =90°,所以四边形EDBC 为矩形; B .假若BE ⊥DC ,可得四边形EDBC 为菱形;C .假若∠ADB =90°,所以∠EDB =90°,所以四边形EDBC 为矩形;D .假若CE ⊥DE ,所以∠DEC =90°,所以四边形EDBC 为矩形,故选B. 6.[2015·日照]小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 成为正方形(如图28-5)现有下列四种选法,你图28-4图28-5认为其中错误的是(B)A.①②B.②③C.①③D.②④【解析】此题考查正方形的判定,即在▱ABCD的基础上,需要再同时具备矩形和菱形的特征.①是菱形的特征;②是矩形的特征;③是矩形的特征,④是菱形的特征.而B中都是矩形的特征,故选B.二、填空题(每题4分,共20分)7.[2015·铜仁]已知一个菱形的两条对角线长分别为6 cm和8 cm,则这个菱形的面积为__24__cm2.8.[2014·衡阳]如图28-6,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为__10__.9.[2015·上海]已知E是正方形ABCD的对角线AC上一点,图28-6 AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=__22.5__度.10.[2014·淄博]已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形.你添加的条件是__AB=BC或AC⊥BD等__.11.[2014·资阳]如图28-7,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__6__.图28-7【解析】如答图,连结BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=5,∴△BEQ周长的最小值=DE+BE=5+1=6.三、解答题(共20分)12.(10分)[2015·安顺]如图28-8,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于图28-8F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵AE∥DF,∴∠EAD=ADF,∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形.13.(10分)[2015·青岛]已知:如图28-9,在△ABC中,AB =AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;图28-9(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论. 解:(1)证明:∵AB =AC ,AD 是BC 边上的中线, ∴AD ⊥BC ,BD =CD . ∵AE ∥BC ,CE ⊥AE , ∴四边形ADCE 是矩形, ∴AD =CE .在Rt △ABD 与Rt △CAE 中, ⎩⎪⎨⎪⎧AD =CE ,AB =CA ,∴△ABD ≌△CAE (HL );(2)DE ∥AB ,DE =AB .证明如下: 如答图所示,∵四边形ADCE 是矩形, ∴AE =CD =BD ,AE ∥BD , ∴四边形ABDE 是平行四边形, ∴DE ∥AB ,DE =AB .14.(10分)[2014·扬州]如图28-10,已知Rt △ABC ,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°后至△DBE ,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H .(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形. 解:(1)DE ⊥FG ,理由如下:由题意得∠A =∠EDB =∠GFE ,∠ABC =∠DBE =90°,第13题答图图28-10∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°,∴∠FHE=90°,即DE⊥FG;(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.15.(10分)[2015·南京]如图28-11,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD交于点P,Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.小明的证明思路由AB∥CD,MN∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ.由已知条件__FG平分∠CFE__,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MEG≌△QFH,易证__GE=FH__,__∠GME =∠FQH__.故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,__∠GEF=∠EFH__,即可得证.图28-11解:(1)证明:∵EH平分∠BEF.∴∠FEH=12∠BEF,∵FH平分∠DFE,∴∠EFH=12∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°,又∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,同理可证,∠EGF=90°,∵EG平分∠AEF,∴∠FEG=12∠AEF,∵EH平分∠BEF,∴∠FEH=12∠BEF,∵点A,E,B在同一条直线上.∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形;(2)本题答案不唯一,下列解法供参考.例如,FG平分∠CFE;GE=FH;∠GME =∠FQH;∠GEF=∠EFH.16.(6分)[2015·资阳]若顺次连结四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是(D) A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形17.(10分)如图28-12,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;…;按此规律继续下去,则四边形A2B2C2D2的周长是__20__;四边形A2 016B2 016C2 016D2 016的周长是__521 005__.图28-12。
中考数学压轴题练习 正方形问题(含解析)-人教版初中九年级全册数学试题
正方形问题1 如图,在边长为6的正方形ABCD 的两侧作正方形BEFG 和正方形DMNK ,恰好使得N 、A 、F 三点在一直线上,连接MF 交线段AD 于点P ,连接NP ,设正方形BEFG 的边长为x ,正方形DMNK 的边长为y .(1)求y 关于x 的函数关系式及自变量x 的取值X 围; (2)当△NPF 的面积为32时,求x 的值;(3)以P 为圆心,AP 为半径的圆能否与以G 为圆心,GF 为半径的圆相切?如果能,请求出x 的值,如果不能,请说明理由.解析:(1)∵正方形BEFG 、正方形DMNK 、正方形ABCD ∴∠E =∠F =90O ,AE ∥MC ,MC ∥NK ∴AE ∥NK ,∴∠KNA =∠EAF∴△KNA ∽△EAF ,∴NK EA =KA EF ,即y x +6=y -6x∴y =x +6(0<x ≤6)(2)由(1)知NK =AE ,∴AN =AF∵正方形DMNK ,∴AP ∥NM ,∴FP PM =AFAN =1∴FP =PM ,∴S △MNP =S △NPF =32 ∴S 正方形DMNK =2S △MNP =64 ∴y =8,∴x =2(3)连接PG ,延长FG 交AD 于点H ,则GH ⊥AD易知:AP =y2,AH =x ,PH =y 2-x ,HG =6;PG =AP +GF =y2+x①当两圆外切时在Rt △GHP 中,PH 2+HG 2=PG 2,即(y2-x )2+62=(y2+x )2解得:x =-3-33(舍去)或x =-3+3 3 ②当两圆内切时NK G CE DFAB PM在Rt △GHP 中,PH 2+HG 2=PG 2,即(y2-x )2+62=(y2-x )2方程无解所以,当x =33-3时,两圆相切2 已知:正方形ABCD 的边长为1,射线AE 与射线BC 交于点E ,射线AF 与射线CD 交于点F ,∠EAF =45°,连接EF .(1)如图1,当点E 在线段BC 上时,试猜想线段EF 、BE 、DF 有怎样的数量关系?并证明你的猜想; (2)设BE =x ,DF =y ,当点E 在线段BC 上运动时(不包括点B 、C ),求y 关于x 的函数解析式,并指出x 的取值X 围;(3)当点E 在射线BC 上运动时(不含端点B ),点F 在射线CD 上运动.试判断以E 为圆心,以BE 为半径的⊙E 和以F 为圆心,以FD 为半径的⊙F 之间的位置关系;(4)如图2,当点E 在BC 的延长线上时,设AE 与CD 交于点G .问:△EGF 与△EFA 能否相似?若能相似,求出BE 的长,若不可能相似,请说明理由.解析:(1)猜想:EF =BE +DF证明:将△ADF 绕点A 顺时针旋转90°,得△ABF′,易知点F′、B 、E 在同一直线上(如.图1) ∵AF′=AF∠F′AE =∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF 又AE =AE ,∴△AF ′E ≌△AFEAB DCEF图1AB D CEFG图2AB DCEF图1F ′12∴EF =F′E =BE +BF =BE +DF (2)在Rt △EFC 中,EC 2+FC 2=EF 2 ∵EC =1-x ,FC =1-y ,EF =x +y ∴(1-x )2+(1-y )2=(x +y )2 ∴y =1-x1+x (0<x <1)(3)①当点E 在点B 、C 之间时,由(1)知EF =BE +DF ,故此时⊙E 与⊙F 外切; ②当点E 在点C 时,DF =0,⊙F 不存在.③当点E 在BC 延长线上时,将△ADF 绕点A 顺时针旋转90°,得△ABF′(如图2) 则AF′=AF ,∠1=∠2,B F′=DF ,∠F ′AF =90° ∴∠F ′AE =∠EAF =45° 又AE =AE ,∴△AF ′E ≌△AFE ∴EF =EF′=BE -B F′=BE -DF ∴此时⊙E 与⊙F 内切综上所述,当点E 在线段BC 上时,⊙E 与⊙F 外切;当点E 在BC 延长线上时,⊙E 与⊙F 内切 (4)△EGF 与△EFA 能够相似,只要当∠EFG =∠EAF =45°即可 此时CE =CF设BE =x ,DF =y ,由(3)知EF =x -y 在Rt △CFE 中,CE 2+CF 2=EF 2∴(x -1)2+(1+y )2=(x -y )2∴y =x -1x +1(x >1)由CE =CF ,得x -1=1+y ,即x -1=1+x -1x +1化简得x 2-2x -1=0,解得x 1=1-2(舍去),x 2=1+ 2 ∴△EGF 与△EFA 能够相似,此时BE 的长为1+ 23已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2,BC =6,AB =3.E 为BC 边上一点,ABD CEFG图2F ′12以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧. (1)当正方形的顶点F 恰好落在对角线AC 上时,求BE 的长;(2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B′EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B′EFG 的边EF 与AC 交于点M ,连接B′D ,B′M ,DM .是否存在这样的t ,使△B′DM 是直角三角形?若存在,求出t 的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值X 围.解析:(1)如图①,设正方形BEFG 的边长为x 则BE =FG =BG =x∵AB =3,BC =6,∴AG =AB -BG =3-x ∵GF ∥BE ,∴△AGF ∽△ABC∴AG AB =GF BC ,即3-x 3=x 6解得x =2,即BE =2(2)存在满足条件的t ,理由如下: 如图②,过D 作DH ⊥BC 于点H 则BH =AD =2,DH =AB =3由题意得:BB′=HE =t ,HB′=|t -2|,EC =4-t在Rt△B′ME 中,B′M 2=B′E 2+ME 2=22+(2-12t )2=14t 2-2t +8∵EF ∥AB ,∴△MEC ∽△ABC∴ME AB =EC BC ,即ME 3=4-t 6,∴ME =2-12t在Rt△DHB′中,B′D 2=DH 2+B′H 2=32+(t -2)2=t 2-4t +13BACDBACD备用图B A CD 图①EFGB A CD 图②EFG HB ′ M N过M 作MN ⊥DH 于点N 则MN =HE =t ,NH =ME =2-12t ∴DN =DH -NH =3-(2-12t )=12t +1 在Rt△DMN 中,DM 2=DN 2+MN 2=54t 2+t +1(ⅰ)若∠DB′M =90°,则DM 2=B′M 2+B′D 2 即54t 2+t +1=(14t 2-2t +8)+(t 2-4t +13),解得t =207 (ⅱ)若∠B′MD =90°,则B′D 2=B′M 2+DM 2即t 2-4t +13=(14t 2-2t +8)+(54t 2+t +1),解得t 1=-3+17,t 2=-3-17∵0≤t ≤4,∴t =-3+17(ⅲ)若∠B′DM =90°,则B′M 2=B′D 2+DM 2即14t 2-2t +8=(t 2-4t +13)+(54t 2+t +1),此方程无解 综上所述,当t =207或-3+17时,△B′DM 是直角三角形 (3)当0≤t ≤43时,S =14t 2当43≤t ≤2时,S =-18t 2+t -23 当2≤t ≤103时,S =-38t 2+2t -53 当103≤t ≤4时,S =-12t +52 提示:当点F 落在CD 上时,如图③FE =2,EC =4-t ,DH =3,HC =4 由△FEC ∽△DHC ,得FE EC =DHHC即24-t =34,∴t =43当点G 落在AC 上时,点G 也在DH 上(即DH 与AC 的交点)t =2当点G 落在CD 上时,如图④B ACD图③E FGB ′ HB ACD图④E FGB ′ HGB ′=2,B ′C =6-t由△GB ′C ∽△DHC ,得G ′B B ′C =DHHC即26-t =34,∴t =103 当点E 与点C 重合时,t =4 ①当0≤t ≤43时,如图⑤ ∵MF =t ,FN =12t∴S =S △FMN =12·t ·12t =14t 2②当43≤t ≤2时,如图⑥ ∵PF =t -43,FQ =34PF =34t -1 ∴S △FPQ =12(t -43)(34t -1)=38t 2-t +23∴S =S △FMN -S △FPQ =14t 2-(38t 2-t +23)=-18t 2+t -23 ③当2≤t ≤103时,如图⑦ ∵B′M =12B′C =12(6-t )=3-12t ∴GM =2-(3-12t )=12t -1 ∴S 梯形GMNF =12(12t -1+12t )×2=t -1∴S =S 梯形GMNF -S △FPQ =(t -1)-(38t 2-t +23)=-38t 2+2t -53 ④当103≤t ≤4时,如图⑧ ∵P B′=34B′C =34(6-t )=92-34t ∴GP =2-(92-34t )=34t -52∴S 梯形GPQF =12(34t -52+34t -1)×2=32t -72∴S =S 梯形GMNF -S 梯形GPQF =(t -1)-(32t -72)=-12t +52BC图⑥EB ′BC图⑦EB ′B C 图⑧E B ′。
初一正方形综合练习题
初一正方形综合练习题
正方形是初中数学中的重要概念之一,掌握正方形的性质和计算方法对于学好数学非常重要。
以下是一些初一级别的正方形综合练题,供同学们练和巩固相关的知识。
1. 选择题
1. 正方形的边长是4cm,那么它的周长是多少?
A. 4cm
B. 8cm
C. 16cm
D. 24cm
2. 一张正方形纸片的面积是36平方厘米,那么它的边长是多少厘米?
A. 6cm
B. 9cm
C. 12cm
D. 18cm
3. 已知正方形的周长是24cm,求该正方形的面积是多少平方厘米?
A. 36平方厘米
B. 64平方厘米
C. 96平方厘米
D. 144平方厘米
2. 填空题
1. 已知正方形的边长为8cm,那么它的面积是 \_\_ 平方厘米。
2. 一张正方形纸片的周长是15厘米,那么它的边长是 \_\_ 厘米。
3. 解答题
1. 一块地的形状是一个正方形,边长为10米。
如果要围绕这块地建一道围墙,这道围墙的总长度是多少米?
2. 一张正方形纸片的周长是24厘米,面积是多少平方厘米?
以上就是初一正方形综合练题的内容,希望能帮助同学们巩固和加深对正方形的理解和运用。
祝大家研究进步!。
正方形的性质和判定典型试题综合训练(含解析)
正方形的性质和判定典型试题综合训练(含解析)一.选择题(共15小题)1.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC3.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A.AO=BO=CO=DO,AC⊥BD B.AC=BC=CD=DA C.AO=CO,BO=DO,AC⊥BD D.AB=BC,CD⊥DA 4.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+16.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1 B.2 C.3 D.37.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B 的度数为何?()A.50 B.55 C.70 D.758.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n9.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.710.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.1611.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A.B.C.D.12.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或613.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF 的长为()A.1 B.4﹣2C.D.3﹣414.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下列结论中:(1)△OEF是等腰直角三角形;(2)图形中全等的三角形只有两对;(3)BE+BF=OA;(4)正方形ABCD的面积等于四边形OEBF面积的4倍,正确的结论有()A.1个B.2 个C.3个D.4个15.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014二.填空题(共10小题)16.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)17.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.18.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME=.19.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.20.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.21.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.22.如图所示,E是正方形ABCD边BC上任意一点,EF⊥BO于F,EG⊥CO于G,若AB=10厘米,则四边形EGOF的周长是厘米.23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.24.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.25.如图,在正方形ABCD中,O是对角线的交点,过点O作OE⊥OF,分别交AD,CD于E,F,若AE=6,CF=4,则EF=.三.解答题(共10小题)26.如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长为4,AE=,求菱形BEDF的面积.27.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?28.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.29.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.30.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.31.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)32.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.33.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.34.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.35.已知O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请说明理由;(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.正方形的性质和判定典型试题综合训练参考答案与试题解析一.选择题(共15小题)1.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.【解答】解:∵▱ABCD中,AB⊥BC,∴四边形ABCD是矩形,不一定是菱形,选项A错误;∵▱ABCD中,AC⊥BD,∴四边形ABCD是菱形,不一定是正方形,选项B错误;∵▱ABCD中,AC=BD,∴四边形ABCD是矩形,选项C正确;∵▱ABCD中,AB=AD,∴四边形ABCD是菱形,不一定是正方形,选项D错误.故选:C.2.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE 即可解决问题.【解答】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.3.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A.AO=BO=CO=DO,AC⊥BD B.AC=BC=CD=DA C.AO=CO,BO=DO,AC⊥BD D.AB=BC,CD⊥DA 【分析】根据正方形的判定对角线互相垂直平分且相等的四边形是正方形,对各个选项进行分析从而得到最后的答案.【解答】解:A、正确,AC⊥BD且AC、BD互相平分可判定为菱形,再由AC=BD判定为正方形;B、错误,不能判定为正方形;C、错误,只能判定为菱形;D、错误,不能判定为正方形;故选A.4.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.【分析】利用勾股定理求出正方形的对角线为10≈14,由此即可判定A不正确.【解答】解:选项A不正确.理由正方形的边长为10,所以对角线=10≈14,因为15>14,所以这个图形不可能存在.故选A.5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.【解答】解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E、F分别是BC、CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.6.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1 B.2 C.3 D.3【分析】求出BE的长,再根据两组对边分别平行的四边形是平行四边形求出四边形EFCH平行四边形,根据平行四边形的对边相等可得EF=CH,再根据正方形的性质可得AB=BC,AE=EF,然后求出BH=BE即可得解.【解答】解:∵AB=4,AE=1,∴BE=AB﹣AE=4﹣1=3,∵四边形ABCD,AEFG都是正方形,∴AD∥EF∥BC,又∵EH∥FC,∴四边形EFCH平行四边形,∴EF=CH,∵四边形ABCD,AEFG都是正方形,∴AB=BC,AE=EF,∴AB﹣AE=BC﹣CH,∴BE=BH=3.故选:C.7.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B 的度数为何?()A.50 B.55 C.70 D.75【分析】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.8.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.【解答】解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.9.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8 C.7D.7【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF=∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.10.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.16【分析】连DB,GE,FK,则DB∥GE∥FK,再根据等底等高的三角形面积相等,正方形BEFG的边长为4可求出S△DGE=S△GEB,S△GKE=S△GFE,再由S阴影=S正方形GBEF即可求出答案.【解答】解:连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△GDB=S△EDB(同底等高)∴S△GDB﹣公共三角形=S△EDB﹣公共三角形即∴S△DGE=S△GEB,S△GKE=S△GFE同理S△GKE=S△GFE∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=42=16 故选:D.11.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A.B.C.D.【分析】根据旋转的性质及正方形的性质分别求得△ABC与△CD′E的面积,从而不难求得重叠部分的面积.【解答】解:∵绕顶点A顺时针旋转45°,∴∠D′CE=45°,∴CD′=D′E,∵ED′⊥AC,∴∠CD′E=90°,∵AC==,∴CD′=﹣1,∴正方形重叠部分的面积是×1×1﹣×(﹣1)(﹣1)=﹣1.故选:D.12.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6【分析】根据题意列方程,即可得到结论.【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(6+9+x)×9﹣6×3,解得x=3,或x=6,故选D.13.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF 的长为()A.1 B.4﹣2C.D.3﹣4【分析】在AF上取FG=EF,连接GE,可得△EFG是等腰直角三角形,根据等腰直角三角形的性质可得EG=EF,∠EGF=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAE+∠AEG=∠EGF,然后求出∠BAE=∠AEG=22.5°,根据等角对等边可得AG=EG,再根据正方形的对角线平分一组对角求出∠ABD=45°,然后求出△BEF是等腰直角三角形,根据等腰直角三角形的性质可得BF=EF,设EF=x,最后根据AB=AG+FG+BF列方程求解即可.【解答】解:如图,在AF上取FG=EF,连接GE,∵EF⊥AB,∴△EFG是等腰直角三角形,∴EG=EF,∠EGF=45°,由三角形的外角性质得,∠BAE+∠AEG=∠EGF,∵∠BAE=22.5°,∠EGF=45°,∴∠BAE=∠AEG=22.5°,∴AG=EG,在正方形ABCD中,∠ABD=45°,∴△BEF是等腰直角三角形,∴BF=EF,设EF=x,∵AB=AG+FG+BF,∴4=x+x+x,解得x=2(2﹣)=4﹣2.故选B.14.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,则下列结论中:(1)△OEF是等腰直角三角形;(2)图形中全等的三角形只有两对;(3)BE+BF=OA;(4)正方形ABCD的面积等于四边形OEBF面积的4倍,正确的结论有()A.1个B.2 个C.3个D.4个【分析】(1)(3)(4)正确.只要证明△BOE≌△COF,即可解决问题,(2)图中全等三角形不止两对,故(2)错误.【解答】解:∵四边形ABCD是正方形,∴AB=BC,ABC=90°,∠BAO=∠ABO=∠OBC=45°,AC⊥BD,∵∠EOF=90°,∴∠BOE+∠BOF=90°,∵∠BOF+∠COF=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴OE=OF,BE=CF,∴△EOF是等腰直角三角形,故(1)正确,∴BE+BF=CF+BF=BC=OA,故(3)正确,∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,∴S正方形ABCD=4S四边形OEBF故(4)正确;图中全等三角形有△BOE≌△COF,△AOB≌△AOD≌△DOC≌△BOC,故(2)错误.故选C.15.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2015B2015C2015D2015的边长是:()2014.故选:D.二.填空题(共10小题)16.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).17.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是①③④.【分析】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.【解答】解:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AB⊥AD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB=BD,AB⊥BD,∴平行四边形ABCD不可能是正方形,②错误;∵四边形ABCD是平行四边形,OB=OC,∴AC=BD,∴四边形ABCD是矩形,又OB⊥OC,即对角线互相垂直,∴平行四边形ABCD是正方形,③正确;∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是矩形,∴平行四边形ABCD是正方形,④正确;故答案为:①③④.18.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME=45°.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.19.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.20.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是(2+,1).【分析】过点D作DG⊥BC于点G,根据四边形BDCE是菱形可知BD=CD,再由BC=2,∠D=60°可得出△BCD是等边三角形,由锐角三角函数的定义求出GD及CG的长即可得出结论.【解答】解:过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD.∵BC=2,∠D=60°,∴△BCD是等边三角形,∴BD=BC=CD=2,∴CG=1,GD=CD•sin60°=2×=,∴D(2+,1).故答案为:(2+,1).21.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有3条.【分析】能画3条:①与EF互相垂直且垂足为O,构建直角三角形,可以证明两直角三角形全等得EF=PQ;②在AD上截取AP=AD,连接PO延长得到PQ;③同理在AB了截取BQ=AB,连接QO并延长得到PQ.【解答】解:这样的直线PQ(不同于EF)有3条,①如图1,过O作PQ⊥EF,交AD于P,BC于Q,则PQ=EF;②如图2,以点A为圆心,以AE为半径画弧,交AD于P,连接PO并延长交BC于Q,则PQ=EF;③如图3,以B为圆心,以AE为半径画弧,交AB于Q,连接QO并延长交DC于点P,则PQ=EF.22.如图所示,E是正方形ABCD边BC上任意一点,EF⊥BO于F,EG⊥CO于G,若AB=10厘米,则四边形EGOF的周长是厘米.【分析】根据已知可得到△BFE,△CGE是等腰直角三角形,得到BF=EF,EG=GC,则四边形EGOF的周长OF+EF+OG+CG=OB+OC=BD【解答】解:∵EF⊥BO于F,EG⊥CO,∠BAC=∠ACB=45°∴△BFE,△CGE是等腰直角三角形∴BF=EF,EG=GC∴四边形EGOF的周长OF+EF+OG+CG=OB+OC=BD=10cm 故答案为10.23.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.【分析】首先连接BD交AC于O,由四边形ABCD、AGFE是正方形,即可得AB=AD,AE=AG,∠DAB=∠EAG,然后利用SAS即可证得△EAB≌△GAD,则可得EB=GD,然后在Rt△ODG中,利用勾股定理即可求得GD的长,继而可得EB的长.【解答】解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.24.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.25.如图,在正方形ABCD中,O是对角线的交点,过点O作OE⊥OF,分别交AD,CD于E,F,若AE=6,CF=4,则EF=2.【分析】由正方形的性质得出∠ADC=90°,∠OAE=∠ODE=∠ODF=∠OCF=45°,OA=OB=OC=OD,AC⊥BD,证出∠AOE=∠DOF,由ASA证明△AOE≌△DOF,得出AE=DF=6,同理:DE=CF=4,由勾股定理求出EF即可.【解答】解:∵四边形ABCD是正方形,∴∠ADC=90°,∠OAE=∠ODE=∠ODF=∠OCF=45°,OA=OB=OC=OD,AC⊥BD,∴∠AOD=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠DOF,在△AOE和△DOF中,,∴△AOE≌△DOF(ASA),∴AE=DF=6,同理:DE=CF=4,∴EF===2.故答案为:2.三.解答题(共10小题)26.如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长为4,AE=,求菱形BEDF的面积.【分析】(1)连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD ⊥EF,可证得四边形BEDF为菱形;(2)由正方形的边长可求得BD、AC的长,则可求得EF的长,利用菱形的面积公式可求得其面积.【解答】(1)证明:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形;(2)解:∵正方形边长为4,∴BD=AC=4,∵AE=CF=,∴EF=AC﹣2=2,∴S菱形BEDF=BD•EF=×4×2=8.27.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【分析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.【解答】(1)证明:在正方形ABCD中,∵,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.28.已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.【解答】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.29.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.30.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=1,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=,∴BG=BH+HG=+.31.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)【分析】(1)根据CE平分∠ACB,MN∥BC,可知∠ACE=∠BCE,∠PEC=∠BCE,PE=PC,同理:PF=PC,故PE=PF.(2)根据矩形的性质可知当P是AC中点时四边形AECF是矩形.(3)当∠ACB=90°时四边形AECF是正方形.【解答】证明:(1)∵CE平分∠ACB,∴∠ACE=∠BCE.∵MN∥BC,∴∠PEC=∠BCE.∴∠ACE=∠PEC,PE=PC.同理:PF=PC.∴PE=PF.(2)当P是AC中点时四边形AECF是矩形,∵PA=PC,PF=PC,∴四边形AECF是平行四边形.∵PE=PC,∴AC=EF,四边形AECF是矩形.(3)当∠ACB=90°时,四边形AECF是正方形.32.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.33.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.【解答】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形;(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=BC=2,AB=4,点E′为AC的中点,∴2≤DE<2(点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.34.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.【分析】(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.【解答】解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=OD=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.。
初中正方形性质及判定数学试卷
正方形性质以及判定试题一、单选题(共8题;共16分)1.下列说法不正确的是( )A. 一组邻边相等的矩形是正方形B. 对角线相等的菱形是正方形C. 对角线互相垂直的矩形是正方形D. 有一个角是直角的平行四边形是正方形2.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为()A. 90°B. 60°C. 45°D. 30°3.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A. 2m+3B. 2m+6C. m+3D. m+64.如图,AC,BD是矩形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )A. 1个B. 2个C. 3个D. 4个5.下列命题中,真命题是( )A. 对角线互相垂直且相等的四边形是正方形B. 等腰梯形既是轴对称图形又是中心对称图形C. 圆的切线垂直于经过切点的半径D. 垂直于同一直线的两条直线互相垂直6.如图,矩形ABCD中,AB>AD,AB=a,AN平分∠DAB.DM⊥AN于点M,CN⊥AN于点N,则DM+CN的值为(用含有a的代数式表示)( )A. aB. aC. aD. a7.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连结AH,则与∠BEG相等的角的个数为( )A. 4B. 3C. 2D. 18.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )A. 30B. 34C. 36D. 40二、填空题(共6题;共7分)9.如图,已知正方形ABCD,以AB为边向正方形外作等边三角形ABE,连结DE,CE,则∠DEC=________。
北师大版九年级数学上册正方形的性质测试题
北师大版初中数学测试题1.3正方形的性质与判定第1课时正方形的性质一、填空题1.正方形的一边长5cm,则周长为cm,面积为cm22.E是正方形ABCD对角线AC上一点,且AE=AB,则∠ABE=3.E是正方形ABCD内一点,且△EAB是等边三角形,则∠ADE=4.正方形ABCD中,对角线BD长为16cm,P是AB上任意一点,则点P到AC、BD的距离之和等于cm5.正方形有条对称轴。
6.如图(1),在正方形ABCD的边BC的延长线上取一点E,使CE=AC,连结AE交CD于F,则∠AFC=(1) (2)7.如图(2),E是正方形ABCD内一点,如果△ABE是等边三角形,那么∠DCE=,如果DE的延长线交BC于G,则∠BEG=8.F是正方形ABCD的对角线AC上一点,AF=AD,FG⊥AC于F,交CD于G,那么∠DFG=9.如图(3),截去正方形ABCD的∠A、∠C后,∠1、∠2、∠3、∠4的和为(3)(4)10.如图(4),正方形的对角线相交于O,∠BAC的平分线交BD于E,若正方形的周长是20cm,则DE=二、选择题1.正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等2.如图(5),在正方形ABCD中,∠DAF=25°,AF交对角线BD于E 点,则∠BEC=( ) A.45°B.60°C.70°D.75°(5) (6)3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.平行四边形B.等腰三角形 C.等边三角形D.菱形4.如图(6),正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH 的面积是( )A.30 B.34 C.36 D.405.如右图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个三、解答题1.图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少?2.如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数。
数学正方体试题答案及解析
数学正方体试题答案及解析1.从如图正方体的顶点A 沿正方体的棱到顶点B,每个顶点恰好经过一次,一共有种不同的走法.【答案】6【解析】如上图所示,从A点出发,有3种走法,到各自的顶点处,每条路又分成两个支路,即为分步完成,第一步有3种不同走法,第二步,每条支路有两种走法,遵守乘法原理.由此得解.解:3×2=6(种);答:一共有 6种不同的走法.故答案为:6.点评:乘法原理即做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2不同的方法,…,做第n步有mn不同的方法.那么完成这件事共有N="m1m2m3…mn" 种不同的方法.2.正方体从前面,侧面,上面看,看到的图形都是正方形..【答案】√【解析】根据正方体的特征,6个面是完全相同的正方形,因此正方体从前面,侧面,上面看,看到的图形都是正方形.解:由分析知,正方体从前面,侧面,上面看,看到的图形都是正方形.此说法是正确的.故答案为:√.点评:此题考查的目的是理解掌握正方体的特征.3.一个长方体棱的总长为100cm,相交与一个顶点的三条棱的长度是.【答案】25厘米【解析】根据长方体的特征:12条棱分为互相平行的(相对的)3组,每组4条棱的长度相等,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4就是长、宽、高的和,即相交与一个顶点的三条棱的长度和.由此解答.解:100÷4=25(厘米),答:相交与一个顶点的三条棱的长度是25厘米.故答案为:25厘米.点评:此题考查的目的是使学生掌握长方体的特征、以及棱长总和的计算方法,根据棱长总和的计算方法解决问题.4.填空(1)长方体有个面,每个面都是形,也可能有两个的面是形,相对的面的面积.(2)一个长方体长6厘米,宽4厘米,高3厘米.相交于一个顶点的三条棱的长度之和是厘米,这个长方体的棱长总和是厘米.(3)一个正方体的棱长是8厘米,它的棱长总和是厘米;它的一个面的面积是平方厘米.【答案】6、长方、相对、正方、相等;13、52;96、64【解析】(1)根据长方体的特征:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.(2)相交于一个顶点的三条棱的长度之和即为长宽高的和,再乘4,就是这个长方体的棱长总和.(3)根据正方体的特征,它的12条棱的长度都相等,6个面是完全相同的正方形,6个面的面积都相等,正方体的棱长总和=棱长×12,一个面的面积=棱长×棱长,据此解答.解:(1)长方体有 6个面,每个面都是长方形,也可能有两个相对的面是正方形,相对的面的面积相等.(2)6+4+3=13(厘米),13×4=52(厘米);(3)8×12=96(厘米),8×8=64(平方厘米);故答案为:6、长方、相对、正方、相等;13、52;96、64.点评:(1)此题考查的目的是牢固掌握长方体的特征.(2)此题主要考查长方体的棱长之和的计算方法.(3)此题主要考查正方体的特征,以及棱长总和、一个面的面积的计算,直接根据棱长总和公式、正方形的面积公式解答.5.右面的正方体,按图中所示切去一角,剩下的图形有个面,条棱,个顶点.【答案】7,15,10【解析】由图可知:截取一角后,剩下的几何体多了一个面,多了3条棱,多了2个顶点,即可求得.解:由图可知:截取一角后,剩下的几何体多了一个面,多了3条棱,即剩下的几何体由7个面,15条棱,10个顶点;故答案为:7,15,10.点评:本题结合截面考查多面体的相关知识.6. 6个面都是正方形,围成的物体一定是正方体..【答案】√【解析】根据正方体的特征:6个面是完全相同的正方形,据此判断即可.解:根据正方体的特征可知:6个面都是正方形,围成的物体一定是正方体.此说法正确.故答案为:√.点评:此题考查的目的是理解掌握正方体特征.7.长方体有个顶点,条棱,个面;相交于同一个顶点的三条棱分别叫做长方体的、、;长、宽、高都相等的长方体叫做.【答案】8,12,6;长、宽、高;正方体【解析】根据长方体的特征,它有8个顶点,12条棱,6个面;相交于同一个顶点的三条棱分别叫做长方体的长、宽、高;长、宽、高都相等的长方体叫做正方体.解:根据分析,长方体有8个顶点,12条棱,6个面;相交于同一个顶点的三条棱分别叫做长方体的长、宽、高;长、宽、高都相等的长方体叫做正方体.故答案为:8,12,6;长、宽、高;正方体.点评:此题主要根据长方体和正方体的特征解决问题.8.正方体有个面,个顶点,条棱.正方体的每个面都是形,每个面的面积都.【答案】6、8、12、正方、相等【解析】依据正方体的特征即可作答.解:由正方体的特征可知:正方体有6个面,8个顶点,12条棱,正方体的每个面都是正方形,每个面的面积都相等;故答案为:6、8、12、正方、相等.点评:此题主要考查正方体的特征.9.一个正方体,有个面完全相同.【答案】6【解析】根据正方体的特征:12条棱的长度都相等,6个面都是正方形,6个面的面积都相等.由此解答.解:正方体有6个完全相同.故答案为:6.点评:此题主要考查正方体的认识,目的是让学生掌握正方体的特征.10.相邻的两个面是正方形的长方体是正方体..【答案】正确【解析】相邻的两个面是正方形,那么长等于宽等于高;得出是正方体;进行判断即可.解:长方体中相邻的两个面是正方形,则长=宽=高,因为长、宽、高都相等的长方体是正方体,所以该长方体是正方体;故答案为:正确.点评:此题应根据长方体和正方体的特征进行分析、解答.11.正方体每条棱的长度都,如果棱长是a厘米则棱长总和是.【答案】相等、12a厘米【解析】依据正方体的特征即可作答,即正方体有12条棱,每条棱都相等.解:因为正方体有12条棱,且每条棱的长度都相等,如果棱长是a厘米,则棱长总和是 12a厘米;故答案为:相等、12a厘米.点评:此题主要考查正方体的特征.12.底面积是1平方分米,高1分米的长方体是正方体..【答案】错误【解析】根据正方体的特征,12条棱的长度都相等,6个面是完全相同的正方形.已知底面积是1平方分米,底面可能是长方形,如长2米、宽是0.5米的长方形,也可能是边长是1米的正方形,据此判断即可.解:根据正方体的特征,底面积是1平方分米,高1分米的长方体不一定是正方体,因为底面积是1平方分米,底面可能是长方形,如长2米、宽0.5米的长方形;也可能是边长1米的正方形,所以,底面积是1平方分米,高1分米的长方体是正方体.此说法错误.故答案为:错误.点评:此题主要考查长方体和正方体的特征,根据它们的特征解决这个问题.13.正方体是由个完全相同的围成的立体图形,正方体有条棱,它们的长度.正方体有个顶点.【答案】6,正方形,12,相等,8【解析】根据正方体的特征,正方体是有6个完全相同的正方形围成的立体图形,正方体有12条棱,12条棱的长度都相等,有8个顶点.据此解答.解:正方体是有6个完全相同的正方形围成的立体图形,正方体有12条棱,12条棱的长度都相等,有8个顶点.故答案为:6,正方形,12,相等,8.点评:此题考查的目的是掌握正方体的特征.14.用铁丝做一个棱长5厘米的正方体框架,至少需要铁丝厘米.【答案】60【解析】根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12.把数据代入棱长总和公式解答即可.解:5×12=60(厘米),答:至少需要铁丝60厘米.故答案为:60.点评:此题主要考查正方体的特征及棱长总和的计算方法.15.一个正方体有个面,每个面有个直角,正方体一共有个直角.【答案】6,4,24【解析】根据正方体的特征,12条棱的长度都相等,6个面都是正方形,6个面的面积都相等;每个面有4个直角,一共有24个直角.由此解答.解:一个正方体有( 6 )个面,每个面有( 4 )个直角,正方体一共有( 24 )个直角.故答案为:6,4,24.点评:此题主要考查正方体的特征,6个面是完全相同的正方形,6个面的面积都相等;由此解决问题.16.正方体又叫,它是的长方体.【答案】立方体,特殊【解析】根据正方体的特征:正方体的6个面是完全相同的正方形,12条棱的长度都相等,正方体又叫立方体,它是特殊长方体.解:正方体又叫立方体,它是长、宽、高都相等的特殊的长方体.故答案为:立方体,特殊.点评:此题考查的目的是掌握正方体的特征,明确:正方体又叫立方体,是特殊的长方体.17.一根铁丝正好可以焊成一个长6cm,宽5cm,高7cm 的长方体框架(接头处不计),若用这根铁丝焊成一个最大的正方体框架,那么它的棱长是cm.【答案】6【解析】根据长方体和正方体的棱的特征,长方体的12条棱分为互相平行(相对)的3组,每组4条棱的长度相等;正方体的12条棱的长度都相等;首先求出长方体的棱长总和,再除以12即可求出正方体的棱长.解:(7+6+5)×4÷12=18×4÷12=72÷12=6(厘米);答:这个正方体的棱长是6厘米.故答案为:6.点评:此题主要考查长方体和正方体的特征以及棱长总和的计算方法.18.两个同样大小的正方体形状的积木.每个正方体上相对的两个面上写的数之和都等于9.现将两个正方体并列放置.看得见的五个面上的数字如图所示,则看不见的七个面上的数的和等于.【答案】39【解析】由于正方体上相对两个面上写的数之和都等于9,所以每个正方体六个面上写的数之和等于3×9=27.两个正方体共十二个面上写的数之总和等于2×27=54.而五个看得见的面上的数之和是1+2+3+4+5=15.因此,看不见的七个面上所写数的和等于54﹣15=39.解:根据题意,每个正方体六个面上写的数之和:3×9=27.两个正方体(共12个面)上写的数之总和:2×27=54.五个看得见的面上的数之和是:1+2+3+4+5=15.因此,看不见的七个面上所写数的和等于54﹣15=39.故答案为:39.点评:此题解答的关键是根据“每个正方体上相对的两个面上写的数之和都等于9”,推出两个正方体共12个面上写的数之总和,再结合“看得见的五个面上的数字如”这一条件,推出看不见的七个面上所写数的和.19.在一个立方体的六个面上,分别写有A、B、C、D、E,其中某两个相对的面上写有相同的字母,如图所示是它的三种放置图.则字母被写了两遍.【答案】B【解析】从3个图形看,和B相邻的有C,E,A,D,那么和它相对的就是B,按照相邻和所给图形得到其他即可.解:从3个图形看,和B相邻的有C,E,A,D,那么和它相对的就是B;故答案为:B.点评:本题主要考查学生的空间想象能力和推理能力,也可动手操作得到.20.(2012•郑州模拟)在一个正方体的顶面和侧面各画一条对角线AB和AC,(如图)想一想,AB与AC所组成的夹角是度.【答案】60【解析】根据正方体的特征,12条棱的长度都相等,6个面的面积都相等,已知在一个正方体的顶面和侧面各画一条对角线AB和AC,求AB与AC所组成的夹角是多少度,连接BC,三角形ABC是等边三角形,三角形的内角和是180°,等边三角形的三个内角都相等.由此解答.解:根据分析,连接BC,三角形ABC是一个等边三角形(如图),三角形的内角和是180°,等边三角形的三个内角都相等.180°÷3=60°;答:AB与AC所组成的夹角是60°.故答案为:60.点评:此题解答关键是理解连接BC后,三角形ABC是等边三角形,根据等边三角形的特征解决问题.21.如图,是游戏棋的一个子的三种摆法,则1对面是.【答案】6【解析】由3个立体图形可知,3的对面不是1,2,5,6,所以3的对面是4,2的对面不是1,3,4,6,所以2的对面是5,那么剩下的1的对面是6.解:根据题意可知,3的对面不是1,2,5,6,所以3的对面一定是4,2的对面不是1,3,4,6,所以2的对面一定是5,那么1的对面是6.故答案为:6.点评:本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.解题的关键是按照相邻和所给图形得到相对面的数字.22.一个正方体的底面周长是12cm,它的棱长和是()cm.A.24B.27C.36D.64【答案】C【解析】根据正方体的特征,12条棱的长度都相等,6个面的面积都相等.已知一个正方体的底面周长是12厘米,根据正方形的周长公式:c=4a,用周长除以4求出边长,再根据正方体的棱长总和=棱长×12,由此列式解答.解;12÷4=3(厘米),3×12=36(厘米);答:它的棱长总和是36厘米.故选:C.点评:此题主要考查正方体的特征和棱长总和的计算,根据求棱长总和的公式,直接列式解答.23.一个棱长是4分米的正方体,棱长总和是()分米.A.16B.24C.32D.48【答案】D【解析】一个正方体有12条棱,棱长总和为12条棱的长度和.解:4×12=48(分米).故选:D.点评:此题考查计算正方体的棱长总和的方法,即用棱长乘12即可.24.一个棱长是6厘米的正方体,棱长总和是()厘米.A.72B.24C.144【答案】A【解析】根据正方体的特征,正方体的十二条棱长相等,根据题目中所提供的数据即可求出棱长总和.解:6×12=72(厘米);故选:A点评:此题是考查正方体的特征,用正方体的特征即可解决问题.25.下面几种说法中,错误的是()A.长方体和正方体都有6个面,12条棱,8个顶点B.长方体的12条棱中,长、宽、高各有4条C.正方体不仅相对面的面积相等,而且所有相邻面的面积也都相等D.长方体除了相对面的面积相等,不可能有两个相邻面的面积相等【答案】D【解析】根据长方体和正方体的特征:它们都有12条棱、6个面、8个顶点.长方体的12 条棱分为互相平行的3组,每组4条棱的长度相等,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.正方体的12条棱的长度都相等,6个面的面积都相等.由此解答.解:根据分析:说法错误的是:长方体除了相对的面的面积相等,不可能有两个相邻面的面积相等.因为长方体中如果有两个相对的面是正方形时,其它4个面是完全相同的长方形.故选:D.点评:此题考查的目的是使学生牢固掌握长方体和正方体的特征.26. 6个面面积相等,12条棱的长度也相等的立体图形是()A.正方体B.长方体C.长方形【答案】A【解析】根据正方体的特征,它的6个面是完全相同的正方形,12条棱的长度都相等,有8个顶点;由此解答.解:根据正方体的特征,6个面面积相等,12条棱的长度也相等的立体图形是正方体.故选:A.点评:此题主要考查正方体的特征.它的6个面是完全相同的正方形,12条棱的长度都相等,有8个顶点.27.(2009•龙岗区模拟)一个棱长是1厘米的正方体,棱长总和是()厘米.A.6B.8C.12【答案】C【解析】正方体的特征是:正方体有8个顶点,它的6个面是完全相同的正方形,它的12条棱的长度都相等,正方体的棱长总和=棱长×12;由此解答.解:1×12=12(厘米);答:它的棱长总和是12厘米.故选:C.点评:此题主要考查正方体的特征,以及正方体的棱长总和的计算方法.28.春节前夕,小明的爸爸要做一个棱长是米的正方体灯笼框架,需要粗铁丝多少米?(接头处忽略不计)【答案】5.4米【解析】根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12,据此列式解答.解:=5.4(米),答:需要粗铁丝5.4米.点评:此题考查的目的是掌握正方体的特征以及正方体的棱长总和的计算方法.29.已知在每个正方体的六个面上分别写着1、2、3、4、5、6这六个数,并且任意相对面上所写的两个数的和都等于7.现在把五个同样大小的这样的正方体一个挨着一个连接起来,如图所示,在紧挨着的两个面上的两个数的和都等于8,那么图中打“?”的这个面上所写的数是.【答案】3【解析】根据题意,相邻的面分别是7﹣1=6、8﹣6=2、7﹣2=5、8﹣5=3、7﹣3=4,上面1那块前后是3和4 上下是1和6,所以左右只能是2和5,如果左面是2,右面是5:8﹣5=3、7﹣3=4、8﹣4=4、7﹣4=3;如果左面是5,右面是2:8﹣2=6、7﹣6=1、8﹣1=7,方块没有7这个数字,所以没有可能,那么问号的数字应该是3,据此解答即可.解:相邻的面分别是7﹣1=6、8﹣6=2、7﹣2=5、8﹣5=3,3的对面是7﹣3=4,因为上面1那块前后是3和4,上下是1和6,所以左右只能是2和5,如果左面是2、右面是5得出:8﹣5=3、7﹣3=4、8﹣4=4、7﹣4=3,如果左面是5、右面是2得出:8﹣2=6、7﹣6=1、8﹣1=7,方块没有7这个数字所以没有可能,问号的数字应该是3.故答案为:3.点评:此题考查正方体的展开图,解决此题关键是如果左面是2、右面是5得出:8﹣5=3、7﹣3=4、8﹣4=4、7﹣4=3,如果左面是5、右面是2,8﹣2=6、7﹣6=1、8﹣1=7,方块没有7这个数字,所以没可能.30.用48cm长的铁丝,可以做一个棱长为6cm的正方体框架.(判断对错)【答案】×【解析】根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12,据此求出这个正方体的棱长,然后与6厘米进行比较即可.解:48÷12=4(厘米),答:用48厘米长的铁丝,可以做一个棱长4厘米的正方体框架.故答案为:×.点评:此题考查的目的是掌握正方体的特征以及正方体的棱长总和公式.。
初中数学 正方形 练习题(含答案)
第五章四边形第29课时正方形1.阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1.第1题图按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.请解决以下问题:(1)完成表格中的填空:①;②;③;④.(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).数学文化专练2. (2019绵阳)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()第2题图A. 15 B.55 C.355 D.95七巧板3. (2019苏州)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10 cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).第3题图参考答案中考试题中的核心素养核心素养提升1. 解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;②(2-1)a1;③(2-1)2a1;④(2-1)n-1a1.(2)所画正方形CHIJ见解图.第1题解图数学文化专练2. A【解析】∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为55,小正方形的边长为5,∴55cos θ-55sin θ=5,∴cos θ-sin θ=55,∴(sin θ-cos θ)2=[-(cos θ-sin θ)]2=15.3. 522【解析】如解图,由题意可知正方形ABCD的边长AB=10 cm,∵△AOB是等腰直角三角形,∴AO=BO=52.∵△BEF是等腰直角三角形,∴BE=EF.∵四边形OEFG是正方形,∴OE=EF=BE,∴OE=52 2.第3题解图。
2021年中考真题分类正方形的性质精选试题含答案解析
2021年中考真题分类正方形的性质一.选择题(共5小题)1.(2021•泰州)如图,P为AB上任意一点,分别以AP、PB为边在AB同侧作正方形APCD、正方形PBEF,设∠CBE=α,则∠AFP为()A.2αB.90°﹣αC.45°+αD.90°−1 2α2.(2021•湖北)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE =FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有()A.1个B.2个C.3个D.4个3.(2021•常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF 交于P.则下列结论成立的是()A.BE=12AE B.PC=PDC.∠EAF+∠AFD=90°D.PE=EC4.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为()A.1B.√2C.2D.2√2 5.(2021•重庆)如图,把含30°的直角三角板PMN放置在正方形ABCD中,∠PMN=30°,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则∠AMP的度数为()A.60°B.65°C.75°D.80°二.填空题(共10小题)6.(2021•赤峰)如图,正方形ABCD的边长为2√5,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②CHHF=23;③GH=23√5;④AD=AH,其中正确结论的序号是.7.(2021•包头)如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,则∠BAF的度数为.8.(2021•铜仁市)如图,E、F分别是正方形ABCD的边AB、BC上的动点,满足AE=BF,连接CE、DF,相交于点G,连接AG,若正方形的边长为2.则线段AG的最小值为.9.(2021•张家界)如图,在正方形ABCD外取一点E,连接DE,AE,CE,过点D作DE 的垂线交AE于点P,若DE=DP=1,PC=√6.下列结论:①△APD≌△CED;②AE ⊥CE;③点C到直线DE的距离为√3;④S正方形ABCD=5+2√2,其中正确结论的序号为.10.(2021•贺州)如图,在边长为6的正方形ABCD中,点E,F分别在BC,CD上,BC =3BE且BE=CF,AE⊥BF,垂足为G,O是对角线BD的中点,连接OG,则OG的长为.11.(2021•绥化)在边长为4的正方形ABCD中,连接对角线AC、BD,点P是正方形边上或对角线上的一点,若PB=3PC,则PC=.12.(2021•威海)如图,在正方形ABCD中,AB=2,E为边AB上一点,F为边BC上一点.连接DE和AF交于点G,连接BG.若AE=BF,则BG的最小值为.13.(2021•广元)如图,在正方形ABCD中,点O是对角线BD的中点,点P在线段OD 上,连接AP并延长交CD于点E,过点P作PF⊥AP交BC于点F,连接AF、EF,AF 交BD于G,现有以下结论:①AP=PF;②DE+BF=EF;③PB﹣PD=√2BF;④S△AEF 为定值;⑤S四边形PEFG=S△APG.以上结论正确的有(填入正确的序号即可).14.(2021•天津)如图,正方形ABCD的边长为4,对角线AC,BD相交于点O,点E,F 分别在BC,CD的延长线上,且CE=2,DF=1,G为EF的中点,连接OE,交CD于点H,连接GH,则GH的长为.15.(2021•云南)已知△ABC的三个顶点都是同一个正方形的顶点,∠ABC的平分线与线段AC交于点D.若△ABC的一条边长为6,则点D到直线AB的距离为.三.解答题(共5小题)16.(2021•牡丹江)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,过点F做FG⊥BC于点G,连接AC.易证:AC=√2(EC+FG).(提示:取AB的中点M,连接EM)(1)当点E是BC边上任意一点时,如图2;当点E在BC延长线上时,如图3.请直接写出AC,EC,FG的数量关系,并对图2进行证明;(2)已知正方形ABCD的面积是27,连接AF,当△ABE中有一个内角为30°时,则AF的长为.17.(2021•梧州)如图,在正方形ABCD中,点E,F分别为边BC,CD上的点,且AE⊥BF于点P,G为AD的中点,连接GP,过点P作PH⊥GP交AB于点H,连接GH.(1)求证:BE=CF;(2)若AB=6,BE=13BC,求GH的长.18.(2021•哈尔滨)已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.19.(2021•福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.(1)求证:DE∥A′F;(2)求∠GA′B的大小;(3)求证:A′C=2A′B.20.(2021•邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4√2,AE=2,求四边形BEDF的周长.2021年中考真题分类正方形的性质参考答案与试题解析一.选择题(共5小题)1.(2021•泰州)如图,P 为AB 上任意一点,分别以AP 、PB 为边在AB 同侧作正方形APCD 、正方形PBEF ,设∠CBE =α,则∠AFP 为( )A .2αB .90°﹣αC .45°+αD .90°−12α 解:∵四边形PBEF 为正方形,∴∠PBE =90°,∵∠CBE =α,∴∠PBC =90°﹣α,∵四边形APCD 、PBEF 是正方形,∴AP =CP ,∠APF =∠CPB =90°,PF =PB ,在△APF 和△CPB 中,{AP =CP ∠APF =∠CPB PF =PB,∴△APF ≌△CPB (SAS ),∴∠AFP =∠PBC =90°﹣α.故选:B .2.(2021•湖北)如图,在正方形ABCD 中,AB =4,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 于点F ,EG ⊥BC 于点G ,连接DE ,FG ,下列结论:①DE =FG ;②DE ⊥FG ;③∠BFG =∠ADE ;④FG 的最小值为3.其中正确结论的个数有( )A .1个B .2个C .3个D .4个解:①连接BE ,交FG 于点O ,如图,∵EF ⊥AB ,EG ⊥BC ,∴∠EFB =∠EGB =90°.∵∠ABC =90°,∴四边形EFBG 为矩形.∴FG =BE ,OB =OF =OE =OG .∵四边形ABCD 为正方形,∴AB =AD ,∠BAC =∠DAC =45°.在△ABE 和△ADE 中,{AE =AE ∠BAC =∠DAC AB =AD,∴△ABE ≌△ADE (SAS ).∴BE =DE .∴DE =FG .∴①正确;②∵△ABE ≌△ADE ,∴∠ABE =∠ADE .由①知:OB =OF ,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点,∴根据垂线段最短,当DE⊥AC时,DE最小.∵AD=CD=4,∠ADC=90°,∴AC=√AD2+CD2=4√2.∴DE=12AC=2√2.由①知:FG=DE,∴FG的最小值为2√2,∴④错误.综上,正确的结论为:①②③.故选:C.3.(2021•常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF 交于P.则下列结论成立的是()A.BE=12AE B.PC=PDC .∠EAF +∠AFD =90° D .PE =EC解:∵F 、E 分别是正方形ABCD 的边AB 与BC 的中点,∴AF =BE ,在△AFD 和△BEA 中,{AF =BE ∠DAF =∠ABE =90°AD =BA,∴△AFD ≌△BEA (SAS ),∴∠FDA =∠EAB ,又∵∠FDA +∠AFD =90°,∴∠EAB +∠AFD =90°,即∠EAF +∠AFD =90°,故C 正确,A 、B 、D 无法证明其成立,故选:C .4.(2021•重庆)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B .√2C .2D .2√2解:∵四边形ABCD 是正方形,∴∠MDO =∠NCO =45°,OD =OC ,∠DOC =90°,∴∠DON +∠CON =90°,∵ON ⊥OM ,∴∠MON =90°,∴∠DON +∠DOM =90°,∴∠DOM =∠CON ,在△DOM 和△CON 中,{∠DOM =∠CON OD =OC ∠MDO =∠NCO,∴△DOM ≌△CON (ASA ),∵四边形MOND 的面积是1,四边形MOND 的面积=△DOM 的面积+△DON 的面积, ∴四边形MOND 的面积=△CON 的面积+△DON 的面积=△DOC 的面积,∴△DOC 的面积是1,∴正方形ABCD 的面积是4,∵AB 2=4,∴AB =2,故选:C .5.(2021•重庆)如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,∠PMN =30°,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则∠AMP 的度数为( )A .60°B .65°C .75°D .80°解:在Rt △PMN 中,∠MPN =90°,∵O 为MN 的中点,∴OP =12MN =OM ,∵∠PMN =30°,∴∠MPO =30°,∴∠DPM =150°,在四边形ADPM 中,∵∠A =90°,∠ADB =45°,∠DPM =150°,∴∠AMP =360°﹣∠A ﹣∠ADB ﹣∠DPM=360°﹣90°﹣45°﹣150°=75°.故选:C.二.填空题(共10小题)6.(2021•赤峰)如图,正方形ABCD的边长为2√5,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②CHHF =23;③GH=23√5;④AD=AH,其中正确结论的序号是①②④.解:∵四边形ABCD是边长为2√5的正方形,点E是BC的中点,∴AB=AD=BC=CD=2√5,BE=CE=√5,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2√5,CE=√5,由勾股定理得,DE=√CD2+CE2=√20+5=5,∵S △DCE =12CD ×CE =12DE ×CH ,∴CH =2,∵∠CHE =∠CBF ,∠BCF =∠ECH ,∴△ECH ∽△FCB ,∴CH BC =CE CF , ∴2√5=√5CF, ∴CF =5,∴HF =CF ﹣CH =3,∴CHHF =23,故②正确; 如图,过点A 作AM ⊥DE 于点M ,∵DC =2√5,CH =2,由勾股定理得,DH =√DC 2−CH 2=√20−4=4,∵∠CDH +∠ADM =90°,∠DAM +∠ADM =90°,∴∠CDH =∠DAM ,又∵AD =CD ,∠CHD =∠AMD =90°,∴△ADM ≌△DCH (AAS ),∴CH =DM =2,AM =DH =4,∴MH =DM =2,又∵AM ⊥DH ,∴AD =AH ,故④正确;∵DE =5,DH =4,∴HE =1,∴ME =HE +MH =3,∵AM ⊥DE ,CF ⊥DE ,∴∠AME =∠GHE ,∵∠HEG =∠MEA ,∴△MEA ∽△HEG ,∴GH AM =HE ME , ∴GH 4=13,∴HG =43,故③错误.综上,正确的有:①②④.故答案为:①②④.7.(2021•包头)如图,BD 是正方形ABCD 的一条对角线,E 是BD 上一点,F 是CB 延长线上一点,连接CE ,EF ,AF .若DE =DC ,EF =EC ,则∠BAF 的度数为 22.5° .解:如右图,连接AE ,∵BD 为正方形ABCD 的对角线,∴∠BDC =45°,∵DE =DC =AD ,∴∠DEC =∠DCE =180°−45°2=67.5°, ∵∠DCB =90°,∴∠BCE =90°﹣∠DCE =90°﹣67.5°=22.5°,∵EF =EC ,∴∠FEC =180°﹣∠EFC ﹣∠ECF =180°﹣22.5°﹣22.5°=135°,∵∠BEC =180°﹣∠DEC =180°﹣67.5°=112.5°,∴∠BEF =135°﹣112.5°=22.5°,∵AD =DE ,∠ADE =45°,∴∠AED =180°−45°2=67.5°, ∴∠BEF +∠AED =22.5°+67.5°=90°,∴∠AEF =180°﹣90°=90°,在△ADE 和△EDC 中,{AD =DE ∠ADE =∠EDC DE =DC,∴△ADE ≌△EDC (SAS ),∴AE =EC ,∴AE =EF ,即△AEF 为等腰直角三角形,∴∠AFE =45°,∴∠AFB =∠AFE +∠BFE =45°+22.5°=67.5°,∵∠ABF =90°,∴∠BAF =90°﹣∠AFB =90°﹣67.5°=22.5°,故答案为:22.5°.8.(2021•铜仁市)如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的动点,满足AE =BF ,连接CE 、DF ,相交于点G ,连接AG ,若正方形的边长为2.则线段AG 的最小值为 √2 .解:如图1,取CD 的中点H ,连接GH ,在正方形ABCD 中,AB =BC =2,∠B =∠DCF =90°,∵AE =BF ,∴BE =CF ,在△DCF 和△CBE 中,{CD =CB ∠DCF =∠B CF =BE,∴△DCF ≌△CBE (SAS ),∴∠CDF =∠BCE ,∵∠DCE +∠BCE =90°,∴∠CDF +∠DCE =90°,∴∠CGD =90°,∴点G 在以DC 为直径的圆上,如图2,连接AC ,BD 交于点O ,取DC 的中点H ,由勾股定理得:AC =√22+22=2√2,∵E 、F 分别是正方形ABCD 的边AB 、BC 上的动点,∴点G 在以H 为圆心,CH 为半径的14圆上运动,当点G 与O 重合时,AG 最小,此时AG =AO =12AC =√2,即AG 的最小值=√2.故答案为:√2;9.(2021•张家界)如图,在正方形ABCD 外取一点E ,连接DE ,AE ,CE ,过点D 作DE的垂线交AE 于点P ,若DE =DP =1,PC =√6.下列结论:①△APD ≌△CED ;②AE ⊥CE ;③点C 到直线DE 的距离为√3;④S 正方形ABCD =5+2√2,其中正确结论的序号为 ①②④ .解:①∵DP ⊥DE ,∴∠PDE =90°.∴∠PDC +∠CDE =90°,∵在正方形ABCD 中,∠ADC =∠ADP +∠PDC =90°,AD =CD ,∴∠CDE =∠ADP .在△APD 和△CED 中,{AD =CD ∠ADP =∠CDE PD =DE,∴△APD ≌△CED (SAS ),故①正确;②∵△APD ≌△CED ,∴∠APD =∠CED ,又∵∠APD =∠PDE +∠DEP ,∠CED =∠CEA +∠DEP ,∴∠PDE =∠CEA =90°.即AE ⊥CE ,故②正确;③过点C 作CF ⊥DE 的延长线于点F ,如图,∵DE =DP ,∠PDE =90°,∴∠DPE =∠DEP =45°.又∵∠CEA=90°,∴∠CEF=∠FCE=45°.∵DP=DE=1,∴PE=√DP2+DE2=√2.∴CE=√PC2−PE2=√6−2=2,∴CF=EF=√22CE=√2,即点C到直线DE的距离为√2,故③错误;④∵CF=EF=√2,DE=1,在Rt△CDF中,CD2=CF2+DF2=(√2)2+(1+√2)2=2+3+2√2=5+2√2,∴S正方形ABCD=5+2√2,故④正确.综上所述,正确结论的序号为①②④,故答案为:①②④.10.(2021•贺州)如图,在边长为6的正方形ABCD中,点E,F分别在BC,CD上,BC =3BE且BE=CF,AE⊥BF,垂足为G,O是对角线BD的中点,连接OG,则OG的长为65√5.解:以B为原点,BC所在直线为x轴,建立直角坐标系,如图:∵四边形ABCD 是正方形,边长为6,∴AB =BC =6,∠ABE =∠BCF =90°,∵BC =3BE ,BE =CF ,∴BE =CF =2,∴E (2,0),F (6,2),A (0,6),D (6,6),设直线AE 解析式为y =ax +b ,则{0=2a +b 6=b, 解得{a =−3b =6, ∴直线AE 解析式为y =﹣3x +6,设直线BF 解析式为y =cx ,则2=6c ,解得c =13,∴直线BF 解析式为y =13x ,由{y =−3x +6y =13x 得{x =95y =35, ∴G (95,35), ∵O 为BD 中点,∴O (3,3),∴OG =√(3−95)2+(3−35)2=6√55,故答案为:6√55. 11.(2021•绥化)在边长为4的正方形ABCD 中,连接对角线AC 、BD ,点P 是正方形边上或对角线上的一点,若PB =3PC ,则PC = 1或√2或−√2+√344. 解:如图1,∵四边形ABCD 是正方形,AB =4,∴AC ⊥BD ,AC =BD ,OB =OD ,AB =BC =AD =CD =4,∠ABC =∠BCD =90°, 在Rt △ABC 中,由勾股定理得:AC =√AB 2+BC 2=√42+42=4√2,∴OB =2√2,∵PB =3PC ,∴设PC =x ,则PB =3x ,有三种情况:①点P 在BC 上时,如图2,∵AD =4,PB =3PC ,∴PC =1;②点P 在AC 上时,如图3,在Rt △BPO 中,由勾股定理得:BP 2=BO 2+OP 2,(3x )2=(2√2)2+(2√2−x )2,解得:x =−√2+√344(负数舍去),即PC =−√2+√344; ③点P 在CD 上时,如图4,在Rt △BPC 中,由勾股定理得:BC 2+PC 2=BP 2,42+x 2=(3x )2,解得:x =√2(负数舍去),即PC =√2;综上,PC 的长是1或√2或−√2+√344. 故答案为:1或√2或−√2+√344. 12.(2021•威海)如图,在正方形ABCD 中,AB =2,E 为边AB 上一点,F 为边BC 上一点.连接DE 和AF 交于点G ,连接BG .若AE =BF ,则BG 的最小值为 √5−1 .解:如图,取AD 的中点T ,连接BT ,GT .∵四边形ABCD 是正方形,∴AD =AB =2,∠DAE =∠ABF =90°,在△DAE 和△ABF 中,{DA =AB ∠DAE =∠ABF AE =BF,∴△DAE ≌△ABF (SAS ),∴∠ADE =∠BAF ,∵∠BAF +∠DAF =90°,∴∠EDA +∠DAF =90°,∴∠AGD =90°,∵DT =AT ,∴GT =12AD =1,∵BT =√AT 2+AB 2=√12+22=√5,∴BG ≥BT ﹣GT ,∴BG ≥√5−1,∴BG 的最小值为√5−1.故答案为:√5−1.13.(2021•广元)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD上,连接AP 并延长交CD 于点E ,过点P 作PF ⊥AP 交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:①AP =PF ;②DE +BF =EF ;③PB ﹣PD =√2BF ;④S △AEF 为定值;⑤S 四边形PEFG =S △APG .以上结论正确的有 ①②③⑤ (填入正确的序号即可).解:取AF 的中点T ,连接PT ,BT .∵AP ⊥PF ,四边形ABCD 是正方形,∴∠ABF =∠APF =90°,∠ABD =∠CBD =45°,∵AT =TF ,∴BT =AT =TF =PT ,∴A ,B ,F ,P 四点共圆,∴∠P AF =∠PBF =45°,∴∠P AF =∠PF A =45°,∴P A =PF ,故①正确,将△ADE 绕点A 顺时针旋转90°得到△ABM ,∵∠ADE =∠ABM =90°,∠ABC =90°,∴∠ABC +∠ABM =180°,∴C ,B ,M 共线,∵∠EAF =45°,∴∠MAF =∠F AB +∠BAM =∠F AB +∠DAE =45°,∴∠F AE =∠F AM ,在△F AM 和△F AE 中,{FA =FA ∠FAM =∠FAE AM =AE,∴△F AM ≌△F AE (SAS ),∴FM =EF ,∵FM =BF +BM =BF +DE ,∴EF =DE +BF ,故②正确,连接PC ,过点P 作PG ⊥CF 于G ,过点P 作PW ⊥CD 于W ,则四边形PGCW 是矩形, 在△PBA 和PCB 中,{PB =PB ∠PBA =∠PBC BA =BC,∴△PBA ≌△PBC (SAS ),∴P A =PC ,∵PF =P A ,∴PF =PC ,∵PG ⊥CF ,∴FG =GC ,∵PB =√2BG ,PD =√2PW =√2CG =√2FG ,∴PB ﹣PD =√2(BG ﹣FG )=√2BF ,故③正确,∵△AEF ≌△AMF ,∴S △AEF =S △AMF =12FM •AB ,∵FM 的长度是变化的,∴△AEF 的面积不是定值,故④错误,∵A ,B ,F ,P 四点共圆,∴∠APG =∠AFB ,∵△AFE ≌△AFM ,∴∠AFE =∠AFB ,∴∠APG =∠AFE ,∵∠P AG =∠EAF ,∴△P AG ∽△F AE ,∴S △APGS △AFE =(PA AF )2=(√2PA )2=12, ∴S 四边形PEFG =S △APG ,故⑤正确,故答案为:①②③⑤.14.(2021•天津)如图,正方形ABCD 的边长为4,对角线AC ,BD 相交于点O ,点E ,F分别在BC ,CD 的延长线上,且CE =2,DF =1,G 为EF 的中点,连接OE ,交CD 于点H ,连接GH ,则GH 的长为 √132 .解:以O 为原点,垂直AB 的直线为x 轴,建立直角坐标系,如图:∵正方形ABCD 的边长为4,CE =2,DF =1,∴E (4,﹣2),F (2,3),∵G 为EF 的中点,∴G (3,12), 设直线OE 解析式为y =kx ,将E (4,﹣2)代入得:﹣2=4k ,解得k =−12,∴直线OE 解析式为y =−12x ,令x =2得y =﹣1,∴H (2,﹣1),∴GH =√(3−2)2+(−1−12)2=√132,方法二:如下图,连接OF ,过点O 作OM ⊥CD 交CD 于M ,∵O 为正方形对角线AC 和BD 的交点,∴OM =CM =DM =CE =2,易证△OHM ≌△EHC ,∴点H 、点G 分别为OE 、FE 的中点,∴GH 为△OEF 的中位线,∴GH =12OF ,在Rt △OMF 中,由勾股定理可得OF =√OM 2+FM 2=√22+32=√13,∴GH =12OF =√132, 故答案为:√132. 15.(2021•云南)已知△ABC 的三个顶点都是同一个正方形的顶点,∠ABC 的平分线与线段AC 交于点D .若△ABC 的一条边长为6,则点D 到直线AB 的距离为3√22或3或6√2−6或6﹣3√2 .解:①当B 为直角顶点时,过D 作DH ⊥AB 于H ,如图:∵△ABC 的三个顶点都是同一个正方形的顶点,∠ABC 的平分线与线段AC 交于点D ,∴△ABC 是等腰直角三角形,∠ABD =∠ADH =45°,AD =CD =12AC ,∴△AHD 和△BHD 是等腰直角三角形,∴AH =DH =BH ,∴DH =12BC ,若AC =6,则BC =AC •cos45°=3√2,此时DH =3√22,即点D 到直线AB 的距离为3√22; 若AB =BC =6,则DH =12BC =3,即点D 到直线AB 的距离为3;②当B 不是直角顶点时,过D 作DH ⊥BC 于H ,如图:∵△ABC 的三个顶点都是同一个正方形的顶点,∠ABC 的平分线与线段AC 交于点D , ∴△CDH 是等腰直角三角,AD =DH =CH ,在△ABD 和△HBD 中,{∠ABD =∠HBD ∠A =∠DHB BD =BD,∴△ABD ≌△HBD (AAS ),∴AB =BH ,若AB =AC =6时,BH =6,BC =√AB 2+AC 2=6√2,∴CH =BC ﹣BH =6√2−6,∴AD =6√2−6,即此时点D 到直线AB 的距离为6√2−6;若BC =6,则AB =BC •cos45°=3√2,∴BH =3√2,∴CH =6﹣3√2,∴AD =6﹣3√2,即此时点D 到直线AB 的距离为6﹣3√2;综上所述,点D 到直线AB 的距离为3√22或3或6√2−6或6﹣3√2. 故答案为:3√22或3或6√2−6或6﹣3√2.三.解答题(共5小题)16.(2021•牡丹江)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,过点F做FG⊥BC于点G,连接AC.易证:AC=√2(EC+FG).(提示:取AB的中点M,连接EM)(1)当点E是BC边上任意一点时,如图2;当点E在BC延长线上时,如图3.请直接写出AC,EC,FG的数量关系,并对图2进行证明;(2)已知正方形ABCD的面积是27,连接AF,当△ABE中有一个内角为30°时,则AF的长为6√2或6√6.解:(1)如图2中,结论:AC=√2(FG+EC).理由:在AB上截取BM=BE,连接EM,∵四边形ABCD是正方形,∴∠B=∠BCD=90°,AB=BC,∴∠DCG=90°,∠EAM+∠AEB=90°,∵BM=BE,∴AB﹣BM=BC﹣BE,∠BME=∠BEM=45°,∴AM=EC,∠AME=135°,∵CF平分∠DCG,∴∠FCG=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEF=90°,∴∠FEC+∠AEB=90°,∴∠EAM=∠FEC,∴在△AEM和△EFC中,{∠AME =∠ECF AM =EC ∠EAM =∠FEC,∴△AEM ≌△EFC (ASA ),∴EM =CF ,∵EM =√2BE ,CF =√2FG ,∴BE =FG ,∵AC =√2BC =√2(BE +EC ),∴AC =√2(FG +EC ).如图3中,结论:AC =√2(FG ﹣EC ).(2)如图1中,当∠BAE =30°时,∵正方形的面积为27,∴AB =3√3,∠B =90°,∴BE =AB •tan30°=3√3×√33=3,∴AE =2BE =6,∵△AEM ≌△EFC∴AE =EF =6,∴AF =6√2,如图3中,当∠AEB =30°时,同法可得AE =EF =2AB =6√3,∴AF =√2AE =6√6,综上所述,AF 的长为6√2或6√6.17.(2021•梧州)如图,在正方形ABCD 中,点E ,F 分别为边BC ,CD 上的点,且AE ⊥BF 于点P ,G 为AD 的中点,连接GP ,过点P 作PH ⊥GP 交AB 于点H ,连接GH .(1)求证:BE =CF ;(2)若AB =6,BE =13BC ,求GH 的长.(1)证明:∵AE ⊥BF ,∠ABE =90°,∴∠EAB +∠ABF =90°,∠ABF +∠CBF =90°,∴∠EAB =∠CBF ,在△ABE 与△BCF 中,{∠EAB =∠CBF AB =BC ∠ABC =∠C,∴△ABE ≌△BCF (ASA ),∴BE =CF ;(2)∵∠EAB =∠CBF ,∴∠GAE =∠PBH ,∵PH ⊥GP ,∴∠GPH =90°,∵∠APB =90°,∴∠GP A +∠APH =∠APH +∠HPB ,∴∠GP A =∠HPB ,∴△GP A ∽△HPB ,∴GA HB =BP AP ,∵tan ∠EAB =EB AB =BP AP , ∵BE =13BC ,∴GA HB =3,∵G 为AD 的中点,∴AG =3,∴HB =1,∴AH =5,∴GH =√AG 2+AH 2=√34.18.(2021•哈尔滨)已知四边形ABCD 是正方形,点E 在边DA 的延长线上,连接CE 交AB 于点G ,过点B 作BM ⊥CE ,垂足为点M ,BM 的延长线交AD 于点F ,交CD 的延长线于点H .(1)如图1,求证:CE =BH ;(2)如图2,若AE =AB ,连接CF ,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEG 除外),使写出的每个三角形都与△AEG 全等.证明:(1)∵四边形ABCD 是正方形,∴BC =CD =AD =AB ,∠BCD =∠ADC =90°,∵BM ⊥CE ,∴∠HMC =∠ADC =90°,∴∠H +∠HCM =90°=∠E +∠ECD ,∴∠H =∠E ,在△EDC 和△HCB 中,{∠E =∠H ∠EDC =∠HCB =90°CD =BC,∴△EDC ≌△HCB (AAS ),∴CE =BH ;(2)△BCG ,△DCF ,△DHF ,△ABF ,理由如下:∵AE =AB ,∴AE =BC =AD =CD ,∵△EDC ≌△HCB ,∴ED =HC ,∵AD =CD ,∴AE =HD =CD =AB ,在△AEG 和△BCG 中,{∠EAG =∠CBG =90°∠AGE =∠BGC AE =BC,∴△AEG ≌△BCG (AAS ),∴AG =BG =12AB ,同理可证△AFB ≌△DFH ,∴AF =DF =12AD ,∴AG =AF =DF ,在△AEG 和△ABF 中,{AE =AB ∠EAG =∠BAF =90°AG =AF,∴△AEG ≌△ABF (SAS ),同理可证△AEG ≌△DHF ,△AEG ≌△DCF .19.(2021•福建)如图,在正方形ABCD 中,E ,F 为边AB 上的两个三等分点,点A 关于DE 的对称点为A ′,AA ′的延长线交BC 于点G .(1)求证:DE ∥A ′F ;(2)求∠GA ′B 的大小;(3)求证:A ′C =2A ′B .证明:(1)如图,设AG 与DE 的交点为O ,连接GF ,∵点A 关于DE 的对称点为A ′,∴AO =A 'O ,AA '⊥DE ,∵E ,F 为边AB 上的两个三等分点,∴AE =EF =BF ,∴DE ∥A 'F ;(2)∵AA '⊥DE ,∴∠AOE =90°=∠DAE =∠ABG ,∴∠ADE +∠DEA =90°=∠DEA +∠EAO ,∴∠ADE =∠EAO ,在△ADE 和△BAG 中,{∠ADE =∠EAO AD =AB ∠DAE =∠ABG =90°,∴△ADE ≌△BAG (ASA ),∴AE =BG ,∴BF =BG ,∴∠GFB =∠FGB =45°,∵∠F A 'G =∠FBG =90°,∴点F ,点B ,点G ,点A '四点共圆,∴∠GA 'B =∠GFB =45°;(3)设AE =EF =BF =BG =a ,∴AD =BC =3a ,FG =√2a ,∴CG =2a ,在Rt △ADE 中,DE =√AD2+AE 2=√9a 2+a 2=√10a =AG , ∵sin ∠EAO =sin ∠ADE ,∴OE AE =AE DE , ∴OE a =√10a, ∴OE =√1010a ,∴AO =√AE 2−OE 2=√a 2−a 210=3√1010a =A 'O , ∴A 'G =2√105a , ∵AO =A 'O ,AE =EF ,∴A 'F =2√1010a =√105a , ∵∠F A 'G =∠FBG =90°,∴∠A 'FB +∠A 'GB =180°,∵∠A 'GC +∠A 'GB =180°,∴∠A 'FB =∠A 'GC ,又∵A′F A′G =12=BFCG ,∴△A 'FB ∽△A 'GC ,∴A′B A′C =12, ∴A ′C =2A ′B .20.(2021•邵阳)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 是对角线AC 上的两点,且AE =CF .连接DE ,DF ,BE ,BF .(1)证明:△ADE ≌△CBF .(2)若AB =4√2,AE =2,求四边形BEDF 的周长.(1)证明:由正方形对角线平分每一组对角可知:∠DAE =∠BCF =45°, 在△ADE 和△CBF 中,{AD =BC ∠DAE =∠BCF AE =CF,∴△ADE ≌△CBF (SAS ).(2)解:∵AB =AD =4√2,∴BD =√AB 2+AD 2=√(4√2)2+(4√2)2=8,由正方形对角线相等且互相垂直平分可得:AC =BD =8,DO =BO =4,OA =OC =4, 又AE =CF =2,∴OA ﹣AE =OC ﹣CF ,即OE =OF =4﹣2=2,故四边形BEDF 为菱形.∵∠DOE =90°,∴DE =√DO 2+EO 2=√42+22=2√5.∴4DE =8√5,故四边形BEDF 的周长为8√5.。
人教版八年级下册数学试题:18.2.3正方形的性质经典题
正方形的性质经典题1.正方形拥有而矩形不必定拥有的性质是().A .四个角都是直角B .对角线相互均分C .对角相等D .对角线相互垂直分析:正方形既是矩形,又是菱形,所以此题就是找寻菱形的特征.1. 答案: D2.正方形拥有而菱形不必定拥有的性质是().A .四条边相等B .对角线相互均分C .对角线相等D .对角线相互垂直分析:对角线相等是矩形的特点,而菱形的对角线不必定相等.2. 答案: C3. 如图,以正方形 ABCD 的边 AB 为一边向外作等边△ABE ,则∠ BED 的度数为( )A . 55°B .45°C . 40°D . 42.5° 3. 答案: B分析:先求出等腰△ ADE 的一个底角∠ AED = 15°,用∠ AEB -∠ AED 即可求出∠ BED 的度数.A HDME A DNGPEBFCBC第 3 题第 4 题第 5 题第 6 题4.如图, E 、 F 、 G 、H 分别为正方形ABCD 的边 AB 、 BC 、CD 、 DA 上的点,且 AE = BF=CG =DH =1AB ,则图中暗影部分的面积与正方形ABCD 的面积之比为()2 341 3 B .C .A .9 2D .554. 答案: A分析:不如设正方形边长为 1,则 BF = 1 ,依据勾股定理知 AF =10,因为33△ AEM ∽△ ABF, 所以AEAM EM,可得 AM =10,EM =10 ,同理AFABBF1030NF =10,所以 MN =10 ,所以暗影部分的面积 2 .305 55.如图,正方形 ABCD 内有两条订交线段MN 、EF ,M 、N 、E 、F 分别在边 AB 、CD 、AD 、BC 上.小明以为: 若 MN = EF ,则 MN ⊥ EF ;小亮以为 :若 MN ⊥EF ,则 MN = EF .你以为()A.仅小明对B.仅小亮对C.两人都对 D .两人都不对5.答案: C分析:可过点 F 作 FG⊥ AD 于 G,作 MH ⊥ CD 于 H,再证明△ EFG≌△ NMH 即可.6.以下图,正方形 ABCD 的面积为 12,△ ABE 是等边三角形,点 E 在正方形ABCD 内,在对角线AC 上有一点P,使 PD+ PE 的和最小,则这个最小值为()A.2 3B.2 6C.3D.66.答案: A分析:连结PB,因为 AC 是正方形ABCD 的对称轴,所以PD= PB,要求 PD +PE 和的最小值,就能够转变为求PB + PE 的最小值,即求BE 的长.7.已知:如图,菱形ABCD 中,∠ B= 60°, AB =4,则以 AC 为边长的正方形ACEF 的周长为 _______.分析:因为是菱形,则 AB=BC ,又∠ B= 60°,则三角形 ABC 为等边三角形,所以 AC=AB=4 ,则正方形 ACEF 的周长为 16。
中考数学试题分类汇总《正方形》练习题
中考数学试题分类汇总《正方形》练习题(含答案)正方形的性质1.如图,正方形ABCD的边长为1,点E是边BC上一动点(不与点B,C重合),过点E作EF⊥AE交正方形外角的平分线CF于点F,交CD于点G,连接AF.有下列结论:①AE=EF;②CF=BE;③∠DAF =∠CEF;④△CEF面积的最大值为.其中正确的是①②(把正确结论的序号都填上)【分析】在AB上取点H,使AH=EC,连接EH,然后证明△AGE和△ECF全等,再利用全等三角形的性质即可得出答案.【解答】解:在AB上取点H,使AH=EC,连接EH,∵∠HAE+∠AEB=90°,∠CEF+∠AEB=90°,∴∠HAE=∠CEF,又∵AH=CE,∴BH=BE,∴∠AHE=135°,∵CF是正方形外角的平分线,∴∠ECF=135°,∴∠AHE=∠ECF,在△AHE和△ECF中,,∴△AHE≌△ECF(ASA),∴AE=EF,EH=CF,故①正确;∵BE=BH,∴EH=BE,∴CF=BE,故②正确;∵∠AHE=135°,∴∠HAE+∠AEH=45°,又∵AE=EF,∴∠EAF=45°,∴∠HAE+∠DAF=45°,∴∠AEH=∠DAF,∵∠AEH=∠EFC,∴∠DAF=∠EFC,而∠FEC不一定等于∠EFC,∴∠DAF不一定等于∠FEC,故③错误;∵△AHE≌△ECF,∴S△AHE=S△CEF,设AH=x,则S△AHE=x•(1﹣x)=﹣x2+x,当x=时,S△AHE取最大值为,∴△CEF面积的最大值为,故④错误,2.如图,E、F是正方形ABCD的对角线BD上的两点,BD=10,DE=BF=2,则四边形AECF的周长等于()A.20B.20C.30D.4【解答】解:如图,连接AC交BD于点O.∵四边形ABCD是正方形,∴OA=OC=OD=OB,AC⊥BD,∵BD=10,DE=BF=2,∴OE=OF=3,OA=OC=5,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形,∴AE=EC=CF=AF=,∴菱形的周长为4,3.如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是()A.1B.2C.3D.4【解答】解:∵四边形ABCD是正方形,∴∠EDB=∠OBF,DO=BO,在△EDO和△FBO中,,∴△DEO≌△BFO(ASA),∴S△DEO=S△BFO,阴影面积=三角形BOC面积=×2×2=1.正方形的综合4.如图,正方形ABCD中,AB=6,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED交BC于点F,以DE、EF为邻边作矩形DEFM,连接CM.(1)求证:矩形DEFM是正方形;(2)求CE+CM的值.【分析】(1)如图,作EG⊥CD于G,EH⊥BC于H,根据正方形的性质得到∠ACB=∠ACD.求得EG=EH,根据矩形的性质得到∠GEH=90°.∠DEF=90°.根据全等三角形的性质得到ED=EF.根据正方形的判定定理即可得到结论;(2)根据正方形的性质得到DE=DM,AD=CD,∠ADC=∠EDM=90°.根据全等三角形的性质得到AE =CM.根据勾股定理即可得到结论.【解答】解:(1)如图,作EG⊥CD于G,EH⊥BC于H,∵四边形ABCD是正方形,∴∠ACB=∠ACD.∵EG⊥CD,EH⊥BC,∴EG=EH,∵∠EGC=∠EHC=∠BCD=90°,∴四边形EGCH是矩形,∴∠GEH=90°.∵四边形DEFM是矩形,∴∠DEF=90°.∴∠DEG=∠FEH.∵∠EGD=∠EHF=90°,∴△EGD≌△EHF(ASA),∴ED=EF.∴矩形DEFM是正方形;(2)∵四边形DEFM是正方形,四边形ABCD是正方形,∴DE=DM,AD=CD,∠ADC=∠EDM=90°.∴∠ADE=∠CDM.∴△ADE≌△CDM(SAS),∴AE=CM.∴CE+CM=CE+AE=AC===6.5.如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.【解答】解:(1)如图①,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;(2)由(1)得FM∥AD,EM∥CD,∴===,∴AF=2.4,CE=2.4,∵△MFN≌△MEC,∴FN=EC=2.4,∴AN=4.8,BN=6﹣4.8=1.2,∴AN=4BN;(3)如图②,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH=45°,∠DCM=∠BCH,∴∠MBH=90°,∠MCH=90°,∵MC=MN,MC⊥MN,∴△MNC是等腰直角三角形,∴∠MNC=45°,∴∠NCH=45°,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为6,∴BD=6,∴DM+MG+BG=12a=6,∴a=,∴BG=,MG=,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGN∽△CGB,∴=,∴CG•NG=BG•MG=.6.如图,在正方形ABCD中,点M、N分别为边CD、BC上的点,且DM=CN,AM与DN交于点P,连接AN,点Q为AN的中点,连接PQ,BQ,若AB=8,DM=2,给出以下结论:①AM⊥DN;②∠MAN =∠BAN;③△PQN≌△BQN;④PQ=5.其中正确的结论有①④(填上所有正确结论的序号)【解答】解:∵四边形ABCD是正方形,∴AD=DC,∠ADM=∠DCN=90°,在△ADM和△DCN,,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∵∠CDN+∠ADP=90°,∴∠ADP+∠DAM=90°,∴∠APD=90°,∴AM⊥DN,故①正确,不妨假设∠MAN=∠BAN,在△APN和△ABN中,,∴△P AN≌△ABN(AAS),∴AB=AP,∵这个与AP<AD,AB=AD,矛盾,∴假设不成立,故②错误,不妨假设△PQN≌△BQN,则∠ANP=∠ANB,同法可证△APN≌△ABN,∴AP=AB,∵这个与AP<AD,AB=AD,矛盾,∴假设不成立,故③错误,∵DM=CN=2,AB=BC=8,∴BN=6,∵∠ABN=90°,∴AN===10,∵∠APN=90°,AQ=QN,∴PQ=AN=5.故④正确,7.如图,在正方形ABCD中,,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N.连接NC交BD于点G.若BG:MG=3:5,则NG·CG的值为15.【解答】解:如图,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH=45°,∠DCM=∠BCH,∴∠MBH=90°,∠MCH=90°,∵∠CMN=∠CBN=90°,∴M、N、B、C四点共圆,∴∠MCN=45°,∴∠NCH=45°,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为,∴BD=12,∴DM+MG+BG=12a=12,∴a=1,∴BG=3,MG=5,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGN∽△CGB,∴,∴CG•NG=BG•MG=15.8.如图,MN是正方形ABCD的对称轴,沿折痕DF,DE折叠,使顶点A,C落在MN上的点G.给出4个结论:①∠BFE=30°;②△FGM∽△DEG;③tan∠FDC=2+;④S△DCE=(2+)S△DAF.其中正确的是()A.①②③B.②③④C.①③④D.①②④【解答】解:设∠ADF=α,∠CDE=β,根据折叠的性质得,∠FDG=α,∠GDE=α,∵四边形ABCD是正方形,则∠ADC=2α+2β=90°,∴α+β=45°,设正方形的边长为4α,则AD=DG=DC=4α,∵MN是正方形ABCD的对称轴,∴DN=2α,∴sin∠DGN==,∴∠DGN=30°,∵∠FGD=∠A=90°,∴∠FGM=60°,∴∠BFE=30°,故①正确;∴∠AFD=∠GFD=(180°﹣∠BFE)=75°,∴α=15°,β=30°,∵∠MFG=∠BFE=30°=β=∠GDE,∠B=∠DGE=∠C=90°,∴△FGM∽△DEG;故②正确;设FG=AF=x,则FM=2α﹣x,在△GFM中,cos∠MFG==cos30°=,∴=,解得x=4(2﹣)α,即AF=4(2﹣)α,∵∠FDC=α+2β=75°=∠AFD,tan∠FDC=tan∠AFD===2+≠2+,故③不正确;∵∠EDC﹣30°,∴EC=DC•tan30°=4α•=α,∴S△DCE=×4α×α=8α2,∵AF=4(2﹣)α,AD=4α,∴(2+)S△DAF=(2+)××AD×AF=(2+)×4α×4(2﹣)α=8α2,∴S△DCE=(2+)S△DAF,故④正确,故①②④正确,。
初中数学精品试题:八下第五章 正方形(2)——双垂直问题探究
例:(八下教材P127作业题第4题)已知:如图1,在正方形ABCD 中,E ,F 分别是BC 、CD 上的点,AE ⊥BF .求证:AE =BF .变式1:如图2,在正方形ABCD 中,点E ,H ,F ,G 分别在边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°, EF =4.求GH 的长.变式2:已知点E ,H ,F ,G 分别在矩形ABCD 的边AB ,BC ,CD ,DA 上,EF ,GH 交于点O ,∠FOH =90°,EF =4. 如图3,矩形ABCD 由2个全等的正方形组成,求GH 的长.变式3:如图4,上题其他条件不变,矩形ABCD 由2个改成由n 个全等的正方形组成,求GH 的长(用n 的代数式表示).二、问鼎巅峰一、精题精练AB CDEF图1变式4:在图3的基础上,连结GF ,EH ,且GF ∥EH ,如图5,已知AE =BE =2,EO =2FO ,求图中阴影部分的面积.本变式以正方形中双垂直问题为载体,研究正方形中的全等问题,变式1,可看做线段位置的平移,求解思路不变,变式2,变式3由单个的正方形,拓展为2个,n 个的正方形,把问题由全等变为相似(相似内容九年级),向更一般化的拓展,变式4,添加条件GF ∥EH ,是对上面变式的综合应用,能力要求较高.例:证△ABE ≌△BCF ,即可.变式1:由例题中过点F ,G 分别作垂线,或平移图1中的AE ,GH 可得.变式2:与变式1同理:作垂线,得到两个三角形相似,相似比为1:2,GH =8.(相似内容九年级才学,此处不妨碍老师和同学的理解.) 变式3:4n变式4:由GF ∥EH ,易证,△DGF ∽△BHE ,得:12DF FO BE OE ==,∴DF =1, 作FM ⊥AB 于点M ,在Rt △FME 中,由勾股定理得,EF =17,S 阴影=1122OF OG OH OE •+• =221122OF OE +=8518四、参考答案三、回味展望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与正方形相关的特色试题选编A
一、基础题
1.已知正方形ABCD中,点P在对角线BD上,联结PC.
(1)过点P作PE⊥PC,交AB于点E,如图1所
示.求证:PE=PC.
(2)过点P作PE⊥PC,交AB延长线于点E,
如图2所示.问(1)中的结论是否依然成立?若成
立,请给出证明;若不成立,请简述理由.
2.已知正方形ABCD中,点P在对角线BD上,
联结PC.
(1)如图3,若点E在AB上,且PE=PC.
求证:PE⊥PC.
(2)如图4,若点E在AB的延长线上,且PE=PC.
问(1)中的结论是否依然成立?若成立,请给出证明;若不成立,请简述理由.
图1
D
C B
A
E
P。
O
图3
D
C B
A
E
P。
O
图2
D
C B
A
E
P。
O
图4
D
C B
A
E
P。
O
3. 如图5,已知正方形ABCD 中,点P
在对角线BD 的延长线上,联结PC . 作PE ⊥PC ,交AB 延长线于点E ,求证:
PE=PC .
4.参考上面三道题目的变化生成,请你自编一道题目?并给出解答过程.
二、提高题
5.边长为4的正方形ABCD 中,点O 是对角线AC 的中点, P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设P A=x ,S ⊿PCE =y , ⑴ 求证:DF =EF ;
⑵ 当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;
⑶ 在点P 的运动过程中,⊿PEC 能否为等腰三角形?如果能够,请直接写出P A 的长;如果不能,请简单说明理由.
图6
D C
B
A E
F P。
O
图5
D C B A
E P 。
O
三、中考题
6.如图,在正方形ABCD 中,点F 在CD 上,射线A F 交BD 于点E ,交BC 的延长线于点G.
(1)求证:CDE ADE ∆≅∆;
(2)过点C 作CE CH ⊥,交FG 于点H ,求证:GH FH =;
(3)设1=AD ,x DF =,是否存在x 的值,使ECG ∆为等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.
7.操作:将一把三角尺放在边长为1的正方形
ABCD 上,并使它的直角顶点P 在对角线AC 上滑
动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .
探究:设A 、P 两点间的距离为x .
(1)当点Q 在边CD 上时,线段PQ 与线段
A B
C
D E F
H
G
A
B
C
D
PB之间有怎样的大小关系?试证明你观察得到结论;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由.
8.如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE AB
<),连结EG并延长交DC于点M,过M作MN AB
⊥,垂足为N,MN交BD于点P.设正方形ABCD的边长为1.
(1)证明△CMG≌△NBP;
(2)设BE=x,四边形MGBN的面积为y,求y关于x的函数解析式,并写出定义域。
(3)如果按照题设方法作出的四边形BGMP是菱形,求BE的长.
(4)联结PG,若BPG
∆能否成为直角三角形?如果能,求BE的长;如果不能,请说明理由.
A
F
G
C
M
D
P。