路南区高中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

路南区高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. △的内角,,所对的边分别为,,,已知
,则
ABC A B C a =
b =6
A π
∠=
( )111]
B ∠=A .
B .

C .

D .
4
π
4
π
34
π
3
π
23
π
3
π
2. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )
A .至少有一个白球;都是白球
B .至少有一个白球;至少有一个红球
C .恰有一个白球;一个白球一个黑球
D .至少有一个白球;红、黑球各一个3. 已知函数
,函数
,其中b ∈R ,若函数y=f (x )
﹣g (x )恰有4个零点,则b 的取值范围是( )
A .
B .
C .
D .
4. 若函数则函数的零点个数为( )21,1,(
)ln ,1,
x x f x x x ⎧-≤=⎨>⎩1
()2y f x x =+A .1 B .2
C .3
D .4
5. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )
A .
B .8
C .20
D .2
6. 如图F 1、F 2是椭圆C 1:
+y 2=1与双曲线C 2的公共焦点,
A 、
B 分别是
C 1、C 2在第二、四象限的公共
点,若四边形AF 1BF 2为矩形,则C 2的离心率是(

A .
B .
C .
D .
7. 在等差数列{}n a 中,已知4816a a +=,则210a a +=( )
A .12
B .16
C .20
D .24
8. 设F 1,F 2分别是椭圆
+
=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠
F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )
A .
B .
C .
D .9. 设函数
,则有(

A .f (x )是奇函数,
B .f (x
)是奇函数, y=b x
C .f (x )是偶函数
D .f (x )是偶函数,
10.已知a=5
,b=log 2,c=log 5,则( )
A .b >c >a
B .a >b >c
C .a >c >b
D .b >a >c
11.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( )
A .y=sinx
B .y=1g2x
C .y=lnx
D .y=﹣x 3
【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.
【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.12.i 是虚数单位,i 2015等于( )
A .1
B .﹣1
C .i
D .﹣i
二、填空题
13.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 . 
14.已知,,则的值为

1
sin cos 3αα+=
(0,)απ∈sin cos 7sin 12
ααπ-15.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .
16.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .
17.当时,4x<log a x,则a的取值范围 .
18.已知等差数列{a n}中,a3=,则cos(a1+a2+a6)= .
三、解答题
19.已知f(x)=x2﹣3ax+2a2.
(1)若实数a=1时,求不等式f(x)≤0的解集;
(2)求不等式f(x)<0的解集.
20.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P,M,N椭圆C上的三个动点.
(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;
(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由. 
21.已知数列{a n }的前n 项和为S n ,且S n =a n ﹣,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y+2=0上.(1)求数列{a n },{b n }的通项a n 和b n ;(2)设c n =a n •b n ,求数列{c n }的前n 项和T n .
22.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣)(1)当x ∈[2,4]时,求该函数的值域;
(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.
23.(本小题满分12分)已知函数.
2
()x
f x e ax bx =--(1)当时,讨论函数在区间上零点的个数;0,0a b >=()f x (0,)+∞(2)证明:当,时,.
1b a ==1[,1]2
x ∈()1f x <
24.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷体育迷合计


总计
(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.
附:K2=
P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.708 1.323 2.072 2.706 3.84 5.024
6.635
7.87910.83
路南区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】B 【解析】
试题分析:由正弦定理可得
或,故选B.
()sin 0,,4
B B B π
π=
∴=∈∴= 34π考点:1、正弦定理的应用;2、特殊角的三角函数.2. 【答案】D
【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;
至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D
【点评】本题考查了互斥事件和对立事件,是基础的概念题.
3. 【答案】 D
【解析】解:∵g (x )=﹣f
(2﹣x ),∴y=f (x )﹣g (x )=f (x )﹣+f (2﹣x ),
由f (x )﹣+f (2﹣x )=0,得f (x )+f (2﹣x )=,设h (x )=f (x )+f (2﹣x ),若x ≤0,则﹣x ≥0,2﹣x ≥2,则h (x )=f (x )+f (2﹣x )=2+x+x 2,若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,
则h (x )=f (x )+f (2﹣x )=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x >2,﹣x <﹣2,2﹣x <0,
则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x|=x 2﹣5x+8.作出函数h (x )的图象如图:
当x≤0时,h(x)=2+x+x2=(x+)2+≥,
当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,
故当=时,h(x)=,有两个交点,
当=2时,h(x)=,有无数个交点,
由图象知要使函数y=f(x)﹣g(x)恰有4个零点,
即h(x)=恰有4个根,
则满足<<2,解得:b∈(,4),
故选:D.
【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键. 
4.【答案】D
【解析】
考点:函数的零点.
【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.
5. 【答案】A
【解析】解:画出满足条件的平面区域,如图示:

由图象得P (3,0)到平面区域的最短距离d min =,
∴(x ﹣3)2+y 2的最小值是:.
故选:A .
【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题. 
6. 【答案】 D
【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,
∴2a=4,b=1,c=

∴|AF 1|+|AF 2|=2a=4,即x+y=4;①
又四边形AF 1BF 2为矩形,

+
=
,即x 2+y 2=(2c )2=
=12,②
由①②得:
,解得x=2﹣,y=2+,设双曲线C 2的实轴长为2m ,焦距为2n ,
则2m=|AF 2|﹣|AF 1|=y ﹣x=2
,2n=2c=2

∴双曲线C 2的离心率e===

故选D .
【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题. 
7. 【答案】B 【解析】
试题分析:由等差数列的性质可知,16a 84102=+=+a a a .考点:等差数列的性质.8. 【答案】 D 【解析】解:设|PF 1|=t ,∵|PF 1|=|PQ|,∠F 1PQ=60°,∴|PQ|=t ,|F 1Q|=t ,
由△F 1PQ 为等边三角形,得|F 1P|=|F 1Q|,由对称性可知,PQ 垂直于x 轴,F 2为PQ 的中点,|PF 2|=,
∴|F 1F 2|=
,即2c=

由椭圆定义:|PF 1|+|PF 2|=2a ,即2a=t
=t ,
∴椭圆的离心率为:e===.
故选D .
9.【答案】C
【解析】解:函数f(x)的定义域为R,关于原点对称.
又f(﹣x)===f(x),所以f(x)为偶函数.
而f()===﹣=﹣f(x),
故选C.
【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.
10.【答案】C
【解析】解:∵a=5>1,b=log2<log5=c<0,
∴a>c>b.
故选:C.
11.【答案】B
【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;
y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;根据y=lnx的图象,该函数非奇非偶;
根据单调性定义知y=﹣x3在(0,+∞)上单调递减.
故选B.
【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.
12.【答案】D
【解析】解:i2015=i503×4+3=i3=﹣i,
故选:D
【点评】本题主要考查复数的基本运算,比较基础.
二、填空题
13.【答案】
 菱形 ;
 矩形 .
【解析】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC
∴四边形EFGH是平行四边形
又∵AC=BD
∴EF=FG
∴四边形EFGH是菱形.
②由①知四边形EFGH是平行四边形
又∵AC⊥BD,
∴EF⊥FG
∴四边形EFGH是矩形.
故答案为:菱形,矩形
【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.
14.
【解析】
,
7sin
sin sin cos cos sin 12434343πππππππ⎛⎫
=+=+ ⎪⎝⎭
=,
sin cos 7sin 12
ααπ-∴=
=
考点:1、同角三角函数之间的关系;2、两角和的正弦公式.
15.【答案】 .
【解析】解:∵直线l 过原点且平分平行四边形ABCD
的面积,则直线过BD 的中点(3,2),故斜率为
=,
∴由斜截式可得直线l 的方程为,
故答案为

【点评】本题考查直线的斜率公式,直线方程的斜截式. 
16.【答案】 .
【解析】解:由方程组
解得,x=﹣1,y=2故A (﹣1,2).如图,
故所求图形的面积为S=∫﹣11(2x 2)dx ﹣∫﹣11(﹣4x ﹣2)dx =
﹣(﹣4)=
故答案为:
【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题. 
17.【答案】 .
【解析】解:当时,函数y=4x的图象如下图所示
若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x的图象与y=4x的图象交于(,2)点时,a=
故虚线所示的y=log a x的图象对应的底数a应满足<a<1
故答案为:(,1)
18.【答案】 .
【解析】解:∵数列{a n}为等差数列,且a3=,∴a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3×=,∴cos(a1+a2+a6)=cos=.
故答案是:.
三、解答题
19.【答案】
【解析】解:(1)当a=1时,依题意得x2﹣3x+2≤0因式分解为:(x﹣2)(x﹣1)≤0,
解得:x≥1或x≤2.
∴1≤x≤2.
不等式的解集为{x|1≤x≤2}.
(2)依题意得x2﹣3ax+2a2<0
∴(x﹣a)(x﹣2a)<0…
对应方程(x﹣a)(x﹣2a)=0
得x1=a,x2=2a
当a=0时,x∈∅.
当a>0时,a<2a,∴a<x<2a;
当a<0时,a>2a,∴2a<x<a;
综上所述,当a=0时,原不等式的解集为∅;
当a>0时,原不等式的解集为{x|a<x<2a};
当a<0时,原不等式的解集为{x|2a<x<a};
20.【答案】
【解析】解:(Ⅰ)由题意得解得a=2,b=1,
所以椭圆方程为.
(Ⅱ)(i)由已知,直线MN的斜率存在,
设直线MN方程为y=kx﹣,M(x1,y1),N(x2,y2).
由得(1+4k2)x2﹣4kx﹣3=0,
∴x1+x2=,x1x2=,
又.
所以S△PMN=|PD|•|x1﹣x2|=
=.
令t=,则t≥,k2=
所以S△PMN=,
令h(t)=,t∈[,+∞),则h′(t)=1﹣=>0,所以h(t)在[,+∞),单调递增,则t=,即k=0时,h(t)的最小值,为h()=,
所以△PMN面积的最大值为.
(ii)假设存在△PMN是以O为中心的等边三角形.
(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上.
又O为△PMN的中心,所以,可知Q(0,﹣),M(﹣,),N(,).
从而|MN|=,|PM|=,|MN|≠|PM|,与△PMN为等边三角形矛盾.
(2)当P在x轴上时,同理可知,|MN|≠|PM|,与△PMN为等边三角形矛盾.
(3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则k OP=,
又O为△PMN的中心,则,可知.
设M(x1,y1),N(x2,y2),则x1+x2=2x Q=﹣x0,y1+y2=2y Q=﹣y0,
又x12+4y12=4,x22+4y22=4,两式相减得k MN=,
从而k MN=.
所以k OP•k MN=•()=≠﹣1,
所以OP与MN不垂直,与等边△PMN矛盾.
综上所述,不存在△PMN是以O为中心的等边三角形.
【点评】本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想
21.【答案】
【解析】解:(1)∵S n=a n﹣,
∴当n≥2时,a n=S n﹣S n﹣1=a n﹣﹣,
即a n=3a n﹣1,.
∵a1=S1=﹣,∴a1=3.
∴数列{a n}是等比数列,∴a n=3n.
∵点P(b n,b n+1)在直线x﹣y+2=0上,
∴b n+1﹣b n=2,
即数列{b n}是等差数列,又b1=1,∴b n=2n﹣1.
(2)∵c n=a n•b n=(2n﹣1)•3n,
∵T n=1×3+3×32+5×33+…+(2n﹣3)3n﹣1+(2n﹣1)3n,
∴3T n =1×32+3×33+5×34+…+(2n ﹣3)3n +(2n ﹣1)3n+1,两式相减得:﹣2T n =3+2×(32+33+34+…+3n )﹣(2n ﹣1)3n+1,=﹣6﹣2(n ﹣1)3n+1,∴T n =3+(n ﹣1)3n+1. 
22.【答案】
【解析】解:(1)f (x )=(log 2x ﹣2)(log 4x ﹣)=(log 2x )2﹣log 2x+1,2≤x ≤4
令t=log 2x ,则y=t 2﹣t+1=(t ﹣)2﹣,∵2≤x ≤4,∴1≤t ≤2.
当t=时,y min =﹣,当t=1,或t=2时,y max =0.∴函数的值域是[﹣,0].
(2)令t=log 2x ,得t 2﹣t+1>mt 对于2≤t ≤4恒成立.∴m <t+﹣对于t ∈[2,4]恒成立,
设g (t )=t+﹣,t ∈[2,4],
∴g (t )=t+﹣=(t+)﹣,∵g (t )=t+﹣在[2,4]上为增函数,∴当t=2时,g (t )min =g (2)=0,∴m <0. 
23.【答案】(1)当时,有个公共点,当时,有个公共点,当时,有个公共
2(0,)4e a ∈24e a =2
(,)4
e a ∈+∞点;(2)证明见解析.【解析】
试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得,构造函数,利用求出
2x e a x =2()x
e h x x
=()'h x 单调性可知在的最小值,根据原函数的单调性可讨论得零点个数;(2)构造函数
()h x (0,)+∞2
(2)4
e h =
,利用导数可判断的单调性和极值情况,可证明.1
2()1x h x e x x =---()h x ()1f x <试题解析:
当时,有0个公共点;
2
(0,4e a ∈当,有1个公共点;
2
4e a =当有2个公共点.
2
(,)4
e a ∈+∞(2)证明:设,则,
2()1x h x e x x =---'()21x
h x e x =--令,则,
'
()()21x
m x h x e x ==--'
()2x
m x e =-因为,所以,当时,;在上是减函数,
1(,1]2x ∈1[,ln 2)2
x ∈'()0m x <()m x 1[,ln 2)2
当时,,在上是增函数,
(ln 2,1)x ∈'
()0m x >()m x (ln 2,1)
考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.
【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 24.【答案】
【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:
非体育迷体育迷合计
男301545
女451055
总计7525100
将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.
∵3.030<3.841,
∴我们没有理由认为“体育迷”与性别有关.
(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j(j=1,2)表示女性.
设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).
∴P(A)=.
【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.。

相关文档
最新文档