向量的作用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作为新课程改革,高中数学教材的两个显著变化就是“向量和导数”的引入。

其目的也很明确:为研究函数、空间图形,提供新的研究手段,即充分体现它们的工具性。

但这种“工具性”,只有在深刻理解的基础上才能用好,而要想用活,这又需要我们在实践中不断“开发”新的认识,丰富知识网络,形成较完善的“认知模块”、“知识体系”。

,极大地丰富了关于空间向量的“数量积”这一运算的“认知模块”的内涵。

对教材引进空间向量的“坐标法”来解决空间中“三大角”问题,我们的学生可以说是欣喜若狂啊,因为学生觉得这种方法好!可操作性强!(只要能建系,有坐标就行!)但在实际应用中,学生觉得这些结论不易理解,加上这些结论只能逐步形成和完善,靠死记硬背吧,今天记了明天又忘了!等到用时,仍是“生硬、呆板”,甚至张冠李戴。

如何突破这一问题?我认为其根本原因是:在学生的认知结构里,这一性质未能如愿地形成“知识链”。

那么,这一性质是怎样与相关问题产生“对接或联系”的呢?
(1)它是空间三大角(即线线角、线面角、二面角的平面角)用向量法求解的“对接点”。

这里的“空间角”的求法,完全与直角三角形中的三角函数的“正弦或余弦的定义”发生了对接——对边或邻边就是斜边的向量在此边向量上的投影,即斜边向量与对边或邻边方向上的单位向量的数量积,而理解与掌握这里的“空间角”的直角三角形的构图,学生完全可以达到“系统化”和“自主化”,因为直角三角形中的三角函数定义,他们太熟悉了!即将知识的“生长点”建立在学生认知水平的“最近发展区”,那学习就会水到渠成!
(2)它又是空间三大距离(即点线距、点面距、异面直线间距离)用向量法求解的“联系点”。

空间中有七大距离(除球面上两点间的距离外)基本上可转化为点点距、点线距、点面距,而点线距和点面距又是重中之重!另外两异面直线间的距离,高考考纲中明确要求:对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离。

因此对异面直线间的距离的考查有着特殊的身份。

教材按排中引进了向量法来解决距离问题,也给问题的解决带来新的活力!不用作出(或找出)所求的距离了。

空间中的三大角与三大基本距离的计算,都隐藏于这个“特定”的数量积的性质之中,体现在这个公式结构的“统一美”之中,把问题的本质揭示得“淋漓尽致”,而又不失自然!这给“立体几何”中向量的工具性的体现,增色了几分美感与统一感!。

相关文档
最新文档