高考物理——法拉第电磁感应定律的推断题综合压轴题专题复习含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理——法拉第电磁感应定律的推断题综合压轴题专题复习含详细答案
一、法拉第电磁感应定律
1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。

求:
(1)线圈中的感应电流的大小和方向;
(2)电阻R两端电压及消耗的功率;
(3)前4s内通过R的电荷量。

【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。

4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。

【解析】
【详解】
(1)0﹣4s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:
由楞次定律知感应电流方向沿逆时针方向。

4﹣6s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:,方向沿顺时针方向。

(2)0﹣4s内,R两端的电压为:
消耗的功率为:
4﹣6s内,R两端的电压为:
消耗的功率为:
故R消耗的总功率为:
(3)前4s内通过R的电荷量为:
2.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。

当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。

重力加速度为g ,求:
(1)匀强电场的电场强度 (2)流过电阻R 的电流
(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd
qR
(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:
qE =mg
解得
mg q
E =
(2)由电场强度与电势差的关系得:
U
E d
=
由欧姆定律得:
U I R
=
解得
mgd
I qR
=
(3)根据法拉第电磁感应定律得到:
E N
t
∆Φ
=∆ B
S t t
∆Φ∆=∆∆ 根据闭合回路的欧姆定律得到:()E I R r =+
解得:
()
B mgd R r t NqRS
∆+=∆
3.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:
(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。

【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】
(1)金属棒在AB 段匀速运动,由题中图象得:
v =
x
t ∆∆=7 m/s 根据欧姆定律可得:
I =
BLv
r R
+ 根据平衡条件有
mg =BIL
解得:
B =0.1T
(2)根据电量公式:
q =I Δt
根据欧姆定律可得:
I =
()R r t
∆Φ
+∆ 磁通量变化量
ΔΦ=
S t
∆∆B 解得:
q =0.67 C
(3)根据能量守恒有:
Q =mgx -
12
mv 2 解得:
Q =0.455 J
所以
Q R =
R
r R
+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J
4.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为
0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下
滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取2
10/(m s 忽略ab 棒运动过程中对原磁场的影响).
()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;
()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.
【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J 【解析】 【详解】
()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。

()2当金属棒匀速下落时,由共点力平衡条件得:mg BIL =
金属棒产生的感应电动势为:E BLv = 则电路中的电流为:E
I R r
=+ 由图象可得:11.27.0/7m /s 2.1 1.5
x v m s t -=
==- 代入数据解得:0.1T B =
()3在0 1.5s ~,以金属棒ab 为研究对象,根据动能定理得:
21
2
mgh Q mv =+
解得:0.455J Q =
则电阻R 上产生的热量为:0.26J R R
Q Q R r
=
=+
5.两间距为L=1m 的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、 磁感应强度大小B=2T 的匀强磁场中.金属棒P 垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m 0未知),将重物由静止释放,经过一 段时间,将另一根完全相同的金属棒Q 垂直放在导轨上,重物立即向下做匀速直线运动,金 属棒Q 恰好处于静止状态.己知两金属棒的质量均为m=lkg 、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度g=l0m/s 2,sin 37°=0.6,cos37°=0.8.求:
(1)金属棒Q 放上后,金属棒户的速度v 的大小;
(2)金属棒Q 放上导轨之前,重物下降的加速度a 的大小(结果保留两位有效数字); (3)若平行直导轨足够长,金属棒Q 放上后,重物每下降h=lm 时,Q 棒产生的焦耳热.
【答案】(1)3m/s v = (2)22.7m/s a = (3)3J 【解析】 【详解】
(1)金属棒Q 恰好处于静止时
sin mg BIL θ=
由电路分析可知E BLv = ,2E I R
= , 代入数据得,3m/s v =
(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得
00sin ()m g mg m m a θ-=+
代入数据得,22.7m/s a =
(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知
Q 棒产生的焦耳热为3J 2
Q Q =
=总
6.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求
(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.
【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220
B l t m
【解析】 【分析】 【详解】
(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②
当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫
=-
⎪⎝⎭
④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E
R
⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦
联立④⑤⑥⑦式得: R =220
B l t m
7.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。

匀强磁场与导轨平面垂直。

阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触。

t =0时,将开关S 由1掷到2。

用q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。

请定性画出以上各物理量随时间变化的图象(q-t 、i-t 、v-t 、a-t 图象)。

【答案】图见解析.
【解析】
【详解】
开关S由1掷到2,电容器放电后会在电路中产生电流。

导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动。

导体棒切割磁感线,速度增大,感应电动势E=Blv,即增大,则实际电流减小,安培力F=BIL,即减小,加速度a=F/m,即减小。

因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速)。

由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的,故a-t图像如图:
由于电容器放电产生电流使得导体棒受安培力运动,而导体棒运动产生感应电动势会给电容器充电。

当充电和放电达到一种平衡时,导体棒做匀速运动。

则v-t图像如图:

当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为0的数值,即电容器的电量应稳定在某个不为0的数值(不会减少到0),故q-t图像如图:
这时电容器的电压等于棒的电动势数值,棒中无电流。

I-t图像如图:
8.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L=0.5 m,上端接有阻值R=0.3 Ω的电阻.匀强磁场的磁感应强度大小B=0.4
T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求:
(1)此时通过电阻R 上的电流; (2)这一过程通过电阻R 上的电荷量q ; (3)此时作用于导体棒上的外力F 的大小. 【答案】(1)3A (2)4.5C (3)2N 【解析】 【分析】 【详解】
(1)根据热功率:P =I 2R , 解得:3A P
I R
=
= (2)回路中产生的平均感应电动势:E n t
φ∆=∆ 由欧姆定律得:+E I R r
=
得电流和电量之间关系式:q I t n R r
φ
∆=⋅∆=+ 代入数据得: 4.5C BLd
q R r
=
=+ (3)此时感应电流I =3A ,由E BLv
I R r R r
==++ 解得此时速度:()6m/s I R r v BL
+=
=
由匀变速运动公式:v 2=2ax ,
解得:2
22m/s 2v a d
==
对导体棒由牛顿第二定律得:F -F 安-mgsin30°=ma , 即:F -BIL -mgsin30°=ma , 解得:F =ma +BIL +mgsin30°=2 N 【点睛】
本题考查电功率,电量表达式及电磁感应电动势表达式结合牛顿第二定律求解即可,难度
不大,本题中加速度的求解是重点. 【考点】
动生电动势、全电路的欧姆定律、牛顿第二定律.
9.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。

在M 和P 之间接有阻值为R 的定值电阻,导体杆ab 质量为m 、电阻为r ,并与导轨接触良好。

整个装置处于方向竖直向上磁感应强度为B 的匀强磁场中。

现给ab 杆一个初速度v 0,使杆向右运动。

(1)当ab 杆刚好具有初速度v 0时,求此时ab 杆两端的电压U ;a 、b 两端哪端电势高; (2)请在图2中定性画出通过电阻R 的电流i 随时间t 变化规律的图象;
(3)若将M 和P 之间的电阻R 改为接一电容为C 的电容器,如图3所示。

同样给ab 杆一个初速度v 0,使杆向右运动。

请分析说明ab 杆的运动情况。

【答案】(1)0Bl R
U R r
=
+v ;a 端电势高(2) (3)当ab 杆以初速度
v 0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab 杆,杆
在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。

当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。

【解析】 【分析】
(1)求解产生感应电动势大小,根据全电路欧姆定律求解电流强度和电压,根据右手定则判断电势高低;
(2)分析杆的受力情况和运动情况,确定感应电流变化情况,由此画出图象;
(3)杆在向右运动过程中速度逐渐减小、由此分析安培力的变化,确定运动情况;根据动量定理求解最后的速度大小。

【详解】
(1)ab 杆切割磁感线产生感应电动势: E = Bl v 0 根据全电路欧姆定律:E
I R r
=
+ ab 杆两端电压即路端电压:U IR = 解得0Bl R
U R r
=
+v ;a 端电势高。

(2)杆在向右运动过程中速度逐渐减小、感应电动势逐渐减小,根据闭合电路的欧姆定律可得感应电流逐渐减小,通过电阻R的电流i随时间变化规律的图象如图所示:
(3)当ab杆以初速度v0开始切割磁感线时,产生感应电动势,电路开始给电容器充电,有电流通过ab杆,杆在安培力的作用下做减速运动,随着速度减小,安培力减小,加速度也减小,杆做加速度减小的减速运动。

当电容器两端电压与感应电动势相等时,充电结束,杆以恒定的速度做匀速直线运动。

【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键。

10.如图1所示,MN和PQ为竖直放置的两根足够长的光滑平行金属导轨,两导轨间距为l,电阻均可忽略不计.在M和P之间接有阻值为R的定值电阻,导体杆ab质量为m、电阻不计,并与导轨接触良好.整个装置处于磁感应强度为B、方向垂直纸面向里的匀强磁场中.将导体杆ab由静止释放.求:
(1)a. 试定性说明ab杆的运动;b. ab杆下落稳定后,电阻R上的热功率.
(2)若将M和P之间的电阻R改为接一电动势为E,内阻为r的直流电源,发现杆ab由静止向上运动(始终未到达MP处),如图2所示.
a. 试定性说明ab杆的运动:
b. 杆稳定运动后,电源的输出功率.
(3)若将M和P之间的电阻R改为接一电容为C的电容器,如图3所示.ab杆由静止释放.请推导证明杆做匀加速直线运动,并求出杆的加速度.
【答案】(1)加速度逐渐减小的变加速直线运动;P=
22
22
m g R
B l
(2)加速度逐渐减小的
加速;P=mgE
Bl
-
22
22
m g r
B l
(3)a=
22
mg
m B l C
【解析】
(1)a 、对ab 杆下滑过程,由牛顿第二定律22B l v
mg ma R
-=,可知随着速度的增大,加速
度逐渐减小,当22B l v
mg R
=时,加速度为零,杆做匀速直线运动;故杆先做加速度逐渐
减小的加速,再做匀速直线运动.
b 、ab 杆稳定下滑时,做匀速直线运动:22B l v
mg R
=,可得22mgR v B l =
故22222222
B l v mgR m g R
P v mg R B l B l =⋅=⋅=
(2)a 、对ab 杆上滑过程,由牛顿第二定律:BIL mg ma -=,上滑的速度增大,感应电流与电源提供的电流方向相反,总电流逐渐减小,故加速度逐渐减小;同样加速度为零时杆向上匀速直线运动.
B 、杆向上匀速时,BIl mg = mg I Bl
=
电源的输出功率2P EI I r =- 解得:2
()Emg mg P r Bl Bl
=
- (3)设杆下滑经t ∆时间,由牛顿第二定律:mg BIl ma -=,
电容器的充电电流Q
I t
∆=∆ 电容器增加的电量为:Q C U CBL v ∆=∆=∆

v
a t
∆=∆ 联立解得:mg B CBla l ma -⋅⋅=
可知杆下滑过程给电容器充电的过程加速度恒定不变,故为匀加速直线运动. 解得:22
mg
a m B l C
=
+ 【点睛】对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键.
11.如图所示,在水平地面MN 上方空间存在一垂直纸面向里、磁感应强度B =1T 的有界匀强磁场区域,上边界EF 距离地面的高度为H .正方形金属线框abcd 的质量m =0.02kg 、边长L = 0.1m (L <H ),总电阻R = 0.2Ω,开始时线框在磁场上方,ab 边距离EF 高度为h ,然后由静止开始自由下落,abcd 始终在竖直平面内且ab 保持水平.求线框从开始运动到ab 边刚要落地的过程中(g 取10m/s 2)
(1)若线框从h =0.45m 处开始下落,求线框ab 边刚进入磁场时的加速度; (2)若要使线框匀速进入磁场,求h 的大小;
(3)求在(2)的情况下,线框产生的焦耳热Q 和通过线框截面的电量q . 【答案】(1)22.5m/s a = (2)0.8m h = (3) 0.02J Q =,0.05C q = 【解析】 【分析】 【详解】
(1)当线圈ab 边进入磁场时,由自由落体规律:123m/s v gh == 棒切割磁感线产生动生电动势:1E BLv =
通电导体棒受安培力0.15N BLE
F BIL R
=== 由牛顿第二定律:mg F ma -=
解得:22.5m/s a =
(2)匀速进磁场,由平衡知识:mg F = 由2v gh BLv
I R
=
,代入可解得:0.8m h = (3)线圈cd 边进入磁场前线圈做匀速运动,由能量守恒可知重力势能变成焦耳热
0.02J Q mgL ==
通过线框的电量2
0.05C BL q It R R
φ∆====
【点睛】
当线框能匀速进入磁场,则安培力与重力相等;而当线框加速进入磁场时,速度在增加,安培力也在变大,导致加速度减小,可能进入磁场时已匀速,也有可能仍在加速,这是由进入磁场的距离决定的.
12.如图甲所示,光滑且足够长的平行金属导轨MN 、PQ 固定在同一水平面上,两导轨间距030m .L =.导轨电阻忽略不计,其间连接有固定电阻0.40R =Ω.导轨上停放一质量0.10kg m =、电阻020Ω.r =的金属杆ab ,整个装置处于磁感应强度0.50T B =的匀强磁场中,磁场方向竖直向下.用一外力F 沿水平方向拉金属杆ab ,使之由静止开始做匀加速运动,电压传感器可将R 两端的电压U 即时采集并输入电脑,获得电压U 随时
间t 变化的关系如图乙所示.
(1)计算加速度的大小; (2)求第2s 末外力F 的瞬时功率;
(3)如果水平外力从静止开始拉动杆2s 所做的功035J .W =,求金属杆上产生的焦耳热.
【答案】(1)21m/s (2)0.35W (3)25.010J -⨯ 【解析】 【详解】
(1)根据,,R R
E Blv v at U E R r
===+ 结合图乙所示数据,解得:a =1m/s 2.
(2)由图象可知在2s 末,电阻R 两端电压为0.2V 通过金属杆的电流R
U I R
=
金属杆受安培力F BIL =安
设2s 末外力大小为F 2,由牛顿第二定律,2安F F ma -= , 故2s 末时F 的瞬时功率22035W .P F v ==
(3)设回路产生的焦耳热为Q ,由能量守恒定律,2
2
12
W Q mv =+ 电阻R 与金属杆的电阻r 串联,产生焦耳热与电阻成正比 金属杆上产生的焦耳热r Qr
Q R r
=
+ 解得:2r 5010J .Q -=⨯ .
13.如图所示,两光滑轨道相距L =0.5m ,固定在倾角为37θ=︒的斜面上,轨道下端接入阻值为R =1.6Ω的定值电阻。

整个轨道处在竖直向上的匀强磁场中,磁感应强度B =1T 。

一质量m =0.1kg 的金属棒MN 从轨道顶端由静止释放,沿轨道下滑,金属棒沿轨道下滑x =3.6m 时恰好达到最大速度(轨道足够长),在该过程中,金属棒始终能保持与轨道良好接触。

(轨道及金属棒的电阻不计,重力加速度g 取10m/s 2, sin37° = 0.6,cos37°= 0.8)求:
(1)金属棒下滑过程中,M 、N 哪端电势高; (2)求金属棒下滑过程中的最大速度v ; (3)求该过程回路中产生的焦耳热Q 。

【答案】(1)M 端电势较高 (2)6m/s (3)0.36J 【解析】 【详解】
(1)根据右手定则,可判知M 端电势较高
(2)设金属棒的最大速度为v ,根据法拉第电磁感应定律,回路中的感应电动势
E =BLv cos θ
根据闭合电路欧姆定律,回路中的电流强度
I =E /R
金属棒所受安培力F 为
F =BIL
对金属棒,根据平衡条件列方程
mg sin θ=F cos θ
联立以上方程解得:
v =6m/s
(3)根据能量守恒
2
1sin 2
mgx mv Q θ=
+ 代入数据解得:
0.36J Q =
【点睛】
本题是力学和电磁学的综合题,综合运用了电磁感应定律、能量守恒定律以及共点力平衡问题,要注意此题中棒不是垂直切割磁感线,产生的感应电动势不是E =BLv .应根据有效
切割速度求解。

14.两根足够长的平行光滑金属导轨MN 、PQ 相距为d ,导轨平面与水平面的夹角θ=30°,导轨电阻不计.磁感应强度为B 的匀强磁场垂直于导轨平面向上,长为d 的金属棒ab 垂直于MN 、PQ 放置于导轨上,且始终与导轨接触良好,金属棒的质量为m 、电阻为R .两金属导轨的上端连接一个阻值也为R 的定值电阻,重力加速度为g .现闭合开关S ,给金属棒施加一个方向垂直于棒且平行于导轨平面向上、大小为mg 的恒力F ,使金属棒由静止开始运动.求:
(1)金属棒能达到的最大速度v m ; (2)金属棒达到最大速度一半时的加速度;
(3)若金属棒上滑距离为L 时速度恰达到最大,则金属棒由静止开始上滑4L 的过程中,金属棒上产生的电热Q 0.
【答案】(1) 22mgR B d ;(2)14g ;(3) 322
44
4m g R mgL B d -
【解析】 【详解】
(1)设最大速度为m v ,此时加速度为0,平行斜面方向有:F mgsin BId θ=+ 据题知:2E
I R
=
m E Bdv =
已知F mg =,联解得:22
m mgR
v B d = (2)当金属棒的速度2m v v =
时,则:2
I I '= 由牛顿第二定律有:sin F BdI mg ma θ'--= 解得:1
4
a g =
(3)设整个电路放出的热量为Q ,由能量守恒定律有:2
14sin 42
m F L Q mg L mv θ⋅=+⋅+ 又:r R =,02
Q
Q =
所以金属棒上产生的电热:322
044
4m g R Q mgL B d
=-
15.如图甲所示,两竖直放置的平行金属导轨,导轨间距L =0.50m ,导轨下端接一电阻R =5Ω的小灯泡,导轨间存在一宽h =0.40m 的匀强磁场区域,磁感应强度B 按图乙所示规律变化,t =0时刻一金属杆自磁场区域上方以某一初速度沿导轨下落,t 1时刻金属杆恰好进入磁场,直至穿越磁场区域,整改过程中小灯泡的亮度始终保持不变.已知金属杆的质量m =0.10kg ,金属杆下落过程中始终保持水平且与导轨良好接触,不计金属杆及导轨的电阻,g 取10m/s 2.求:
(1)金属杆进入磁场时的速度v ; (2)图乙中t 1的数值;
(3)整个过程中小灯泡产生的总焦耳热Q .
【答案】(1)5m/s (2)0.04s (3)0.6J 【解析】
解:(1)金属杆进入磁场时受力平衡mg BIL =
E I R
=
E BLv =
整理得22
5m /s mgR
v B L
=
= (2)根据法拉第电磁感应定律1
B
E Lh t ∆=
⋅ 0
1
B B BLv Lh t -=
⋅ ()01
00.04s
B B h t B v
-==
(3)整个过程中小灯泡产生的总焦耳热()2
12E Q t t R =+
20.08s h
t v
=
= 解得:0.6J Q =。

相关文档
最新文档