《从算式到方程》(2021年精品教案 (省一等奖)) (1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本资源为2021年制作,是一线教师经过认真研究,综合教学中遇到的各种问题,总结而来。
是一个非常实用的资源。
资源以课本为依托,以教学经验为蓝本,经过二次备课和实践研究,将教学环节进一步细化,综合同课异构的课堂结构,统一编写而成。
欢送您下载使用!
教学目标知识与技能: 1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。
3、培养学生获取信息,分析问题,处理问题的能力。
过程与方法:通过实际问题,感受数学与生活的联系。
情感态度与价值观:培养学生热爱数学热爱生活的乐观人生态度。
重点列出方程,了解方程的概念;培养学生获取信息,分析问题,处理问题的能力。
难点从实际问题中寻找相等关系
教学环节导学过程学习过程二次备课
自主探究一、情景引入:
教师提出教科书第79
页的问题,同时出现以以下
图:
问题1:从上图中
你能获得哪些信息?
问题2:你会用算
术方法求出王家庄到翠湖
的距离吗?
()
5070
151070230
1513
+
⨯--=
-
()
5070
131050230
1513
+
⨯-+=
-
问题3:能否用方
程的知识来解决这个问题
呢?
可以提示学生从时
间、路程、速度、四地的
排列顺序等方面去考
虑。
〕
当学生列出不同算
式时,应让他们说明每个
式子的含义〕
教师可以在学生答复的
根底上做回忆小结:
1、问题涉及的三个
根本物理量及其关系;
2、从知的信息中可
以求出汽车的速度;
3、从路程的角度可以列
出不同的算式:
突出问题的应用
意识.教师首先用
一个学生感兴趣
的实际问题引人
课题,然后运用算
术的方法给出解
答。
在各环节的安
排上都设计成一
个个的问题,使学
生能围绕问题展
开思考、讨论,进
行学习.
尝
试应用如果设王家庄到翠湖的路
程为x千米,那么王家庄距
青山千米,王家庄距
教师引导学生设未
知数,并用含未知数的字
母表示有关的数量
教师引导学生寻找相等
秀水千米.
问题1:题目中的“汽车匀速行驶〞是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?
问题3:根据车速相等,你能列出方程吗?关系,列出方程.
教师根据学生的答复情
况进行分析,如:
依据“王家庄至青山
路段的车速=王家庄至秀
水路段的车速〞可列方
程:
5070
35
x x
-+
=
依据“王家庄至青山路段
的车速=青山至秀水路段
的车速〞
可列方程:
505070
32
x-+
=
列算式:只用数,
表示计算程序,依
据是问题中的数
量关系;
列方程:可
用未知数,表示相
等关系,依据是问
题中的等量关系。
补
偿提高
对于上面的问题,你还
能列出其他方程吗?
如果能,你依据的是哪
个相等关系?
如果直接设元,
还可列方程:
70
60
5
x+
=
如果设王家庄到青山
的路程为x千米,那么可以
列方程:
120
60;
335
x x x+
==
依据各路段的车速相
等,也可以先求出汽车到达
翠湖的时刻:
55
2
126
⨯=,再列出方
程
5
3
6
x
+
=60
建议按以下的顺序进行:
〔1)学生独立思考;〔2)
小组合作交流;〔3〕全班
交流.
说明:要求出王家庄到
翠湖的路程,只要解出方
程中的x即可,我们在以
后几节课中再来学习.
作业布置
与
预习提纲必做题: P84.1 ,2 P85. 5.6..9
选做题:根据以下条件,用式表示问题的结果:(1)一打铅笔有12支,m打铅笔有多少支?
(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15
枚,问该班共展出多少枚邮票?
2、根据以下条件列出方程:小青家3月份收入a元,
生活费花去了三分之一,还剩2400元,求三月份的收
入。
教
加深学生对知识的理解,促进学生对课堂的反思
学
札
记
学生对生活中的立体图形感兴趣,气氛极好,能认识圆柱、圆椎、正方体、长方体、棱柱、球,并能用自己的语言简单描述它们的某些特征,也能分别举出生活中的物体哪些是属于圆柱、圆椎、正方体、长方体、棱柱、球.
本节课,课堂情境的创设,不仅存在于课堂的开始,而是充满课堂的整个时空,努力使之与生活、社会沟通.同时通过创设问题情境,营造活泼、热烈的气氛,辅以教师富有激情的语言穿插,学生在宽松、和谐的环境中进行讨论,发现问题并解决问题,使整个课堂完成了由感性到理性的知识升华过程.教师充分发挥其主导作用,激发了学生智慧的火花,用自己的激情和精心创设的情景为学生合作探究蓄势;又以清晰的头脑理清讨论的主线,呵护学生富有个性的创新,使学生享受了成功的快乐,体验了学习的乐趣. 这是本节课的成功所在.
这节课缺乏之处:学生在将几何体进行分类时,语言表达不够准确.“冰冻三尺,非一日之寒〞,学生的数学语言表达能力需要在今后的教学实践中努力培养.
本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。
教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。
由于剪的方法不同,展开图的形状也可能是不同的。
学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。
通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。
接着,我利用可操作材料,体会展开图与长方体、正方体的联系;通过立体与平面的有机结合,开展学生的空间观念。
这样由浅入深、由表及里地使学生逐步达教学目标的要求:闭上眼睛想象展开或折叠的过程,促进学生建立表象,帮助学生理解概念,开展空间观念。
但是,本节课仍存在着一些缺乏:学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。
在本节课的教学中,我始终坚持以引导为起点,以问题为主线,以能力培养为核心,遵照教师为主导,学生为主体,训练为主线的教学原那么;通过师生双边活动,通过对单元的复习,使学生对本单元的知识系统化,重点知识突出化,能力培养阶梯化;在选择题目时注意了以基此题为主,少量思考性较强的题目为辅,兼顾了不同层次学生的不同要求。
24.1 圆 (第3课时)
教学内容
1.圆周角的概念.
2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.
推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.
教学目标
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90•°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.
重难点、关键
1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.
2.难点:运用数学分类思想证明圆周角的定理.
3.关键:探究圆周角的定理的存在.
教学过程
一、复习引入
〔学生活动〕请同学们口答下面两个问题.
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
老师点评:〔1〕我们把顶点在圆心的角叫圆心角.
〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.
刚刚讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,
要研究,要解决的问题.
二、探索新知
问题:如下图的⊙O,我们在射门游戏中,设E、F是球门,•设球员们只
能在EF所在的⊙O其它位置射门,如下图的A、B、C点.通过观察,我们可
以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,•并且两边都
O B
A
C
与圆相交的角叫做圆周角.
现在通过圆周角的概念和度量的方法答复下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?
〔学生分组讨论〕提问二、三位同学代表发言. 老师点评:
1.一个弧上所对的圆周角的个数有无数多个.
2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.
下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且
它的度数恰好等于这条弧所对的圆心角的度数的一半.〞 〔1〕设圆周角∠ABC 的一边BC 是⊙O 的直径,如下图 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB
∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC=
1
2
∠AOC 〔2〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=
12
∠AOC 吗?请同学们独立完成这道题的说明过程.
老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .
〔3〕如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=
1
2
∠AOC 吗?请同学们独立完成证明. 老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=
12∠AOD-12∠COD=1
2
∠AOC 现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,
因此,同弧上的圆周角是相等的. 从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理:
在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:
半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.
例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?
分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可. 解:BD=CD
理由是:如图24-30,连接AD ∵AB 是⊙O 的直径
∴∠ADB=90°即AD ⊥BC 又∵AC=AB ∴BD=CD
三、稳固练习
O
B
A
C
D
1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展
例2.如图,△ABC 内接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为
R ,求证:
sin a A =sin b B =sin c C
=2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin c
C
=2R ,
即sinA=2a R ,sinB=2b R ,sinC=2c
R
,因此,十清楚显要在直角三
角形中进行.
证明:连接CO 并延长交⊙O 于D ,连接DB ∵CD 是直径 ∴∠DBC=90° 又∵∠A=∠D
在Rt △DBC 中,sinD=
BC DC ,即2R=sin a
A
同理可证:sin b B =2R ,sin c
C =2R
∴sin a A =sin b B =sin c
C
=2R
五、归纳小结〔学生归纳,老师点评〕 本节课应掌握: 1.圆周角的概念;
2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;
3.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题. 六、布置作业
1.教材P95 综合运用9、10、 [教学反思]
学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。
本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。
教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。
由于剪的方法不同,展开图的形状也可能是不同的。
学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。
通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。