九年级上册佛山数学期末试卷中考真题汇编[解析版]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册佛山数学期末试卷中考真题汇编[解析版]
一、选择题
1.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )
A .15
B .25
C .35
D .45
2.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )
A .k >﹣1
B .k <1且k≠0
C .k≥﹣1且k≠0
D .k >﹣1且k≠0
3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )
A .甲、乙两队身高一样整齐
B .甲队身高更整齐
C .乙队身高更整齐
D .无法确定甲、乙两队身高谁更整齐 4.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这
组数据的中位数和众数分别为( )
A .8,10
B .10,9
C .8,9
D .9,10
5.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则
①二次函数的最大值为a+b+c ;
②a ﹣b+c <0;
③b 2﹣4ac <0;
④当y >0时,﹣1<x <3,其中正确的个数是( )
A .1
B .2
C .3
D .4 6.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所
得新的图象的函数表达式为( )
A .()2241y x =--
B .()2241y x =+-
C .()2241y x =-+
D .()2241y x =++ 7.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若
从中任意摸出1个球,则( )
A .摸出黑球的可能性最小
B .不可能摸出白球
C .一定能摸出红球
D .摸出红球的可能性最大
8.一元二次方程x 2﹣3x =0的两个根是( )
A .x 1=0,x 2=﹣3
B .x 1=0,x 2=3
C .x 1=1,x 2=3
D .x 1=1,x 2=﹣3 9.一组数据0、-1、3、2、1的极差是( ) A .4 B .3
C .2
D .1 10.二次函数y =()21x ++2的顶点是( )
A .(1,2)
B .(1,−2)
C .(−1,2)
D .(−1,−2)
11.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )
A .y 3>y 2>y 1
B .y 1>y 2>y 3
C .y 1>y 3>y 2
D .y 2>y 1>y 3
12.下列说法正确的是( )
A .所有等边三角形都相似
B .有一个角相等的两个等腰三角形相似
C .所有直角三角形都相似
D .所有矩形都相似
二、填空题
13.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.
14.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
15.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.
16.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线
2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.
17.已知,二次函数2
(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.
18.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .
19.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .
20.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.
21.如图,抛物线2143115y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.
22.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.
23.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)
24.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.
三、解答题
25.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2.
26.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:
(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:
表中数据a=,b=,c=.
(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.
27.已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.
(1)求m的取值范围;
(2)若点A、B位于原点的两侧,求m的取值范围.
28.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.
29.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为
1.6m,求路灯杆AB的高度.
30.某玩具商店以每件60元为成本购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.
(1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?
(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?
31.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C处出发,沿线段CB匀速运动至点 B 处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△ DEC′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与 t 的函数图象如图 2 所示.
(1)V D= ,C 坐标为;
(2)图2中,m= ,n= ,k= .
(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).
32.某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).
(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?
(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到
负数的概率是2 5 .
故选B.
考点:概率.
2.D
解析:D
【解析】
∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,
∴△=b2﹣4ac=4+4k>0,且k≠0.
解得:k>﹣1且k≠0.故选D.
考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.
3.B
解析:B
【解析】
【分析】
根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这
组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵S 2甲=1.7,S 2乙=2.4,
∴S 2甲<S 2乙,
∴甲队成员身高更整齐;
故选B.
【点睛】
此题考查方差,掌握波动越小,数据越稳定是解题关键
4.D
解析:D
【解析】
试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,
最中间的数是9,则中位数是9;
10出现了3次,出现的次数最多,则众数是10;
故选D .
考点:众数;中位数.
5.B
解析:B
【解析】
分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.
详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下,
∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确;
②当x=﹣1时,a ﹣b+c=0,故②错误;
③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误;
④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0),
∴A (3,0),
故当y >0时,﹣1<x <3,故④正确.
故选B .
点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.
6.B
解析:B
【解析】
【分析】
根据题意直接利用二次函数平移规律进而判断得出选项.
【详解】
解:2
2y x 的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关
系式是:()2
241y x =+-.
故选:B .
【点睛】
本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 7.D
解析:D
【解析】
【分析】
根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.
【详解】
解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是
223, 摸出白球的概率是
123, 摸出红球的概率是
2023, ∵123<223<2023
, ∴从中任意摸出1个球,摸出红球的可能性最大;
故选:D .
【点睛】
本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.
8.B
解析:B
【解析】
【分析】
利用因式分解法解一元二次方程即可.
【详解】
x 2﹣3x =0,
x (x ﹣3)=0,
x =0或x ﹣3=0,
x 1=0,x 2=3.
故选:B .
【点睛】
本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
9.A
解析:A
【解析】
【分析】
根据极差的概念最大值减去最小值即可求解.
【详解】
解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.
故选A.
【点睛】
本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.
10.C
解析:C
【解析】
【分析】
x++2的顶点坐标.因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21
【详解】
x++2是顶点式,
解:∵二次函数y=()21
∴顶点坐标为:(−1,2);
故选:C.
【点睛】
此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.
11.B
解析:B
【解析】
【分析】
本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.
【详解】
∵抛物线y=﹣(x+1)2+m,如图所示,
∴对称轴为x=﹣1,
∵A(﹣2,y1),
∴A点关于x=﹣1的对称点A'(0,y1),
∵a=﹣1<0,
∴在x=﹣1的右边y随x的增大而减小,
∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,
∴y1>y2>y3,
故选:B.
【点睛】
本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.
12.A
解析:A
【解析】
【分析】
根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.
【详解】
解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;
B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;
C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;
D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.
故选:A.
【点睛】
本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.
二、填空题
13.60°
【解析】
【分析】
直接利用圆周角定理,即可求得答案.
【详解】
∵A、B、C是⊙O上三点,∠ACB=30°,
∴∠AOB的度数是:∠AOB =2∠ACB=60°.
故答案为:60°.
【点
解析:60°
【解析】
【分析】
直接利用圆周角定理,即可求得答案.
【详解】
∵A、B、C是⊙O上三点,∠ACB=30°,
∴∠AOB的度数是:∠AOB=2∠ACB=60°.
故答案为:60°.
【点睛】
考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.
14.y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再
解析:y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,
∴新抛物线顶点坐标为(-2,-3),
∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.
故答案为:y=-5(x+2)2-3.
【点睛】
本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.15.【解析】
【分析】
用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.
【详解】
解:因为蓝色区域的圆心角的度数为120°,
所以指针落在红色区域内的概率是=,
故答案为.
【
解析:2 3
【解析】
【分析】
用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】
解:因为蓝色区域的圆心角的度数为120°,
所以指针落在红色区域内的概率是360120
360
=
2
3
,
故答案为2 3 .
【点睛】
本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.
16.【解析】
【分析】
先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.
【详解】
解:∵,,
∴点(-1,0)与(3,0)在抛物线上,
∴抛物线的对称轴是直线:x=1,
∴点关于直线x=
解析:(4,4)
【解析】
【分析】
先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.
【详解】
解:∵0a b c -+=,930a b c ++=,
∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,
∴抛物线的对称轴是直线:x =1,
∴点(2,4)-关于直线x =1对称的点为:(4,4).
故答案为:(4,4).
【点睛】
本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.
17.【解析】
【分析】
直接利用函数图象与x 轴的交点再结合函数图象得出答案.
【详解】
解:如图所示,图象与x 轴交于(-1,0),(3,0),
故当y <0时,x 的取值范围是:-1<x <3.
故答案为:
解析:13x
【解析】
【分析】
直接利用函数图象与x 轴的交点再结合函数图象得出答案.
【详解】
解:如图所示,图象与x 轴交于(-1,0),(3,0),
故当y <0时,x 的取值范围是:-1<x <3.
故答案为:-1<x <3.
【点睛】
此题主要考查了抛物线与x 轴的交点,正确数形结合分析是解题关键.
18..
【解析】
试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD 的长.
试题解析:∵∠C=∠E=90°,∠BAC=∠DAE
∴△AB 解析:
103
. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.
试题解析:∵∠C=∠E=90°,∠BAC=∠DAE
∴△ABC∽△ADE
∴AC:AE=BC:DE
∴DE=8
3
∴10
AD=
3
考点: 1.相似三角形的判定与性质;2.勾股定理.
19.5
【解析】
【分析】
根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】
解:设举起手臂之后的身高为x
由题可得:1.7:0.85=x:1.1,解得x=2.2,
解析:5
【解析】
【分析】
根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.
【详解】
解:设举起手臂之后的身高为x
由题可得:1.7:0.85=x:1.1,解得x=2.2,
则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m
【点睛】
本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题
关键.
20.74
【解析】
【分析】
利用加权平均数公式计算.
【详解】
甲的成绩=,
故答案为:74.
【点睛】
此题考查加权平均数,正确理解各数所占的权重是解题的关键.
解析:74
【解析】
【分析】
利用加权平均数公式计算.
【详解】
甲的成绩=705602903
74523
,
故答案为:74.
【点睛】 此题考查加权平均数,正确理解各数所占的权重是解题的关键.
21.【解析】
【分析】
先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.
【详解】
令中y=0,得x1=
【解析】
【分析】
先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.
【详解】
令21115y x =-中y=0,得x 1
x 2
∴直线AC
的解析式为1y =-, 设P (x ,313
x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1
∴PQ 2=PB 2-BQ 2,
2+(313x )2-1, =24283753x x , ∵43
a =0<, ∴PQ 2有最小值24283475()332644
3, ∴PQ
【点睛】
此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ、BQ、PB之间的关系式是解题的关键.
22.【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的数据解答即可.
【详解】
在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,
∴这组数据的众数是2,
故答案为:2.
【点睛
解析:【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的数据解答即可.
【详解】
在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,
∴这组数据的众数是2,
故答案为:2.
【点睛】
此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.
23.乙
【解析】
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵甲的方差为0
解析:乙
【解析】
【分析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵甲的方差为0.14,乙的方差为0.06,
∴S甲2>S乙2,
∴成绩较为稳定的是乙;
故答案为:乙.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
24.【解析】
【分析】
根据几何概率的求解公式即可求解.
【详解】
解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积
∴飞镖落在阴影部分的概率是,
故答案为.
【点睛】
此题主要
解析:1 3
【解析】
【分析】
根据几何概率的求解公式即可求解.
【详解】
解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积
∴飞镖落在阴影部分的概率是31 93 ,
故答案为1
3
.
【点睛】
此题主要考查概率的求解,解题的关键是熟知几何概率的公式.
三、解答题
25.(1)x1=1x2=12)x1=1
3
,x2=-3
【解析】
【分析】
(1)利用配方法解方程即可;
(2)先移项,然后利用因式分解法解方程.
【详解】
(1)解:x 2-2x =
23 x 2-2x +1=
23+1 (x -1)2=
53
x -1=
∴x 1=1x 2=1 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0
(3x -1) (-x -3)=0
∴x 1=
13
,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.
26.解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.
【解析】
【分析】
(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据; (2)从不同角度评价,标准不同,会得到不同的结果.
【详解】
解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;
由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352
+=134.5; 根据方差公式:
s 2=
()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣
⎦=1.6,
∴a =135,b =134.5,c =1.6; (2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.
此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.
27.(1)m<1;(2)m<0
【解析】
【分析】
(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac>0然后利用根的判别式确定取值范围;(2)由题意得:x1x2<0,即m<0,即可求解;
【详解】
解:(1)∵二次函数y=x2-2x+m的图象与x轴相交于A、B两点
则方程x2-2x+m=0有两个不相等的实数根
∴b2-4ac>0,
∴4-4m>0,
解得:m<1;
(2)∵点A、B位于原点的两侧
则方程x2-2x+m=0的两根异号,即x1x2<0
∵
12c
x x m
a
==
∴m<0
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生对函数基本性质、函数与坐标轴的交点等的求解熟悉,这是一个综合性很好的题目.
28.两次摸到的球都是红球的概率为1 9 .
【解析】
【分析】
根据题意画出树状图,再根据概率公式即可求解.
【详解】
解:画树状图得:
∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,
∴两次摸到的球都是红球的概率=1
9
.
【点睛】
此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解. 29.4m
【解析】
由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故
CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312
AB =; 【详解】
解:∵CD ∥EF ∥AB ,
∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴
CD DF AB BF =,EF FG AB BG
=, 又∵CD=EF , ∴DF FG BF BG =, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴
3437
BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312
AB = 解得,AB=6.4m
因此,路灯杆AB 的高度6.4m .
【点睛】
考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.
30.(1)每件玩具的售价为80元;(2)每件玩具的售价为85元时,每天盈利最多,最多盈利1250元.
【解析】
【分析】
(1)根据题意,可以得到关于x 的一元二次方程,从而可以解答本题;
(2)根据题意可以得到利润与售价的函数关系式,然后根据二次函数的性质即可解答本题.
【详解】
解:(1)设每件玩具的售价为x 元,
()()602021001200x x -+-=⎡⎤⎣⎦,解得:190x =,280x =,
∵扩大销售,增加盈利,尽快减少库存,∴80x =,
答:每件玩具的售价为80元;
(2)设每件玩具的售价为a 元时,利润为w 元,
()()()2602021002851250w a a a =-+-=--+⎡⎤⎣⎦,
即当85a 时,w 有最大值为1250元,
答:当每件玩具的售价为85元时,商店每天盈利最多,最多盈利1250元.
【点睛】
本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质解答.
31.(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2)85
;
4
5
;
25.(3)①当点C′在线段BC上时,S=1
4
t2;②当点C′在CB的延长线上,
S=−13
12
t2+
85
t−
20
3
;③当点E在x轴负半轴, S=t2−45t+20.
【解析】
【分析】
(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=5时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=1
2
BC,结合速度=路程÷时间即可得出结论;
(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k 时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;
(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.
【详解】
(1)令x=0,则y=2,即点B坐标为(0,2),
∴OB=2.
当t=5时,B和C′点重合,如图1所示,
此时S=1
2
×
1
2
CE•OB=
5
4
,
∴CE=5
2
,
∴BE =52. ∵OB =2, ∴OE =2253222⎛⎫-= ⎪⎝⎭
, ∴OC =OE +EC =32+52
=4,BC =222425+=,CD =5, 5÷5=1(单位长度/秒),
∴点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).
故答案为:1单位长度/秒;(4,0);
(2)根据图象可知:
当t =k 时,点D 与点B 重合,
此时k =1
BC =25; 当t =m 时,点E 和点O 重合,如图2所示.
sin ∠C =OB BC =25=5,cos ∠C =255
25OC BC ==, OD =OC •sin ∠C =4×
5=455,CD =OC •cos ∠C =4×25=85. ∴m =1CD =855,n =12BD •OD =12×(25−855
)×455=45. 故答案为:855
;45;25. (3)随着D 点的运动,按△DEC ′与△BOC 的重叠部分形状分三种情况考虑:
①当点C ′在线段BC 上时,如图3所示.
此时CD =t ,CC ′=2t ,0<CC ′≤BC ,
∴0<t 5
∵tan∠C=
1
2
OB
OC
=,
∴DE=CD•tan∠C=
1
2
t,
此时
S=
1
2
CD•DE=
1
4
t2;
②当点C′在CB的延长线上,点E在线段OC上时,如图4所示.
此时CD=t,BC′=2t−25,DE=CD•tan∠C=
1
2
t,CE=
CD
cos C
∠
=
5t,OE=OC−CE=4−5t,
∵
CC BC
CE OC
'
⎧
⎨
≤
⎩
>
,即
225
5
4
2
t
t
⎧
⎪
⎨
≤
⎪
⎩
>
,
解得:5<t≤
85
5
.
由(1)可知tan∠OEF=
2
3
2
=
4
3
,
∴OF=OE•tan∠OEF=
1625
33
-t,BF=OB−OF=
2510
33
t-,
∴FM=BF•cos∠C=
445
3
t-.
此时S=
1
2
CD•DE−
1
2
BC′•FM=−2
138520
123
t t
+-;
③当点E在x轴负半轴,点D在线段BC上时,如图5所示.
此时CD=t,BD=BC−CD=
,CE
t,DF
=22
BD
BD t
tan C
==
∠
,
∵
CE OC
CD BC
⎧
⎨
≤
⎩
>
,即
4
t
⎨
⎪≤
⎩
>
,
∴
5<t≤
此时S=1
2
BD•DF=
1
2
×
=
+20.
综上,当点C′在线段BC上时,S=1
4
t2;当点C′在CB的延长线上,S=−
13
12
t2
+
20
3
;当点E在x轴负半轴, S=
+20.
【点睛】
本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC、OC的长度;(2)根据图象能够了解当t=m和t=k时,点DE的位置;(3)分三种情况求出S关于t的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S关于t的函数解析式.
32.(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.
【解析】
【分析】
(1)根据“总利润=每件的利润×销量”列出一元二次方程即可求出结论;
(2)设公司日销售获得的利润为w元,根据“总利润=每件的利润×销量”即可求出w与x的函数关系式,然后利用二次函数求最值即可.
【详解】
(1)根据题意得,(﹣2x+800)(x﹣200)=15000,
解得:x1=250,x2=350,
答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;
(2)设公司日销售获得的利润为w元,
根据题意得,w=y(x﹣200)=(﹣2x+800)(x﹣200)=﹣2x2+1200x﹣160000=﹣2(x ﹣300)2+20000,
∵﹣2<0,
∴当x=300时,获得最大利润为20000元,
答:为使公司日销售获得最大利润,该产品的单价应定为300元.
【点睛】
此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键.。