高中数学必修一同步练习题库:函数模型及其应用(简答题:容易)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数模型及其应用(简答题:容易)
1、(本小题满分13分)我国东部某风景区内住着一个少数民族部落,该部落拟投资万元用于修复和加强民俗文化基础设施.据测算,修复好部落民俗文化基础设施后,任何一个月(每月均按天计
算)中第天的游客人数近似满足(单位:千人),第天游客人均消费金额近似满足(单位:元).
(1)求该部落第天的日旅游收入(单位:千元,,)的表达式;
(2)若以一个月中最低日旅游收入金额的%作为每一天应回收的投资成本,试问该部落至少经过几年就可以收回全部投资成本.
2、中国移动通信公司早前推出“全球通”移动电话资费“个性化套餐”,具体方案如下:
(I)写出“套餐”中方案的月话费(元)与月通话量(分钟)(月通话量是指一个月内每次通话用时之和)的函数关系式;
(II)学生甲选用方案,学生乙选用方案,某月甲乙两人的电话资费相同,通话量也相同,求该月学生甲的电话资费;
(III)某用户的月通话量平均为320分钟,则在表中所列出的七种方案中,选择哪种方案更合算,说明理由.
3、证券交易所规定,股票交易价格每日的涨跌幅均不得超过前一日收盘价的10%,当日涨幅达到10%称为涨停,跌幅达到10%称为跌停。
(1)、某投资人购买的股票先经历了一个涨停,又经历了一个跌停,分析该投资人赢亏情况;
(2)、如果他希望自己的股票在资金上翻番,至少要等多少个交易日以后?(lg1.1=0.0414,lg2=0.3010)4、某种出口产品的关税税率t.市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系
式:,其中k.b均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.
(1)试确定k.b的值;
(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:.P = q时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.
5、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
有时可用函数
描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.
(1)证明:当时,掌握程度的增加量总是下降;
(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为,,
.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
6、(本小题满分12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分按每度0.5元计算.
(1)设月用电x度时,应交电费y元.写出y关于x的函数关系式;
(2)小明家第一季度交纳电费情况如下:
则小明家第一季度共用电多少度?
7、(本小题满分12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分按每度0.5元计算.
(1)设月用电x度时,应交电费y元.写出y关于x的函数关系式;
(2)小明家第一季度交纳电费情况如下:
则小明家第一季度共用电多少度?
8、某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3 600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
9、某品牌茶壶的原售价为80元一个,今有甲、乙两家茶具店销售这种茶壶,甲店用如下的方法促销:如果只购买一只茶壶,其价格为78元/个;如果一次购买两个茶壶,其价格为76元/个;…;如果一次购买的茶壶数每增加一个,那么茶壶的价格减少2元/个,但茶壶的售价不得低于44元/个。
乙店一律按原价的75%销售。
现某茶社要购买这种茶壶个,如果全部在甲店购买,则所需金额为元;如果全部在乙店购买,则所需金额为元。
(1)分别求出、与之间的函数关系式。
(2)该茶社去哪家茶具店购买茶壶花费较少?
10、(本小题满分12分)某旅行社设计了一个组织旅游团包飞机去广州旅游的方案,其中旅行杜的包机费用为元,旅游团中最多能有人,并且旅游团中的人数 (单位:个)与每个人交给旅行社的费
用(单位:元)的关系如下:.
(1)将旅行社的利润(单位:元)表示成旅游团中的人数的函数(注:利润=收取的费用一包机费用);
(2)当旅游团有多少人时,旅行社的利润最大?并求出最大利润.
11、有甲、乙两种商品,经销这两种商品所能获得的利润分别是万元和万元,它们与投入资金万
元的关系为:,今有3万元资金投入经营这两种商品.问:对乙种商品的资金为多少
万元时,能获得最大利润?最大利润为多少?
12、某服装厂生产一种服装,每件服装的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过500件.
(1)设一次订购量为件,服装的实际出厂单价为元,写出函数的表达式;
(2)当销售商一次订购多少件服装时,该服装厂获得的利润最大?并求出最大值.
13、某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:
,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.
(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
14、某工厂每天生产某种产品最多不超过40件, 并且在生产过程中产品的正品率p与每天生产的产品件数
x(x∈N*)之间的关系式为.若每生产一件正品盈利4 000元, 每生产一件次品亏损2 000元. (注:正品率=产品的正品件数÷产品总件数×100%)
(1)将日利润y(元)表示成产量x(件)的函数;
(2)求该厂日产量为多少件时, 日利润最大, 并求出日利润的最大值.
15、如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满
足甲水果生长的需要,该光源照射范围是,点在直径上,且.
(1)若米,求的长;
(2)设, 求该空地产生最大经济价值时种植甲种水果的面积.
16、已知二次函数y=f(x),当x=2时,函数f(x)取最小值﹣1,且f(1)+f(4)=3.
(1)求f(x)的解析式;
(2)若g(x)=f(x)﹣kx在区间(1,4)上无最小值,求实数k的取值范围.
17、某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间
的函数关系式可以近视地表示为,已知此生产线的年产量最大为210吨.
(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;
(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
18、某厂生产产品件的总成本(万元),已知产品单价(万元)与产品件数满足:,生产件这样的产品单价为万元.
(1)设产量为件时,总利润为(万元),求的解析式;
(2)产量定为多少时总利润(万元)最大?并求最大值.
19、将单价为8元的商品按10元一个销售时,每天可卖100个,若这个商品单价每上涨1元,则销售量就减少10个,为获取最大利润,此商品单价应定为多少元?
20、某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司该如何合理计划当天派用两类卡车的车辆数,可得最大利润,最大利润是多少元?
21、某厂生产A产品的年固定成本为250万元,每生产千件需另投入成本万元.当年产量不足80
千件时(万元);当年产量不小于80千件时(万元),每千件产品的售价为万元,该厂生产的产品能全部售完.
(Ⅰ)写出年利润万元关于(千件)的函数关系;
(Ⅱ)当年产量为多少千件时该厂当年的利润最大?
22、某厂生产A产品的年固定成本为250万元,每生产千件需另投入成本万元.当年产量不足80千
件时(万元);当年产量不小于80千件时(万元),每千件产品的售价为万元,该厂生产的产品能全部售完.
(Ⅰ)写出年利润万元关于(千件)的函数关系;
(Ⅱ)当年产量为多少千件时该厂当年的利润最大?
23、某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,
调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?
24、(2015秋•衡阳县期末)某市出租车的计价标准是:4km以内(含4km)10元,超过4km且不超过18km的部分1.2元/km,超过18km的部分1.8元/km,不计等待时间的费用.
(1)如果某人乘车行驶了10km,他要付多少车费?
(2)试建立车费y(元)与行车里程x(km)的函数关系式.
25、(2015秋•赣州期末)为振兴苏区发展,赣州市2016年计划投入专项资金加强红色文化基础设施改造.据调查,改造后预计该市在一个月内(以30天记),红色文化旅游人数f(x)(万人)与日期x
(日)的函数关系近似满足:,人均消费g(x)(元)与日期x(日)的函数关系近似满足:g(x)=60﹣|x﹣20|.
(1)求该市旅游日收入p(x)(万元)与日期x(1≤x≤30,x∈N*)的函数关系式;
(2)当x取何值时,该市旅游日收入p(x)最大.
26、某建筑工地要建造一批简易房,供群众临时居住,房形为长方体,高2.5米,前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即钢板的高均为2.5米,用长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元,房顶用其他材料建造,每平方米材料费为200元,每套房材料费控制在32000元以内.
(1)设房前面墙的长为,两侧墙的长为,一套简易房所用材料费为,试用表示.
(2)一套简易房面积的最大值是多少?当最大时,前面墙的长度是多少?
27、(本小题满分12分)已知二次函数f(x)满足:函数f(x+1)为偶函数,f(x)的最小值为-4,函数f(x)的图象与x轴交点为A、B,且AB=4,求二次函数的解析式.
28、现要设计一个如图所示的金属支架(图中实线所示),设计要求是:支架总高度AH为6米,底座BCDEF是以B为顶点,以CDEF为底面的正四棱锥,C,D,E,F在以半径为1米的圆上,支杆AB⊥底面CDEF.市场上,底座单价为每米10元,支杆AB单价为每米20元.设侧棱BC与底面所成的角为θ.
(1)写出的取值范围;
(2)当θ取何值时,支架总费用y(元)最少?
29、(本题满分12分)某商场的销售部经过市场调查发现,该商场的某种商品每日的销售量(单位:
千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为元/千克时,每日可售出该商品千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成本为元/千克,试确定销售价格的值,使该商场每日销售该商品所获得的利润最大.
30、为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算:电费每月用电不超过100度时,按每度0.57元计算;每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.
(Ⅰ)设月用电度时,应交电费元,写出关于的函数关系式;
(Ⅱ)小明家第一季度缴纳电费情况如下:
问小明家第一季度共用电多少度?
31、(本小题满分12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分按每度0.5元计算.
(1)设月用电x度时,应交电费y元.写出y关于x的函数关系式;
(2)小明家第一季度交纳电费情况如下:
则小明家第一季度共用电多少度?
32、某机床厂2011年年初用98万元购进一台数控机床,并立即投入生产使用.计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元;该机床使用后,每年的总收入为50万元.
设使用年后数控机床的盈利额为万元.
(Ⅰ)写出与之间的函数关系式;
(Ⅱ)使用若干年后,对机床的处理方案有两种:
方案一:当年平均盈利额达到最大值时,以万元价格处理该机床;
方案二:当盈利额达到最大值时,以万元价格处理该机床;
请你研究一下哪种方案处理较为合理?并说明理由.
33、(本题满分12分)如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为,四周空白的宽度为,两栏之间的中缝空白的宽
度为.怎样确定广告牌的高与宽的尺寸(单位:),能使矩形广告牌面积最小?
34、(本小题满分14分)某旅游景点预计2014年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似满足,已知第x月的人均消费额q(x)
(单位:元)与x的近似关系是 q(x)=
(1)写出2014年第x月的旅游人数f(x)(单位:万人)与x的函数关系式;
(2)试问2014年哪个月的旅游消费总额最大,最大旅游消费额为多少万元?
35、(本小题满分15分)为合理用电缓解电力紧张,某市将试行“峰谷电价”计费方法,在高峰用电时段,即居民户每日8时至22时,电价每千瓦时为0.56元,其余时段电价每千瓦时为0.28元.而目前没有实行“峰谷电价”的居民用户电价为每千瓦时为0.53元.若总用电量为千瓦时,设高峰时段用电量为千瓦时.
(1)写出实行峰谷电价的电费及现行电价的电费的函数解析式及电费总差额的解析式;
(2)对于用电量按时均等的电器(在全天任何相同长的时间内,用电量相同),采用峰谷电价的计费方法后是否能省钱?说明你的理由.
36、甲、乙两城相距100,在两城之间距甲城处的丙地建一核电站给甲、乙两城供电,为保证城市安全,核电站距两地的距离不少于10.已知各城供电费用(元)与供电距离()的平方和供电量(亿千瓦时)之积都成正比,比例系数均是=0.25,若甲城供电量为20亿千瓦时/月,乙城供电量为10亿千瓦时/月,
(1)把月供电总费用(元)表示成()的函数,并求其定义域;
(2)求核电站建在距甲城多远处,才能使月供电总费用最小.
37、提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)。
38、统计表明:某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/每小时)
的函数解析式可以表示为,已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大速度行驶时,从甲地到乙地耗油最少?最少为多少升?
39、已知函数
(Ⅰ)若在上为增函数,求实数的取值范围;
(Ⅱ)当时,方程有实根,求实数的最大值.
40、如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,
,,现要将此铁皮剪出一个等腰三角形,其底边.
(1)设,求三角形铁皮的面积;
(2)求剪下的铁皮三角形的面积的最大值.
41、如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点
在上,点在上,设矩形的面积为,
(Ⅰ)按下列要求求出函数关系式:
①设,将表示成的函数关系式;
②设,将表示成的函数关系式;
(Ⅱ)请你选用(1)中的一个函数关系式,求出的最大值.
42、提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
43、定义域为的函数,其导函数为.若对,均有,则称函数
为上的梦想函数.
(Ⅰ)已知函数,试判断是否为其定义域上的梦想函数,并说明理由;
(Ⅱ)已知函数(,)为其定义域上的梦想函数,求的取值范围;
(Ⅲ)已知函数(,)为其定义域上的梦想函数,求的最大整数值.
44、某投资公司年初用万元购置了一套生产设备并即刻生产产品,已知与生产产品相关的各种配套费用第一年需要支出万元,第二年需要支出万元,第三年需要支出万元,……,每年都比上一年增加支出万元,而每年的生产收入都为万元.假设这套生产设备投入使用年,,生产成本等于生产设备购置费与这年生产产品相关的各种配套费用的和,生产总利润等于这年的生产收入与生产成本的差. 请你根据这些信息解决下列问题:
(Ⅰ)若,求的值;
(Ⅱ)若干年后,该投资公司对这套生产设备有两个处理方案:
方案一:当年平均生产利润取得最大值时,以万元的价格出售该套设备;
方案二:当生产总利润取得最大值时,以万元的价格出售该套设备.你认为哪个方案更合算?请说明理由.
45、某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情
况下,第年(为正整数,2012年为第一年)的利润为万元.设从2012年起的前年,该厂不开发新项目的累计利润为万元,开发新项目的累计利润为万元(须扣除开发所投入资金).(1)求,的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.
46、某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中逐渐溶化,水中的碱浓度与时
间(小时)的关系可近似地表示为:,只有当污染河道水中碱的浓度不
低于时,才能对污染产生有效的抑制作用.
(Ⅰ) 如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(Ⅱ) 第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单位的固体碱,设第
二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)
47、某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。
当每辆车的月租金每增加50元时,未租出的车将会增加一辆。
租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
48、某村计划建造一个室内面积为800的矩形蔬菜温室。
在温室内,沿左.右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3 宽的空地。
当矩形温室的边长各为多少时?蔬菜的种植面积最大。
最
大种植面积是多少?
49、某人2002年底花100万元买了一套住房,其中首付30万元,70万元采用商业贷款.贷款的月利率为5‰,按复利计算,每月等额还贷一次,10年还清,并从贷款后的次月开始还贷.
(1)这个人每月应还贷多少元?
(2)为了抑制高房价,国家出台“国五条”,要求卖房时按照差额的20%缴税.如果这个人现在将住房150万元卖出,并且差额税由卖房人承担,问:卖房人将获利约多少元?(参考数据:(1+0.005)120≈1.8)
50、作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)
(1)试将表示为的函数;
(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.
51、某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x (单位:元/千
克)满足关系式y=+10(x-6)2,(其中3<x<6,为常数,)已知销售价格为5元/千克时,每日可售出该商品11千克。
(I)求的值;
(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。
52、如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD的长为x米.
(1)用x表示墙AB的长;
(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元,请将墙壁的总造价y (元)表示为x(米)的函数;
(3)当x为何值时,墙壁的总造价最低?
53、某商场准备在五一劳动节期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.
(Ⅰ)试求选出的3种商品中至少有一种日用商品的概率;
(Ⅱ)商场对选出的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高90元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖与否是等可能的,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?。