电磁学第二版习题答案2
电磁场与电磁波第二版课后答案 (2)
电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
赵凯华所编《电磁学》第二版答案
第一章静电场§1.1静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,2、答:3、§1.2思考题:1、2、电荷量答:q03、4、答:由对称性可知,圆环中心处电场强度为零。
轴线上场强方向沿轴线。
当带电为正时,沿轴线向外;当带电为负时,沿轴线向内,-----------------------------------------------------------------------------------------------------------§1.3高斯定理思考题:1、一般地说,电力线代表点电荷在电场中运动的轨迹吗?为什么?答:一般情况下,电力线不代表点电荷在电场中运动的轨迹。
因为电力线一般是曲线,若电荷沿电力线作曲线运动,应有法向力存在;但电力线上各点场强只沿切线方向,运动电荷必定偏离弯曲的电力线。
仅当电力线是直线,且不考虑重力影响时,初速度为零的点电荷才能沿着电力线运动。
若考虑重力影响时,静止的点电荷只能沿竖直方向电力线运动。
2、空间里的电力线为什么不相交?答:电力线上任一点的切线方向即为该点场强方向。
如果空间某点有几条电力线相交,过交点对每条电力线都可作一条切线,则交点处的场强方向不唯一,这与电场中任一点场强有确定方向相矛盾。
3、一个点电荷q放在球形高斯面的中心处,试问在下列情况下,穿过这高斯面的电通量是否改变?(1)如果第二个点电荷放在高斯球面外附近;(2)如果第二个点电荷放在高斯球面内;(3)如果将原来的点电荷移离了高斯球面的球心,但仍在高斯球面内。
电磁学第二版习题答案
电磁学-第二版-习题答案第二版《电磁学》的习题答案:1. 第一章:电荷和电场习题1:假设有两个电荷,一个带正电量Q1,另一个带负电量Q2,在他们之间的距离为r1。
如果将Q1的电荷减小到原来的一半,同时将Q2的电荷加倍,并将它们之间的距离改为r2,那么这两个电荷之间的相互作用力是怎样改变的?解答:根据库伦定律,两个电荷之间的相互作用力正比于它们的电荷量乘积,反比于它们之间的距离的平方。
即F∝(Q1Q2)/r^2。
根据题目,Q1变为原来的一半,Q2变为原来的两倍,r由r1变为r2。
代入上述关系式,可得新的相互作用力F'为:F'∝((Q1/2)*(Q2*2))/(r2^2)。
化简上式,可得F'∝(Q1Q2)/(r2^2)。
由上式可知,新的相互作用力与原来相互作用力相等。
即新旧相互作用力大小相同。
习题2:有一组平行板电容器,两板之间的距离为d,电容的电极面积为A。
当电容器充满理想电介质时,电容器的电容是原来的多少倍?解答:当电容器充满理想电介质时,电容的电容量由电容公式C=εA/d得到。
其中,ε为电介质的相对介电常数。
而当电容器未充满电介质时,电容的电容量为C0=ε0A/d。
其中,ε0为真空的介电常数。
所以,电容器充满电介质时,电容与未充满时的电容C0比较,即C/C0=ε/ε0。
所以,电容器电容是原来的ε/ε0倍。
2. 第二章:电荷的连续分布习题1:在距离线段中点为R的的P点,取出一个长度为l的小线段,小线段的位置如何改变时,该小线段对P点电势的贡献较大?解答:根据电场电势公式,P点电势由该小线段的电荷贡献决定。
即V=k(q/R),其中k为电场常量,q为该小线段的电荷量,R为该小线段到P点的距离。
所以,小线段对P点电势的贡献较大的情况是,当该小线段长度l较大且该小线段离P点的距离R较小的时候,即小线段越靠近P点且长度越大,对P点电势的贡献越大。
习题2:线电荷的线密度为λ,长度为L,P点到线电荷的距离为d。
赵凯华所编《电磁学》第二版答案
精心整理第一章静电场§1.1静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异2、3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
---------------------------------------------------------------------------------------------------------------------§1.2电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、力F答:P 点,3、4、正时,沿轴线向外;当带电为负时,沿轴线向内,-----------------------------------------------------------------------------------------------------------§1.3高斯定理思考题:1、一般地说,电力线代表点电荷在电场中运动的轨迹吗?为什么?答:一般情况下,电力线不代表点电荷在电场中运动的轨迹。
因为电力线一般是曲线,若电荷沿电力线作曲线运动,应有法向力存在;但电力线上各点场强只沿切线方向,运动电荷必定偏离弯曲的电力线。
仅当电力线是直线,且不考虑重力影响时,初速度为零的点电荷才能沿着电力线运动。
若考虑重力影响时,静止的点电荷只能沿竖直方向电力线运动。
2、3、(1(2(3(14、(立方体的中心,则穿过该高斯面的电通量如何变化?(2)通过这立方体六个表面之一的电通量是多少?答:(1)立方形高斯面内电荷不变,因此电通量不变;(2)通过立方体六个表面之一的电通量为总通量的1/6。
赵凯华所编《电磁学》第二版答案
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
--------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小若大导体带负电,情况如何答:q0不是足够小时,会影响大导体球上电荷的分布。
赵凯华所编《电磁学》第二版答案
第一章静电场§1.1静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同3、答:§1.2思考题:1、下?2、q0不是答:q0P 点,而3、4、§1.3高斯定理思考题:1、一般地说,电力线代表点电荷在电场中运动的轨迹吗?为什么?答:一般情况下,电力线不代表点电荷在电场中运动的轨迹。
因为电力线一般是曲线,若电荷沿电力线作曲线运动,应有法向力存在;但电力线上各点场强只沿切线方向,运动电荷必定偏离弯曲的电力线。
仅当电力线是直线,且不考虑重力影响时,初速度为零的点电荷才能沿着电力线运动。
若考虑重力影响时,静止的点电荷只能沿竖直方向电力线运动。
2、空间里的电力线为什么不相交?答:电力线上任一点的切线方向即为该点场强方向。
如果空间某点有几条电力线相交,过交点对每条电力线都可作一条切线,则交点处的场强方向不唯一,这与电场中任一点场强有确定方向相矛盾。
3、一个点电荷q放在球形高斯面的中心处,试问在下列情况下,穿过这高斯面的电通量是否改变?(1)如果第二个点电荷放在高斯球面外附近;(2)如果第二个点电荷放在高斯球面内;(3)如果将原来的点电荷移离了高斯球面的球心,但仍在高斯球面内。
电磁学习题答案1-3章
第一章 习题一1、电量Q 相同的四个点电荷置于正方形的四个顶点上,0点为正方形中心,欲使每个顶点的电荷所受电场力为零,则应在0点放置一个电量q =-(1+2√2)Q/4 的点电荷。
2、在点电荷系的电场中,任一点的电场强度等于各点电荷单独在该点产生场强的矢量和,这称为电场强度叠加原理。
3、一点电荷电场中某点受到的电场力很大,则该点的电场强度E :( C )(A)一定很大 (B)一定很小 (C)可能大也可能小4、两个电量均为+q 的点电荷相距为2a ,O 为其连线的中点,求在其中垂线上场强具有极大值的点与O 点的距离R 。
解法一:22020214141aR qπεr q πεE E +=== 21E E E+=,θE θE θE E cos 2cos cos 121=+=2222042a R R a R q πε++=()2/32202a R R πεq +=E 有极值的条件是:()0222/522220=+-=a R R a πεq dR dE 即 0222=-R a ,解得极值点的位置为:a R 22=∵ ()2/722220223223a R a R πεqR dR E d +-=,而 0398402/222<-==aπεqdR E d a R ∴ 中垂线上场强具有极大值的点与O 点的距离为a R 22= 且 ()202/3220m a x 332/2/2aπεq a a a πεq E =+=解法二:θaq πεr q πεE E 2202021sin 4141===,21E E E +=+qθE θE θE E cos 2cos cos 121=+=θθaq πεcos sin 21220=)cos (cos 21320θθaq πε-=E 有极值的条件是:0)sin 3sin 2(2320=-=θθaπεq θd dE E 有极值时的θ满足:31cos 32sin 1cos 0sin 2211====θ,θ;θ,θ )cos 7cos 9(2)cos sin 9cos 2(232022022θθa πεq θθθa πεq θd E d -=-= 0)cos 7cos 9(22011320221>=-==a πεq θθa πεq θd E d θθ 032)cos 7cos 9(22022320222<-=-==aπεq θθa πεq θd E d θθ 可见 θ = θ2时,E 有极大值。
电磁场与电磁波理论(第二版)(徐立勤-曹伟)第2章习题解答
第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ=,()0a ρ≤≤。
试求总电量Q 。
解:2π200002d d d d π3laV VQ V z la aρρρρρϕρ===⎰⎰⎰⎰2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。
当球以角速度ω绕某一直径(z 轴)旋转时,试求其外表上的面电流密度。
解:面电荷密度为 24πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=⋅=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ϕ=。
已知导线的直径为d ,导线中的电流为0I ,试求0S J 。
解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为 04πS IJ Jd d ==因此,等效面电流密度为 04πS IJ e dϕ=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。
为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥力为12214πq F xε=实验电荷受0q 的排斥力为02214π()q F d x ε=- 要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得 d d x 585.0122=+=如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。
2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
程稼夫电磁学第二版第二章习题解析
程稼夫电磁学篇第二章《恒定电流》因此两球间介质间的电阻:.法二:设总电流为,两球心间距,一球直径对另一球球心的张角利用电流的叠加原理,用张角为的这部分电流计算电势差:后同法一2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.电阻R热平衡:,解得.(2),即在图中作出该直线,交伏安特性曲线于.即.2-5(1)消耗的功率,不变,而随减小而增大,因而时,最大,消耗的功率最大.(2)电路中电流,消耗的功率根据均值不等式得,时,消耗的功率最大.2-6(1)电压按电阻分配.合上开关前,上电压为两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为炉丝上电流由干路均分,所以故,几乎相等.2-8题意应是恰好不能烧开,即100℃时达到热平衡,断电后只下降1℃,可以认为散热功率是不变的:,其中水的比热容为2-9(1)周期,A位置时热平衡:,其中加热时间B位置时热平衡:,其中加热时间两式相除,解得(2)连续加热时热平衡:,解得.2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.电压最小时,,解得.2-12保险丝要保证熔断电流是一定的.在一定的融化温度下,辐射功率P与辐射体表面积S成正比.电流一定时,电功率Q与R成正比.解得,与无关.2-13绝缘层损坏使得相邻的两圈电阻丝接触,相当于损坏处产生的接触电阻与一圈漆包线并联之后,再与剩余九圈漆包线串联.一圈电阻为设绝缘层损坏处产生电阻为,则解得.2-14(1)作直线交A于,交B于故.(2).即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.2-16(1)设流过的电流为,上流过的电流为.所以,故.此时.(2),取最小值(此时)代入得.2-17设流过灯泡电流为,.设图中三个定值电阻从左至右分别为K闭合时,R3与R并联,流过R2的电流于是可列出:K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:.2-20设通过电源1的逆时针电流为,通过电源2顺时针电流为于是在电源1与R1构成的回路可列出:在电源2与R1R2构成的回路中,可列出:代入数据可解得,通过R1的电流为1A,通过R2的电流为0.5A.设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:代入数据,联立可解得:.2-23设R1上电流为,R2上电流为由并联得又由节点电流方程知:,联立解得:.又因为,所以可得即CD上电流大小为1.0A,方向由C流向D.2-24将R替换为导线,用叠加原理计算短路电流等效内阻,等效电源.将R替换为导线,用叠加原理计算短路电流.等效内阻,等效电源.2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:令,电源最少,要使最小代入得是关于x的一元二次方程,该方程要有实数解:将n带回原方程即可解得答案同法一答:至少需要120个电池.此时有20组电池组串联,每组内有6个电池并联.2-26首先,B与B’为同一节点,思考时可视为一点,由(2)可知电路对称,此时容易联想到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:,所以.2-29由分析知,安培表读数由两部分组成.第一部分,R2回路;第二部分,流过R1电流,于是流过R3R3(电流表)的电流:.所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:2-31(1)(2)设流经V1的电流为,流经V2的电流为,则流经V3从左到右的电流为则有2-32设电压表电阻为,电流表电阻为由并联两表电压相等可知由节点方程可知流经并联两表中电压表的电流欧姆定律:得.2-33由每个量程达到满偏时通过电流计的电流相同得:解得:.如用A修复,则在用1mA量程测量1mA电流时流过A的电流为0.195mA<0.2mA.若再串联一个电阻,则分到的电流更少.若并联,则由两个电阻并联变成三个电阻并联,A 在总电流中分到的电流依然会更少.综上:排除A 而B在此时分到的电流为0.57mA>0.5 mA故可以考虑并联一个17 欧的电阻或者串联一个40 欧的电阻。
电磁学第二篇课后习题
-σ
0 20 20
电势差 U 为 Ed : d 0
根 据 电 容 的 定 义 式 ,则 有 : C Q S0 S U d d 0
§2-3 电容器及其电容
2)圆柱形电容器
设带电,则有:
E 2 0r
U E d r R2 dr
l
R1 2 0r
ln R2 2 0 R1
C Q L /( ln R2 )
2-1 静电场中的导体
2:在静电平衡时,导体内部无净电荷, 电荷只分布在导体的表面上.
证明:反证法.
设导体内有一未被抵消的净电荷 q0
EdS
q0
0
s
0
于是面上的不能处处为零, 与静电平衡条件矛盾。
2-1 静电场中的导体
3:静电平衡时,导体表面附近的场强方 向处处与表面垂直,大小与该处导体表面 的电荷面密度成正比.
第二章 有导体时的静电场 静电平衡 封闭金属壳内外的静电场 电容器及其电容 带电体系的静电能
2-1 静电场中的导体
静电感应: 导体内的电荷因外电场的作用而重新 分布的现象叫静电感应。由于静电感 应而出现的电荷叫感应电荷。
静电感应现象演示
2-1 静电场中的导体 一.静电平衡
静电平衡状态: 导体内部和表面都没有电荷定向移动的状态。
§2-5 带电体系的静电能
二、电容器的静电能
将一电池与电容器相连,电池给电容器充
电。在某一瞬间,电容器带电量 q、极板间
电位差为 U 时,将电量 dq由电容器的负极移
到正极时,电源克服电场力作功绝对值为:
AQudq1 QqdqQ2
0
C0
2C
此值等于体系静电能的增加量。利用 QCU
可以得到: W 1 QU
赵凯华所编《电磁学》第二版答案
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
--------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
电磁学第二版课后习题答案
电磁学第二版课后习题答案电磁学是物理学中的重要分支,研究电荷和电流的相互作用以及电磁场的产生和传播。
对于学习电磁学的学生来说,课后习题是巩固知识和提高能力的重要途径。
本文将对《电磁学第二版》课后习题进行一些解答和讨论,帮助读者更好地理解电磁学的概念和应用。
第一章:电荷和电场1. 问题:两个等量的正电荷之间的相互作用力是多少?答案:根据库仑定律,两个等量的正电荷之间的相互作用力等于它们之间的电荷量的平方乘以一个常数k,即F = kq1q2/r^2。
2. 问题:电场是什么?如何计算电场强度?答案:电场是指电荷周围的一种物理量,它描述了电荷对其他电荷的作用力。
电场强度E可以通过电场力F除以测试电荷q得到,即E = F/q。
第二章:静电场1. 问题:什么是电势能?如何计算电势能?答案:电势能是指电荷在电场中由于位置变化而具有的能量。
电势能可以通过电荷q乘以电势差V得到,即U = qV。
2. 问题:什么是电势差?如何计算电势差?答案:电势差是指单位正电荷从一个点移动到另一个点时所做的功。
电势差可以通过电场力F乘以移动距离d得到,即V = Fd。
第三章:电流和电阻1. 问题:什么是电流?如何计算电流?答案:电流是指单位时间内通过导体横截面的电荷量。
电流可以通过电荷量Q除以时间t得到,即I = Q/t。
2. 问题:什么是电阻?如何计算电阻?答案:电阻是指导体中电流流动受到的阻碍程度。
电阻可以通过电压V除以电流I得到,即R = V/I。
第四章:电路和电源1. 问题:什么是电路?如何计算电路中的电流和电压?答案:电路是指由电源、导线和电器元件组成的路径,用于电流的传输和电能的转换。
电路中的电流可以通过欧姆定律计算,即I = V/R,其中V为电压,R 为电阻。
2. 问题:什么是直流电源?什么是交流电源?答案:直流电源是指电流方向保持不变的电源,如电池。
交流电源是指电流方向周期性变化的电源,如交流发电机。
通过以上的解答和讨论,我们对电磁学的基本概念和计算方法有了更深入的了解。
电磁学第二版梁灿彬 课后答案
f = 2k
Qq 0.2 i = 3.22 × 10−7 ( N ) 2 2 2 0.1 + 0.2 0.1 + 0.2
2
方向:水平向右
1.2.5 在正方形的顶点上各放一个电荷为 q 的同行点带电体。
1 2 )q 解之得: Q = ( + 4 2
(Q 应为负点电荷)
1.2.6 两个量值相等的同性点电荷相距为 2a,在两者连线的中垂面上置一试点电荷 q0,求 q0 受力最
大的点的轨迹。 解:∵
f = 2k
又∵
2kqq′r qq′ r = 2 2 3 2 (a + r ) (a 2 + r 2 ) (a + r ) 2
第一章
静电场的基本规律
1.1
判断下列说法是否正确, 说明理由。
(1)一点的场强方向就是该点的试探点电荷所受电场力的方向。 (2)场强的方向可由 E=F/q 确定,其中 q 可正可负。 (3)在以点电荷为心的球面上,由该点电荷产生的场强处处相等。 答案: (1) ×,正的试探电荷; 1.2 1.3 (2) √ ; (3)× 在无外场是,球面上 E 大小相等。
1 q1q2 可以得到: 4πε 0 r 2
1.6 =
4q12 4πε 0 (5 ×10−2 ) 2 1
解之得: q1 = 0.33 × 10−6 ,
q2 = 4q1 = 1.33 ×10−6
∴ 当 r=0.1 时,所受排斥力为:
F=
q1q2 =0.4(N) 4πε 0 (0.1) 2
赵凯华所编《电磁学》第二版答案
第一章静电场§静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
--------------------------------------------------------------------------------------------------------------------- §电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
程稼夫电磁学第二版第二章习题解析
前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为22AB2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:2-22注意看题,不要啥都不想直接Y-△变换了设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:2-即2-将等效内阻,等效电源. 2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:由节点方程可知流经并联两表中电压表的电流欧姆定律:得. 2-33由每个量程达到满偏时通过电流计的电流相同得:,干路电流为,而B,C间的电流为,即100kΩ电阻和电压表各分得干路电流的一半,可知电压表内阻也为100kΩ.在图(b)中,200kΩ电阻与电压表并联后的电阻为,电压表读数为A、B间所分的电压为.由本题推广,可以证明,电压表接入串联电路测得的数值与所测部分电阻成正比,此性质与电压表内阻无关.2-36首先说明,若测量过程中测得某两点间电阻为1Ω,由对称性及电阻串并联等效可以判断:特异电阻被短路,连接在另外两端点间.2-38等效电路图如下:其中,由电桥平衡条件,有,解得.2-39第一次实验,B端电压为40V,即电阻R分压40V,则左段电缆电阻为第二次实验,A端电压为40V,即电阻R分压40V,则右段电缆电阻为左右电缆的电阻之比为:由于电缆的电阻与长度成正比,可知左段电缆长度为由此得:2-41,解得,解得;对于上述两支路的交点A,列节点方程:;由欧姆定律,图中B点的电势为:.显然U1与U3所在支路的电流为0;由于电容所在支路电流为0,由节点方程,图中B与C之间的支路上电流为;对图中红圈内的部分列节点方程(以向下为正方向):.2-42设该平行板电容器极板面积为S,极板间距为d,漏电流为I.由平行板电容器的电容公式,得玻璃的电阻为.由高斯2-44首先明确,无论短接哪个电阻,总电阻一定变小将五个电阻分两类,一类是四周的4 个电阻臂,一类是中间的100Ω桥上电阻.短接桥上电阻,总电阻变为203Ω;短接一支电阻臂,以500Ω的为例:两个100Ω的并联后与200Ω的串联再与300Ω的并联.可以看出300Ω的在这里与其他所有电阻并联,而并联电路中的总电阻不超过最小的电阻,故让100Ω与其他电阻并联可以使变化最大.2-45等效电阻整理得,故或.2-46本题为无穷网络等效电阻题.先分析对称性:电路呈轴对称,可将图中各个处于对称轴上的中点断开,于是电路转化为:转化为:再将A,B两点左侧网络“翻折”至右侧:单电路:,即两导线间电压为零.2-51本题为无穷网络等效电阻题,解题关键在于网络的自相似性.记A点左侧无穷网络等效电阻为R1.分析电路可知:故只需求出R1.分析R1结构可知:除去三个电阻r后剩余部分仍为一无穷网络R1:2-52(1)本题中的三角形电阻网络具有高度对称性,可将分割n次后的电阻网络(设其两顶点之间的电阻为;图中未画出分割后电阻网络的全貌;最初的只有三条边的三角形当作分割了0次)等效为如下的Y形网络:其中每个电阻的大小均为则下一次分割所得的电阻网络可以等效为三个上图所示的网络相连接而成(每个电阻变为一半),如下图所示:其中每个电阻大小为.这是一个简单的电阻网络,我们可以依据串并联关系计算其两端点间的电阻:(2,解得.2-53本题为等效电容题.(a)图中三电容实为并联;(b)图为中心对称图形,由对称性可知中间的C0等价为断路:整个线路和原来的线路完全一样,线路结构没有改变,各线上电流、各点的电势均无改变.可见,由点2到点n−1这n−2个点是完全等价的.因此,上述n−2个点的电势必然完全相同,从而这些点之间的连线上都没有电流,在考虑本题所问时,这些连线可以全部撤去,于是可得.2-58(1)电阻网络E、G两点间电压可表示为从图中的二极管D的正向伏安曲线中可査得,电压UDI对应的电流I1为25.0mA,此电流就是流过电阻R及由E点流入电阻网络的电流,将数据代入上式得由对称性可得H、A、C、F电势相等,其等效电路如图13-13所示(除两只电阻为外,(2)当引线两端P、Q与电阻网络B、D两点相接时,等效电路仍如图所示,易得通过二极管DD的电流与二极管两端电压有关系代入数据得这是一条联系UD与ID的方程,但是UD与ID又必须满足二极管的伏安特性曲线,在图中绘出上式所述直线,它与曲线的交点的纵坐标即为通过二极管的电流ID,由图中读出由对称性,,,则.2-59本题为图像分析题,同时需要用到“负载功率最大时,路端电压等于电源电动势的一半”的结论(此处证明从略).图像显示电源可视为两个负载电流范围不同的电源``拼接''而成,分段讨论即可.电流小于0.26A时,电源电动势等于6.2V,故路端电压等于3.1V时(由(2)(3)C1电荷变化量C2电荷变化量故由a到b流过K的正电荷.2-62本题为含电容的电路分析题,只需分析始末状态和电量变化即可.通过K的电量即通过R的电量.闭合K前,两电容器不带电;闭合K并稳定后,两电容器靠近电键K的极板上均沿回路列出方程:联立解得代入数据.忽略接地信息的解法得到的答案与此一致,但无视了与大地间的电流和电位.。
《电磁学》第二版_课后题的答案
(参考点选在无远。)
答案:U1
=
q1 4πε 0 R1
+
q2 4πε0 2R1
∫ ∫ ∫ ∫ 〈或者:U1 =
R2 R1
E1dr
+
∞
R2
E2dr
=
2R1 q1 dr + R1 4πε 0r 2
∞ q1 + q2 dr 〉 2R1 4πε 0r 2
第一章
静电场的基本规律
1.1 判断下列说法是否正确, 说明理由。 (1)一点的场强方向就是该点的试探点电荷所受电场力的方向。 (2)场强的方向可由 E=F/q 确定,其中 q 可正可负。 (3)在以点电荷为心的球面上,由该点电荷产生的场强处处相等。
答案:(1) ×,正的试探电荷; (2) √ ;(3)× 在无外场是,球面上 E 大小相等。
力为零?
解:设 q′ 距 q 为 r,则 q′ 距 2q 为 (L − r) ,放在相距 r 处,受合力为 0,则有受力平衡条件:
k
qq′ r2
=
k
2qq′ (L − r)2
得到: r = ( 2 −1)L
1.2.4 在直角坐标系的(0m,0.1m)和(0m,-0.1m)的;两个位置上分别放有电荷 q=10-10C 的点 带电体,在(0.2m,0m )的位置上放一电荷为 Q=10-8C 的点带电体,求 Q 所受力的大小和方向。
1.2.1 真空中有两个点电荷,其中一个的量值是另一个的 4 倍。她们相距 5.0×10-2 m 时相互排斥力
为 1.6N。问: (1)她们的电荷各为多少? (2)她们相距 0.1m 时排斥力的多少?
赵凯华所编《电磁学》第二版答案
第一章§1.1思考题:静电场静电的基本现象和基本规律1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
---------------------------------------------------------------------------------------------------------------------§1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P 点放置一个试探点电荷q0(q0>0), 实际测得它受力F。
若考虑到电荷量 q0 不是足够小的,则 F/ q0 比 P 点的场强 E 大还是小?若大导体带负电,情况如何?答: q0 不是足够小时,会影响大导体球上电荷的分布。
电磁学第二版习题答案2
电磁学第二版习题答案2电磁学 第二版 习题解答电磁学 第二版 习题解答 (2)第一章 .............................................................. 2 第二章 ............................................................ 18 第三章 ............................................................ 27 第四章 ............................................................ 36 第五章 ............................................................ 40 第六章 ............................................................ 48 第七章 (54)第一章1.2.2 两个同号点电荷所带电荷量之和为Q 。
在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为20()4q Q q F r πε-=令力F 对电荷量q 的一队导数为零,即20()04dF Q q qdq rπε--== 得122Q q q ==即取 122Qq q ==时力F 为极值,而 22202204Q q d F dq rπε==<故当122Qq q ==时,F 取最大值。
1.2.3 两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零?解答:要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁学第二版习题答案2电磁学 第二版 习题解答电磁学 第二版 习题解答 (2)第一章 .............................................................. 2 第二章 ............................................................ 18 第三章 ............................................................ 27 第四章 ............................................................ 36 第五章 ............................................................ 40 第六章 ............................................................ 48 第七章 (54)第一章1.2.2 两个同号点电荷所带电荷量之和为Q 。
在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为20()4q Q q F r πε-=令力F 对电荷量q 的一队导数为零,即20()04dF Q q qdq rπε--== 得122Q q q ==即取 122Qq q ==时力F 为极值,而 22202204Q q d F dq rπε==<故当122Qq q ==时,F 取最大值。
1.2.3 两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零?解答:要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。
电荷Q 所受的两个电场力方向相反,但大小相等,即2200204()4qQ qQL x xπεπε-=- 得 2220x Lx L +-=舍去0x <的解,得 21)x L =-LxL -qQ 21.3.8解答:xE 3E 2y∞E 1RO R yE 3xαE AE B∞x yO E ABA R (c)(b)(a)(1)先求竖直无限长段带电线在O 点产生的场强1E ϖ,由习题1.3.7(2)可知 104x E Rηπε=仿习题1.3.7解答过程,得12223/21223/20sin ()0()4y y dlldldE kkr R l ldl E k R l Rηηαηηπε==-+∞=-=-+⎰故 10ˆˆ()4E i j Rηπε=-v同理,水平无限长段带电线在O 点产生的场强20ˆˆ()4E i j Rηπε=-+v 对于圆弧段带电线在O 点产生的场强3E ϖ,参看图1.3.8(b ),得3230cos cos /2cos 04x x dld dE kkR Rk E d R Rηηαααπηηααπε====⎰同理得 304y E Rηπε=故 30ˆˆ()4E i j Rηπε=+v解得12330ˆˆ()4E E E E E i j Rηπε=++==+v v v v v (2)利用(1)中的结论,参看习题1.3.8图(b ),A -∞的带电直线在O 点的场强为=0ˆˆ()4A E i j Rηπε--vB -∞的带电直线在O 点产生的场强为0ˆˆ()4B E i j Rηπε=-+v 根据对称性,圆弧带电线在O 点产生的场强仅有x 分量,即0/2ˆˆˆcos /22AB ABx k E E i d i i R Rπηηααππε===-⎰v v 故带电线在O 点产生的总场强为0A B AB E E E E =++=v v v v1.3.9解答:在圆柱上取一弧长为Rd ϕ、长为z 的细条,如图(a )中阴影部分所示,细条所带电荷量为()dq zRd σϕ=,所以带电细条的线密度与面密度的关系为dq dl Rd zησσϕ===由习题1.3.7知无限长带电线在距轴线R 处产生的场强为0ˆ2r dE e Rηπε=v 图(b )为俯视图,根据对称性,无限长带电圆柱面轴线上的场强仅有x 分量,即20002200000cos cos cos 22ˆˆˆcos 22x x dE dE d d E E i i d i πσσϕϕϕϕϕπεπεσσϕϕπεε--=-==--===⎰v1.4.5解答:ϕyxzyxO ϕEd ϖ(b)(aO ´OP d /2d /2xSSS S如图所示的是该平板的俯视图,OO ´是与板面平行的对称平面。
设体密度0ρ>,根据对称性分析知,在对称面两侧等距离处的场强大小相等,方向均垂直于该对称面且背离该面。
过板内任一点P ,并以面OO ´为中心作一厚度2()x d <、左右面积为S 的长方体,长方体6个表面作为高斯面,它所包围的电荷量为(2)xS ρ,根据高斯定理。
)2(ερS x S d E =⋅⎰⎰ϖϖ 前、后、上、下四个面的E ϖ通量为0,而在两个对称面S 上的电场E ϖ的大小相等,因此(2)2x S ES ρε=考虑电场的方向,求得板内场强为ˆxE iρε=v 式中:x 为场点坐标用同样的方法,以Oyz 面为对称面,作一厚度为2()x d >、左右面积为S 的长方体,长方体6个表面作为高斯面,它所包围的电荷量为()Sd ρ,根据高斯定理)(ερSd S d E =⋅⎰⎰ϖϖ 前、后、上、下四个面的E ϖ通量为0,而在两个对称面S 上的电场E ϖ的大小相等,因此()2Sd ES ρε=考虑电场的方向,得ˆ2d E i ρε=±v1.4.8解答:MPaO O ´c b O O ´c T r 1r 2(1)图1.4.8为所挖的空腔,T 点为空腔中任意一点,空腔中电荷分布可看作电荷体密度为ρ的实心均匀带电球在偏心位置处加上一个电荷体密度为ρ-的实心均匀带电球的叠加结果,因此,空腔中任意点T 的场强E ϖ应等于电荷体密度为ρ的均匀带电球在T 点产生场强E ρv与电荷体密度为ρ-的均匀带电球在T 点产生场强E ρ-v的叠加结果。
而E ρv与E ρ-v 均可利用高斯定理求得,即120033r r E E ρρρρεε-==-v v v v式中:1r v为从大球圆心O 指向T 点的矢径;2r v 从小球圆心O '指向T点的矢径。
空腔中任意点T 的场强为1200()33E E E r r c ρρρρεε-=+=-=v v v v v v因T 点为空腔中任意一点,c ϖ为一常矢量,故空腔内为一均匀电场。
(2)M 点为大球外一点,根据叠加原理33220ˆ3()M c M M b a E e r c r ρε⎡⎤=-⎢⎥+⎣⎦v P 点为大球内一点,根据叠加原理,求得320ˆ3()p p c p b E r e r c ρε⎡⎤=-⎢⎥+⎢⎥⎣⎦v 1.4.9解答:rRO E rR rL在均匀带电的无限长圆柱体内作一同轴半径为()r r R <、长为L 的小圆柱体,如图1.4.9(a )所示,小圆柱面包围的电荷量为2q r L ρπ=由高斯定理2ερπL r S d E =⋅⎰⎰ϖϖ根据对称性,电场E ϖ仅有径向分量,因此,圆柱面的上、下底面的E ϖ通量为0,仅有侧面的E ϖ通量,则202r r LE rL ρππε=解得柱体内场强02ˆερr e E E rr ϖϖ==内内在均匀带电的无限长圆体外作一同轴半径为()r r R >、长为L 的小圆柱体(未画出),小圆柱包围的电荷量为2Q R L ρπ=解得柱体外场强r r r erR e E E ˆ2ˆ02ερ==外外ϖ 柱内外的场强的E -r 曲线如图1.4.9(b )所示 1.4.10解答:R 1OE rrLII IIIR 1R 2λ1/2πε01λ1/2πε02R 2I(1) 作半径为12()r R r R <<、长为L 的共轴圆柱面,图1.4.10(a )为位于两个圆柱面间的圆柱面,其表面包围的电荷量为1q L λ=根据对称性,电场E ϖ仅有径向分量,因此,圆柱面的上、下底面的E ϖ通量为0,仅有侧面的E ϖ通量,则在12R r R <<的区域II 内,利用高斯定理有012ελπL rLE IIr=解得区域II 内的场强r r IIr II e r e E E ˆ2ˆ01πελ==ϖ同理,可求得1R r <的区域I 中的场强0=I E ϖ在2R r >的区域III 中的场强r r IIIr III ere E E ˆ2ˆ021πελλ+==ϖ (2) 若21λλ-=,有0ˆ2001===III r II I E e rE E ϖϖϖπελ各区域的场强的E —r 曲线如图1.4.10(b)所示。
1.5.2证明:S 2S 1E 1E 2l(1)在图1.5.2中,以平行电场线为轴线的柱面和面积均为S 的两个垂直电场线面元S 1、S 2形成一闭合的高斯面。
面元S 1和S 2上的场强分别为1E ϖ和2E ϖ,根据高斯定理,得 0)(212211=+-=+-E E S S E S E证得21E E =说明沿着场线方向不同处的场强相等。
(2)在(1)所得的结论基础上,在图1.5.2中作一矩形环路路径,在不同场线上的场强分别为1E ϖ和2E ϖ,根据高斯定理得021=-l E l E证得21E E =说明垂直场线方向不同处的场强相等。
从而证得在无电荷的空间中,凡是电场线都是平行连续(不间断)直线的地方,电场强度的大小处处相等。
1.6.4证明:O R Pr由高斯定理求得距球心r 处的P 点的电场为:03ερrE ϖϖ=,求得离球心r 处的P 点的电势为3022********)3(223333R r R Q r R r dr R r d r R Rrπεερερερ-=⎥⎦⎤⎢⎣⎡-=+⋅⎰⎰∞ϖϖ1.6.5解答:OR 1R 2I IIIII(1)根据电势的定义,III 区的电势为rQ Q r V III 0214)(πε+= 202124)(R Q Q R V III πε+=II 区的电势为⎪⎪⎭⎫ ⎝⎛+=++=⎰⎰∞2210221201414422R Q r Q drr Q Q dr rQ V R R rII πεπεπεI 区的电势为⎪⎪⎭⎫⎝⎛+==22110141)()(R Q R Q R V r V II I πε (2)当12Q Q =-时,()0III E r =,代入(1)中三个区域中的电势的表达式,求得0)(=r V III ,⎪⎪⎭⎫ ⎝⎛-=201114)(R r Q r V II πε,⎪⎪⎭⎫ ⎝⎛-=2101114)(R R Q r V I πε V -r 曲线如图1.6.5(a )所示当2121Q Q R R =-时,代入(1)中三个区域的电势的表达式,求得r R Q R R r V III 101214)()(πε-=,⎪⎪⎭⎫⎝⎛-=101114)(R r Q r V II πε,0)(=r V I V —r 曲线如图所示。