C++实现AVL树的完整代码
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C++实现AVL树的完整代码
AVL树的介绍
AVL树是⼀种⾃平衡的⼆叉搜索树,它通过单旋转(single rotate)和双旋转(double rotate)的⽅式实现了根节点的左⼦树与右⼦树的⾼度差不超过1,。
这有效的降低了⼆叉搜索树的时间复杂度,为O(log n)。
那么,下⾯⼩编将详细介绍C++实现AVL 树的代码。
最后⼀步提供可靠的代码实现
这⾥先粘贴代码
给⼤家的忠告,⼀定要及时去实现,不然之后再实现要花更多的时间
/*
*平衡⼆叉树应该有些功能
*插⼊删除查找
*前序遍历中序遍历后序遍历层次遍历
*统计结点数⽬
*/
//代码已经调好,写了很久才写出来
#ifndef _AVLTREE_
#define _AVLTREE_
#include<iostream>
#include<vector>
#include<queue>
#include<map>
using namespace std;
#define MAXFACTOR = 2;
template<class Key , class E>
class AVLNode
{
private:
Key key;
E value;
AVLNode<Key,E>* left;
AVLNode<Key,E>* right;
AVLNode<Key,E>* parent;
public:
AVLNode():left(nullptr),right(nullptr),parent(nullptr){}
AVLNode(Key _key,E _value , AVLNode<Key,E>* _parent = nullptr,AVLNode<Key,E>*_left = nullptr, AVLNode<Key,E>*_right = nullptr):
key(_key),value(_value),left(_left),right(_right),parent(_parent){}
bool isLeaf(){return left==nullptr && right == nullptr ;}
//元素设置
Key getKey() const { return key;}
void setKey(Key set) {key = set;}
E getValue() const { return value;}
void setValue(E set) {value = set;}
AVLNode<Key,E>* getLeft() { return left; }
void setLeft (AVLNode< Key,E >* set){ left = set;}
AVLNode<Key,E>* getRight() { return right;}
void setRight (AVLNode<Key,E>* set) {right = set ;}
AVLNode<Key,E>* getParent() {return parent;}
void setParent(AVLNode<Key,E>* set) { parent = set;}
};
template<class Key , class E>
class AVLTree
{
private:
AVLNode<Key,E>* root;
void clear(AVLNode<Key,E>* &r)
{
if(r==nullptr)return;
delete r;
}
void Init()
{
root = new AVLNode<Key,E>();
root=nullptr;
}
void preOrder(AVLNode<Key,E>* r,void(*visit) (AVLNode<Key,E> * node)) {
if(r==nullptr)return;
(*visit) (r);
preOrder(r->getLeft() , visit);
preOrder(r->getRight(), visit);
}
void inOrder(AVLNode<Key,E>* r , void(*visit)(AVLNode<Key,E>* node) ) {
if(r==nullptr)return;
inOrder(r->getLeft() , visit);
(*visit)(r);
inOrder(r->getRight(),visit);
}
void postOrder(AVLNode<Key,E>*r , void (*visit) (AVLNode<Key,E>* node)) {
if(r==nullptr)return;
postOrder(r->getLeft(),visit);
postOrder(r->getRight(),visit);
(*visit)(r);
}
void levelOrder(AVLNode<Key,E>*r , void (*visit) (AVLNode<Key,E>* node)) {
queue< AVLNode<Key,E>* > q;
if(r==nullptr)return;
q.push(r);
while( ! q.empty() )
{
AVLNode<Key,E>* tmp = q.front();
q.pop();
(*visit)(tmp);
if(tmp->getLeft() ) q.push(tmp->getLeft() );
if(tmp->getRight()) q.push(tmp->getRight());
}
}
AVLNode<Key,E>* find(AVLNode<Key,E>* r,Key k)
{
if(r==nullptr)return nullptr;
if(k == r->getKey() ) return r;
else if( k < r->getKey())
{
find(r->getLeft(),k);
}
else {
find(r->getRight(),k);
}
}
//Find the smallest element in the avl tree
AVLNode<Key,E>* getMin(AVLNode<Key,E>* r)
{
if(r->getLeft() == nullptr) return r;
else{
getMin(r->getLeft());
}
}
//Remove the smallest element
AVLNode<Key,E>* deleteMin(AVLNode<Key,E>* rt)
{
if(rt->getLeft() == nullptr) return rt->getRight();
else{
rt->setLeft(deleteMin(rt->getLeft()));
}
AVLNode<Key,E>* leftRotate(AVLNode<Key,E>* node)
{
if( node == nullptr) return nullptr;
AVLNode<Key,E>* newHead = node->getRight();
node->setRight( newHead -> getLeft() );
newHead -> setLeft( node );
return newHead;
}
AVLNode<Key,E>* rightRotate(AVLNode<Key,E>* node)
{
if(node == nullptr)return nullptr;
AVLNode<Key,E>* newHead = node->getLeft();
node->setLeft( newHead->getRight() );
newHead ->setRight(node);
return newHead;
}
int getHeight(AVLNode<Key,E>*node)
{
if(node == nullptr)return 0;
if(node->isLeaf())return 1;
else return ( getHeight( node->getLeft() ) > getHeight( node->getRight() ) ? getHeight( node->getLeft() ) : getHeight( node->getRight() ) ) + 1; }
int getBalanceFactor(AVLNode<Key,E>* node)
{
return getHeight(node->getLeft()) - getHeight(node->getRight() );
}
AVLNode<Key,E>* balance(AVLNode<Key,E>* node)
{
if(!node) return nullptr;
else if ( getBalanceFactor( node ) == 2)
{
if(getBalanceFactor( node ->getLeft() ) == 1)
{
node = rightRotate(node);
}
else
{
node->setLeft(leftRotate( node->getLeft() ) );
node = rightRotate(node);
}
}
else if(getBalanceFactor( node ) == -2)
{
if(getBalanceFactor( node->getRight()) == -1)
{
node = leftRotate(node);
}
else
{
node->setRight( rightRotate( node->getRight() ) );
node = leftRotate(node);
}
}
return node;
}
AVLNode<Key,E>* insert( AVLNode<Key,E>* root ,const pair<Key,E>& it) {
if(root == nullptr)
{
return new AVLNode<Key,E>(it.first , it.second,NULL,NULL,NULL);
}
else if (it.first < root->getKey() )
{
root ->setLeft( insert(root->getLeft() , it) ) ;
}
else{
root ->setRight( insert(root->getRight() , it) );
root = balance(root);
return root;
}
AVLNode<Key,E>* remove(AVLNode<Key,E>* node , const Key k)
{
if(node == nullptr) return nullptr;
if(node->getKey() > k)
{
node->setLeft( remove(node->getLeft() , k) );
node = balance(node);
}
else if(node->getKey() < k)
{
node->setRight( remove(node->getRight(), k) );
node = balance(node);
}
else if(node->getKey() == k)
{
if(! node->isLeaf() )
{
AVLNode<Key,E>* tmp = getMin(node->getRight() );
node->setKey( tmp->getKey() );
node->setValue( tmp->getValue() );
node->setRight( deleteMin(node->getRight() ) );
delete tmp;
}
else {
AVLNode<Key,E>* tmp = node;
node = (node->getLeft() != nullptr) ? node->getLeft() : node->getRight() ; delete tmp;
}
}
return node;
}
public:
~AVLTree(){clear(root);}
AVLTree(){/*Init();*/ root = nullptr; }
//四种遍历⽅式
void preOrder( void (*visit)(AVLNode<Key,E>* r))
{
preOrder(root,visit);
}
void inOrder(void (*visit)(AVLNode<Key,E>* r))
{
inOrder(root,visit);
}
void postOrder(void (*visit)(AVLNode<Key,E>* r))
{
postOrder(root,visit);
}
void levelOrder( void(*visit)(AVLNode<Key,E>*r) )
{
levelOrder(root,visit);
}
//插⼊
void insert(const pair<Key,E> &it)
{
root = insert(root,it);
}
//删除
void remove(const Key& k)
{
remove(root,k);
}
bool find(const Key&k)
{
return find(root,k);
}
};
#endif
//AVLtest.cpp
#include"NewAvl.h"
#include<iostream>
using namespace std;
template<typename Key,typename E>
void traverse(AVLNode<Key,E>* root)
{
cout<<root->getKey()<<" "<<root->getValue()<<" "; cout<<endl;
}
int main()
{
AVLTree<int,int>* tree = new AVLTree<int ,int>; for(int i = 0 ; i < 5 ; i ++)
{
tree->insert(make_pair(i,i));
}
tree->remove(1);
cout<<"PreOrder: "<<endl;
tree->preOrder(traverse);
cout<<endl;
cout<<"LevelOrder: "<<endl;
tree->levelOrder(traverse);
cout<<endl;
cout<<"InOrder: "<<endl;
tree->inOrder(traverse);
cout<<endl;
cout<<"PostOrder: "<<endl;
tree->postOrder(traverse);
cout<<endl;
cout<<tree->find(2)<<endl;
tree->insert(make_pair(9,9));
tree->levelOrder(traverse);
}
运⾏结果
以上就是C++实现AVL树的完整代码的详细内容,更多关于C++ AVL树的资料请关注其它相关⽂章!。