福建省莆田市第六中学数列的概念单元测试题doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题

1.已知数列2

65n a n n =-+则该数列中最小项的序号是( )

A .3

B .4

C .5

D .6

2.已知数列{}n a 满足12a =,11

1n n

a a +=-,则2018a =( ). A .2

B .

12 C .1-

D .12

-

3.在数列{}n a 中,11a =,对于任意自然数n ,都有12n

n n a a n +=+⋅,则15a =( )

A .151422⋅+

B .141322⋅+

C .151423⋅+

D .151323⋅+

4.已知数列{}n a 的通项公式为23n

n a n ⎛⎫= ⎪⎝⎭

,则数列{}n a 中的最大项为( ) A .

89

B .

23

C .

6481

D .

125

243

5.已知数列{}n a 满足11a =,()*11

n

n n a a n N a +=∈+,则2020a =( ) A .

1

2018

B .

1

2019 C .

1

2020

D .

1

2021

6.若数列的前4项分别是

1111,,,2345

--,则此数列的一个通项公式为( ) A .1(1)n n

--

B .(1)n n

-

C .1

(1)1

n n +-+

D .(1)1

n n -+

7.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30

B .20

C .40

D .50

8.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511

B .513

C .1025

D .1024

9.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )

A .存在正整数0N ,当0n N >时,都有n a n ≤.

B .存在正整数0N ,当0n N >时,都有n a n ≥.

C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.

D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥.

10.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,

12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被

4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24

B .26

C .28

D .30

11.已知数列{}n a 满足12n n a a n +=+,且133a =,则n

a n

的最小值为( ) A .21

B .10

C .

212 D .

172

12.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45

B .46

C .47

D .48

13.已知数列{}n a 满足111n n n n a a a a ++-=+,且11

3

a =,则{}n a 的前2021项之积为( ) A .

23

B .

13

C .2-

D .3-

14.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则

645a ,等于( )

123

456

78910

A .2019

B .2020

C .2021

D .2022

15.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648

B .722

C .800

D .882

16.设数列{}n a 的通项公式为2

n n a n

+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6

B .7

C .8

D .9

17.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),(

)*

3n n N

≥∈,,此数列在现代物理及化学等领域有着广泛的应用,

相关文档
最新文档