高中数学复习资料

合集下载

高中数学复习讲义

高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。

一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。

我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。

掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。

1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。

我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。

1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。

我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。

1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。

向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。

我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。

1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。

高中数学知识点总复习资料

高中数学知识点总复习资料
9.求函数的定义域有哪些常见类型?
10.如何求复合函数的定义域?
义域是_____________。
11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
12.反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
13.反函数的性质有哪些?
③计算大小(解直角三角形,或用余弦定理)。
[练习]
(1)如图,OA为α的斜线OB为其在α射影,OC为α过O点任一直线。
(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。
(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第
表示)
52.你对随机事件之间的关系熟悉吗?
的和(并)。
(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。
(6)对立事件(互逆事件):
(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
14.如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?
∴……)
15.如何利用导数判断函数的单调性?
值是()
0B.1C. 2D. 3
∴a的最大值为3)
16.函数f(x)具有奇偶性的必要(非充分)条件是什么?
46.你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法

高中数学复习资料

高中数学复习资料

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集. ④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩ U A =φ A ∪ U A =U U U =φ U φ=U U U ( U A )=A 反演律: U (A ∩B)= ( U A )∪( U B ) U (A ∪B)= ( U A )∩( U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论. 0>∆ 0=∆ 0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法(1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高三数学知识点教辅推荐

高三数学知识点教辅推荐

高三数学知识点教辅推荐数学是高中阶段的一门重要学科,对于高三学生来说尤为关键。

在备战高考的道路上,选择合适的数学教辅材料是非常重要的。

本文将向大家推荐几款适合高三学生使用的数学知识点教辅,希望对大家提高数学成绩和备战高考有所帮助。

1.《高中数学必修一》- 北师大版这是一本专门针对高中一年级学生编写的数学教辅,内容覆盖了必修一的所有知识点。

书中每个知识点都有详细的讲解和例题练习,帮助学生理解并巩固基础概念。

此外,书中还含有一些拓展思维和应用题,能够培养学生的数学思维和解决问题的能力。

2.《高中数学必修二》- 人民教育出版社版这本教辅是针对高中二年级学生编写的,同样覆盖了必修二的所有知识点。

与前一本教辅相比,该书的难度适中,引导学生从基础知识向更高层次的应用和推理进行延伸。

此外,书中的习题种类较多,涵盖了各个考点,有助于学生巩固所学知识。

3.《高中数学必修三》- 人民教育出版社版这本教辅适用于高中三年级学生,是必修三知识点的权威指导书。

该书将数学知识点分为不同章节,每个章节都有详细的讲解和大量的训练题,帮助学生全面掌握所学知识。

此外,书中还提供了一些高考真题和模拟试题,帮助学生熟悉考试形式和提高应试能力。

4.《高中数学解题技巧与方法》- 北京教育出版社版这本教辅主要介绍了高中数学中常见的解题技巧和方法,适合用来提高学生的解题能力。

书中通过一些典型例题的解题过程,详细讲解了一些重要的解题思路和技巧,如代入法、逆向思维等。

学生可以通过学习这些技巧,提高解题的效率和准确性。

5.《高考数学一轮复习资料》- 外语教学与研究出版社版这本资料是针对高考数学复习而编写的,涵盖了高中数学的所有知识点。

资料中提供了各个知识点的详细概念、考点分析和解题思路,帮助学生全面回顾所学知识。

此外,资料还包含了大量的典型例题和模拟试题,供学生进行复习和实践。

此外,书中还提供了一些高考数学应试技巧和注意事项,对于备战高考非常有帮助。

高中数学考试复习资料归纳

高中数学考试复习资料归纳

高中数学考试复习资料归纳高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效。

下面是小编为大家整理的关于高中数学考试复习资料,希望对您有所帮助!高中复习资料1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn二.【命题走向】的直观性,注意运用Venn预测2010题的表达之中,相对独立。

具体题型估计为:(1)题型是1个选择题或1(2三.【要点精讲】1(1a的元素,记作a∈A;若b不是集合A的元素,记作b∉A;(2确定性:设x是某一个具体对象,则或者是A的元素,或者不是A指属于这个集合的互不相同的个体(对象),因此,无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N_或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。

2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作A⊆B(或A⊂B);集合相等:构成两个集合的元素完全一样。

高中数学必修2复习资料

高中数学必修2复习资料

必修2数学复习资料第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1、 三视图: 正视图:从前往后; 侧视图:从左往右; 俯视图:从上往下。

2、 画三视图的原则: 长对齐、高对齐、宽相等3、直观图:斜二测画法4、斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1、棱柱、棱锥的表面积: 各个面面积之和2、圆柱的表面积3、圆锥的表面积2r rl S ππ+=4、圆台的表面积22R Rl r rl S ππππ+++=5、球的表面积24R S π=(二)空间几何体的体积 1、柱体的体积 h S V ⨯=底2、锥体的体积 h S V ⨯=底313、台体的体积h S S S S V ⨯++=)31下下上上(4、球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11、平面含义:平面是无限延展的2、平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母γβα、、等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3、三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为ααα⊂⇒⎪⎪⎭⎪⎪⎬⎫∈∈∈∈L L B L A B A 公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,222r rl S ππ+= D CBAαC · B· A·LA· α使.,,ααα∈∈∈C B A公理2作用:确定一个平面的依据。

高中数学必考知识点复习梳理

高中数学必考知识点复习梳理

高中数学必考知识点复习梳理高中数学必考知识点复习梳理1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。

组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。

元素常用小写字母a、b、c、…来表示。

集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a∉A。

3、集合中元素的特性(1)确定性:设A是一个给定的集合,x是某一具体对象,则x 或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

例如A={0,1,3,4},可知0∈A,6ÎA。

(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

4、集合的分类集合科根据他含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。

如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。

特别的,我们把不含有任何元素的集合叫做空集,记错F,如{xÎR|+1=0}。

5、特定的集合的表示为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

(2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。

(3)全体整数的集合通常简称为整数集Z。

(4)全体有理数的集合通常简称为有理数集,记做Q。

高中数学复习资料

高中数学复习资料

高中数学章节复习资料第十四章立体几何第三节平行关系A组1.已知m、n是两条不同直线,α,β是两个不同平面,下列命题中的真命题是_.①如果m⊂α,n⊂β,m∥n,那么α∥β②如果m⊂α,n⊂β,α∥β,那么m∥n③如果m⊂α,n⊂β,α∥β且m,n共面,那么m∥n④如果m∥n,m⊥α,n⊥β,那么α⊥β解析:m⊂α,n⊂β,α∥β⇒m,n没有公共点.又m,n共面,所以m∥n.答案:③2.已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:①若m∥α,则m平行于平面α内的无数条直线;②若α∥β,m⊂α,n⊂β,则m∥n;③若m⊥α,n⊥β,m∥n,则α∥β;④若α∥β,m⊂α,则m∥β.其中,真命题的序号是________.(写出所有真命题的序号)解析:②中α∥β,m⊂α,n⊂β⇒m∥n或m,n异面,所以②错误.而其它命题都正确.答案:①③④3.(2010年苏北四市调研)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m, 则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β.其中为真命题的是________.解析:③中若l⊂β,m⊂α,α∥β⇒l∥m或l,m异面,所以②错误.而其它命题都正确.答案:①②④4.(2009年高考福建卷改编)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是________.①m∥β且l1∥α②m∥l1且n∥l2 ③m∥β且n∥β④m∥β且n∥l2解析:∵m∥l1,且n∥l2,又l1与l2是平面β内的两条相交直线,∴α∥β,而当α∥β时不一定推出m∥l1且n∥l2,可能异面.答案:②5.(原创题)直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有________条.答案:1或06.如图,ABCD为直角梯形,∠C=∠CDA=90°,AD=2BC =2CD,P为平面ABCD外一点,且PB⊥BD.(1)求证:P A⊥BD;(2)若PC与CD不垂直,求证:P A≠PD;(3)若直线l过点P,且直线l∥直线BC,试在直线l上找一点E,使得直线PC∥平面EBD.解:(1)证明:∵ABCD为直角梯形,AD=2AB=2BD,∴AB⊥BD,PB⊥BD,AB∩PB=B,AB,PB⊂平面P AB,BD⊥平面P AB,P A⊂平面P AB,∴P A⊥BD.(2)证明:假设P A=PD,取AD中点N,连结PN,BN,则PN⊥AD,BN⊥AD,AD⊥平面PNB,得PB⊥AD,又PB⊥BD,得PB⊥平面ABCD,∴PB⊥CD.又∵BC⊥CD,∴CD⊥平面PBC,∴CD⊥PC,与已知条件PC与CD不垂直矛盾.∴P A≠PD.(3)在l上取一点E,使PE=BC,连结BE,DE,∵PE∥BC,∴四边形BCPE是平行四边形,∴PC∥BE,PC⊄平面EBD,BE⊂平面EBD,∴PC∥平面EBD.B组1.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是________.①若α⊥γ,α⊥β,则γ∥β②若m∥n,m⊂α,n⊂β,则α∥β③若m∥n,m∥α,则n∥α④若n⊥α,n⊥β,则α∥β解析:①错,两平面也可相交;②错,不符合面面平行的判定定理条件,需两平面内有两条相交直线互相平行;③错,直线n不一定在平面内;④由空间想象知垂直于同一直线的两平面平行,命题正确.答案:④2.已知m,n是两条不同的直线,α,β是两个不同的平面,有下列4个命题:①若m∥n,n⊂α,则m∥α;②若m⊥n,m⊥α,n⊄α,则n∥α;③若α⊥β,m⊥α,n⊥β,则m⊥n;④若m,n是异面直线,m⊂α,n⊂β,m∥β,则n∥α.其中正确的命题有_.解析:对于①,m有可能也在α上,因此命题不成立;对于②,过直线n作垂直于m 的平面β,由m⊥α,n⊄α可知β与α平行,于是必有n与α平行,因此命题成立;对于③,由条件易知m平行于β或在β上,n平行于α或在α上,因此必有m⊥n;对于④,取正方体中两异面的棱及分别经过此两棱的不平行的正方体的两个面即可判断命题不成立.综上可知②③正确.答案:②③3.已知m,n是平面α外的两条直线,且m∥n,则“m∥α”是“n∥α”的________条件.解析:由于直线m,n在平面外,且m∥n,故若m∥α,则必有n∥α,反之也成立.答案:充要4.设l1,l2是两条直线,α,β是两个平面,A为一点,下列命题中正确的命题是________.①若l1⊂α,l2∩α=A,则l1与l2必为异面直线②若α⊥β,l1⊂α,则l1⊥β③l1⊂α,l2⊂β,l1∥β,l2∥α,则α∥β④若l1∥α,l2∥l1,则l2∥α或l2⊂α解析:①错,两直线可相交于点A;②错,不符合面面垂直的性质定理的条件;③错,不符合面面平行的判定定理条件;④正确,空间想象即可.答案:④5.(2010年广东深圳模拟)若a不平行于平面α,且a⊄α,则下列结论成立的是________.①α内的所有直线与a异面②α内与a平行的直线不存在③α内存在唯一的直线与a平行④α内的直线与a都相交解析:由题设知,a和α相交,设a∩α=P,如图,在α内过点P的直线与a共面,①错;在α内不过点P的直线与a异面,④错;(反证)假设α内直线b∥a,∵a⊄α,∴a∥α,与已知矛盾,③错.答案:②6.设m、n是异面直线,则(1)一定存在平面α,使m⊂α且n∥α;(2)一定存在平面α,使m⊂α且n⊥α;(3)一定存在平面γ,使m、n到γ的距离相等;(4)一定存在无数对平面α与β,使m ⊂α,n ⊂β,且α∥β.上述4个命题中正确命题的序号为________.解析:(1)成立;(2)不成立,m 、n 不一定垂直;(3)过m 、n 公垂线段中点分别作m 、n 的平行线所确定平面到m 、n 距离就相等,(3)正确;满足条件的平面只有一对,(4)错.答案:(1)(3)7.如图,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下AP =a 3,底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =______. 答案:223a8.下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________(写出所有符合要求的图形序号).解析:①∵面AB ∥面MNP ,∴AB ∥面MNP .②若下底面中心为O ,易知NO ∥AB ,NO ⊄面MNP ,∴AB 与面MNP 不平行. ③易知AB ∥MP ,∴AB ∥面MNP .④易知存在一直线MC ∥AB ,且MC ⊄平面MNP ,∴AB 与面MNP 不平行. 答案:①③9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、CD 的中点,N 是BC 中点.点M 在四边形EFGH 上及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.答案:M ∈FHAA 1=2,10.如图,长方体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,E 为BC 的中点,点M 为棱AA 1的中点.(1)证明:DE ⊥平面A 1AE ; (2)证明:BM ∥平面A 1ED .证明:(1)在△AED 中,AE =DE =2,AD =2, ∴AE ⊥DE . ∵A1A ⊥平面ABCD , ∴A 1A ⊥DE ,∴DE ⊥平面A 1AE .(2) 设AD 的中点为N ,连结MN 、BN .在△A 1AD 中,AM =MA 1,AN =ND ,∴MN ∥A 1D ,∵BE ∥ND 且BE =ND ,∴四边形BEDN 是平行四边形, ∴BN ∥ED ,∴平面BMN ∥平面A 1ED ,∴BM ∥平面A 1ED . 11.(2010年扬州调研)在正方体ABCD -A 1B 1C 1D 1中,M ,N分别是AB ,BC 的中点.(1)求证:平面B 1MN ⊥平面BB 1D 1D ;(2)若在棱DD 1上有一点P ,使BD 1∥平面PMN ,求线段DP 与PD 1的比 解:(1)证明:连结AC ,则AC ⊥BD , 又M ,N 分别是AB ,BC 的中点, ∴MN ∥AC ,∴MN ⊥BD .∵ABCD -A 1B 1C 1D 1是正方体,∴BB 1⊥平面ABCD , ∵MN ⊂平面ABCD , ∴BB 1⊥MN , ∵BD ∩BB 1=B ,∴MN ⊥平面BB 1D 1D , ∵MN ⊂平面B 1MN ,∴平面B 1MN ⊥平面BB 1D 1D .(2)设MN 与BD 的交点是Q ,连结PQ ,PM ,PN ∵BD 1∥平面PMN ,BD 1⊂平面BB 1D 1D ,平面BB 1D 1D ∩平面PMN =PQ , ∴BD 1∥PQ ,∴DP ∶PD 1=DQ ∶QB =3∶1.12.如图,四边形ABCD 为矩形,BC ⊥平面ABE ,F为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设点M 为线段AB 的中点,点N 为线段CE 的中点.求证:MN ∥平面DAE .证明:(1)因为BC ⊥平面ABE ,AE ⊂平面ABE , 所以AE ⊥BC ,又BF ⊥平面ACE ,AE ⊂平面ACE , 所以AE ⊥BF ,又BF ∩BC =B ,所以AE ⊥平面BCE , 又BE ⊂平面BCE ,所以AE ⊥BE .(2)取DE 的中点P ,连结P A ,PN ,因为点N 为线段CE 的中点.所以PN ∥DC ,且PN =12DC ,又四边形ABCD 是矩形,点M 为线段AB 的中点,所以AM ∥DC ,且AM =12DC ,所以PN ∥AM ,且PN =AM ,故四边形AMNP 是平行四边形,所以MN ∥AP , 而AP ⊂平面DAE ,MN ⊄平面DAE ,所以MN ∥平面DAE .第四节 垂直关系A 组1.(2010年宁波十校联考)设b 、c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是________.①若b ⊂α,c ∥α,则b ∥c ②若b ⊂α,b ∥c ,则c ∥α ③若c ∥α,α⊥β,则c ⊥β ④若c ∥α,c ⊥β,则α⊥β解析:①中,b ,c 亦可能异面;②中,也可能是c ⊂α;③中,c 与β的关系还可能是斜交、平行或c ⊂β;④中,由面面垂直的判定定理可知正确.答案:④2.(2010年青岛质检)已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β.则真命题的个数为________.解析:对于①,由直线l ⊥平面α,α∥β,得l ⊥β,又直线m ⊂平面β,故l ⊥m ,故①正确;对于②,由条件不一定得到l ∥m ,还有l 与m 垂直和异面的情况,故②错误;对于③,显然正确.故正确命题的个数为2.答案:2个3.(2009年高考山东卷改编)已知α、β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β ”是“m ⊥β ”的________条件.解析:由平面与平面垂直的判定定理知如果m 为平面α内的一条直线,m ⊥β,则α⊥β,反过来则不一定.所以“α⊥β”是“m ⊥β”的必要不充分条件.答案:必要不充分4.(2009年高考浙江卷)如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.解析:如图,过D 作DG ⊥AF ,垂足为G ,连结GK ,∵平面ABD ⊥平面ABC ,又DK ⊥AB , ∴DK ⊥平面ABC ,∴DK ⊥AF .∴AF ⊥平面DKG ,∴AF ⊥GK . 容易得到,当F 接近E 点时,K 接近AB 的中点,当F 接围是(12,近C 点时,K 接近AB 的四等分点.∴t 的取值范1).答案:(12,1)5.(原创题)已知a 、b 为两条不同的直线,α、β为两个不同的平面,且a ⊥α,b ⊥β,则下列命题中假命题的有________.①若a ∥b ,则α∥β;②若α⊥β,则a ⊥b ;③若a 、b 相交,则α、β相交;④若α、β相交,则a ,b 相交.解析:若α、β相交,则a 、b 既可以是相交直线,也可以是异面直线. 答案:④6.(2009年高考山东卷)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点.(1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1;(2)证明:平面D 1AC ⊥平面BB 1C 1C .证明:(1)法一:取A 1B 1的中点为F 1,连结FF 1,C 1F 1. 由于FF 1∥BB 1∥CC 1,所以F 1∈平面FCC 1.因此平面FCC 1即为平面C 1CFF 1. 连结A 1D ,F 1C ,由于A 1F 1綊D 1C 1綊CD ,所以四边形A 1DCF 1为平行四边形, 因此A 1D ∥F 1C .又EE 1∥A 1D , 得EE 1∥F 1C .而EE 1⊄平面FCC 1,F 1C ⊂平面FCC 1, 故EE 1∥平面FCC 1.法二:因为F为AB的中点,CD=2,AB=4,AB∥CD,所以CD綊AF,因此四边形AFCD为平行四边形,所以AD∥FC.又CC1∥DD1,FC∩CC1=C,FC⊂平面FCC1,CC1⊂平面FCC1,AD∩DD1=D,AD ⊂平面ADD1A1,DD1⊂平面ADD1A1.A1∥平面FCC1.所以平面ADD又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.(2)连结AC,在△FBC中,FC=BC=FB,又F为AB的中点,所以AF=FC=FB.因此∠ACB=90°,即AC⊥BC.又AC⊥CC1,且CC1∩BC=C,所以AC⊥平面BB1C1C.而AC⊂平面D1AC,故平面D1AC⊥平面BB1C1C.B组1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是____.①a⊥α,b∥β,α⊥β②a⊥α,b⊥β,α∥β③a⊂α,b⊥β,α∥β④a⊂α,b∥β,α⊥β解析:由α∥β,b⊥β⇒b⊥α,又a⊂α,故a⊥b.答案:③2.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是________.①若m⊂α,n⊂β,m∥n,则α∥β②若n⊥α,n⊥β,m⊥β,则m⊥α③若m∥α,n∥β,m⊥n,则α⊥β④若α⊥β,α∩β=n,m⊥n,则m⊥α解析:由n⊥α,n⊥β可得α∥β,又因m⊥β,所以m⊥α.答案:②3.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是.①m⊥α,n⊂β,m⊥n⇒α⊥β②α∥β,m⊥α,n∥β⇒m⊥n③α⊥β,m⊥α,n∥β⇒m⊥n④α⊥β,α∩β=m,n⊥m⇒n⊥β解析:①错,不符合面面垂直的判断定理的条件;②由空间想象易知命题正确;③错,两直线可平行;④错,由面面垂直的性质定理可知只有当直线n在平面α内时命题才成立.答案:②4.已知两条不同的直线m,n,两个不同的平面α,β,则下列命题中正确的是_.①若m⊥α,n⊥β,α⊥β,则m⊥n②若m⊥α,n∥β,α⊥β,则m⊥n③若m∥α,n∥β,α∥β,则m∥n④若m∥α,n⊥β,α⊥β,则m∥n解析:易知①正确.而②中α⊥β且m⊥α⇒m∥β或m∈β,又n∥β,容易知道m,n 的位置关系不定,因此②错误.而③中分别平行于两平行平面的直线的位置关系不定,因此③错误.而④中因为②不对,此项也不对.综上可知①正确.答案:①5.设a,b,c表示三条直线,α,β表示两个平面,则下列命题的逆命题不成立的是________.①c⊥α,若c⊥β,则α∥β②b⊂β,c是a在β内的射影,若b⊥c,则a⊥b③b⊂β,若b⊥α,则β⊥α④b⊂α,c⊄α,若c∥α,则b∥c解析:当b⊂β,若β⊥α,则未必有b⊥α.答案:③6.已知二面角α-l-β的大小为30°,m、n为异面直线,m⊥平面α,n⊥平面β,则m、n 所成的角为________.解析:∵m⊥α,n⊥β,∴m 、n 所成的夹角与二面角α-l -β所成的角相等或互补. ∵二面角α-l -β为30°,∴异面直线m 、n 所成的角为30°.答案:30°7.如图所示,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在直线______上.解析:由AC ⊥AB ,AC ⊥BC 1,AC ⊥平面ABC 1,AC ⊂平面ABC ,∴平面ABC 1⊥平面ABC ,C 1在平面ABC 上的射影H 必在两平面的交线AB 上.答案:AB 8.(2010年江苏昆山模拟)在矩形ABCD 中,AB =3,AD =4,P 在AD 上运动,设∠ABP =θ,将△ABP 沿BP 折起,使得平面ABP 垂直于平面BPDC ,AC 长最小时θ的值为________.解析:过A 作AH ⊥BP 于H ,连CH ,∴AH ⊥平面BCDP . ∴在Rt △ABH 中,AH =3sin θ,BH =3cos θ.在△BHC 中,CH 2=(3cos θ)2+42-2×4×3cos θ×cos(90°-θ),∴在Rt △ACH 中, AC 2=25-12sin2θ, ∴θ=45°时,AC 长最小.答案:45°9.在正四棱锥P -ABCD 中,P A =32AB ,M 是BC 的中点,G 是△P AD 的重心,则在平面P AD 中经过G 点且与直线PM 垂直的直线有________条.为32a . 解析:设正四棱锥的底面边长为a ,则侧棱长由PM ⊥BC ,∴PM =⎝⎛⎭⎫32a 2-⎝⎛⎭⎫a 22=22a ,连结PG 并延长与AD 相交于N 点,则PN =22a ,MN =AB =a ,∴PM 2+PN 2=MN 2, ∴PM ⊥PN ,又PM ⊥AD ,∴PM ⊥面P AD ,∴在平面P AD 中经过G 点的任意一条直线都与PM 垂直.答案:无数10.如图,在三棱锥S -ABC 中,OA =OB ,O 为BC 中点,SO ⊥平面ABC ,E 为SC 中点,F 为AB 中点.(1)求证:OE ∥平面SAB ; (2)求证:平面SOF ⊥平面SAB .证明:(1)取AC 的中点G ,连结OG ,EG ,∵OG ∥AB ,EG ∥AS ,EG ∩OG =G ,SA ∩AB =A , ∴平面EGO ∥平面SAB ,OE ⊂平面OEG∴OE ∥平面SAB(2)∵SO ⊥平面ABC , ∴SO ⊥OB ,SO ⊥OA ,又∵OA =OB ,SA 2=SO 2+OA 2,SB 2=SO 2+OB 2,∴SA =SB ,又F 为AB 中点, ∴SF ⊥AB ,∵SO ⊥AB ,∵SF ∩SO =S ,∴AB ⊥平面SOF ,∵AB ⊂平面SAB ,∴平面SOF ⊥平面SAB .11.在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.(1)求证:CE ∥平面C 1E 1F ;(2)求证:平面C 1E 1F ⊥平面CEF . 证明:(1)取CC 1的中点G ,连结B 1G 交C 1F 于点F 1,连结E 1F 1,A 1G ,FG ,∵F 是BB 1的中点,BCC 1B 1是矩形, ∵四边形FGC 1B 1也是矩形,∴FC 1与B 1G 相互平分,即F 1是B 1G 的中点. 又E 1是A 1B 1的中点,∴A 1G ∥E 1F 1.又在长方体中,AA 1綊CC 1,E ,G 分别为AA 1,CC 1的中点,∴A 1E 綊CG ,∴四边形A 1ECG 是平行四边形, ∴A 1G ∥CE ,∴E 1F 1∥CE .∵CE ⊄平面C 1E 1F ,E 1F 1⊂平面C 1E 1F , ∴CE ∥平面C1E 1F .(2)∵长方形BCC 1B 1中,BB 1=2BC ,F 是BB 1的中点, ∴△BCF 、△B 1C 1F 都是等腰直角三角形, ∴∠BFC =∠B 1FC 1=45°, ∴∠CFC 1=180°-45°-45°=90°, ∴C 1F ⊥CF .∵E ,F 分别是矩形ABB 1A 1的边AA 1,BB 1的中点, ∴EF ∥AB .又AB ⊥平面BCC 1B 1,又C 1F ⊂平面BCC 1B 1, ∴AB ⊥C 1F ,∴EF ⊥C 1F .又CF ∩EF =F ,∴C 1F ⊥平面CEF .∵C 1F ⊂平面C 1E 1F ,∴平面C 1E 1F ⊥平面CEF .12.(2010年江苏淮安模拟)如图,已知空间四边形ABCD 中,BC =AC ,AD =BD ,E 是AB 的中点.求证:(1)AB ⊥平面CDE ; (2)平面CDE ⊥平面ABC ;(3)若G 为△ADC 的重心,试在线段AE 上确定一点F ,使得GF ∥平面CDE .证明:(1)⎭⎪⎬⎪⎫BC =AC AE =BE ⇒CE ⊥AB ,同理,⎭⎪⎬⎪⎫AD =BD AE =BE ⇒DE ⊥AB ,又∵CE ∩DE =E ,∴AB ⊥平面CDE . (2)由(1)知AB ⊥平面CDE , 又∵AB ⊂平面ABC , ∴平面CDE ⊥平面ABC .AG GH =21, (3)连结AG 并延长交CD 于H ,连结EH ,则在AE 上取点F 使得AF FE =21,则GF∥EH,。

高中数学会考复习资料基本概念和公式

高中数学会考复习资料基本概念和公式

高中数学会考基础知识汇总 第一章 集合与简易逻辑:一.集合1、 集合的有关概念和运算(1)集合的特性:确定性、互异性和无序性;(2)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;2、子集定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ3、真子集定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂;4、补集定义:},|{A x U x x A C U ∉∈=且;5、交集与并集 交集:}|{B x A x x B A ∈∈=且 ;并集:}|{B x A x x B A ∈∈=或6、集合中元素的个数的计算: 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

二.简易逻辑:1.复合命题: 三种形式:p 或q 、p 且q 、非p ; 判断复合命题真假:2.真值表:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反。

3.四种命题及其关系:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p ; 互为逆否的两个命题是等价的。

原命题与它的逆否命题是等价命题。

4.充分条件与必要条件:若q p ⇒,则p 叫q 的充分条件; 若q p ⇐,则p 叫q 的必要条件; 若q p ⇔,则p 叫q 的充要条件;第二章 函数一. 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应, 记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。

2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有唯一确定的数f (x )和它对应,就称f :A →B 为集合A 到集合B 的一个函数,记作y=f (x ), (2)、函数的三要素:定义域,值域,对应法则;3、求定义域的一般方法:①整式:全体实数R ;②分式:分母0≠,0次幂:底数0≠; ③偶次根式:被开方式0≥,例:225x y -=;④对数:真数0>,例:)11(log xy a -=4、求值域的一般方法:①图象观察法:||2.0x y =;②单调函数法: ]3,31[),13(log 2∈-=x x y ③二次函数配方法:)5,1[,42∈-=x x x y , 222++-=x x y④“一次”分式反函数法:12+=x xy ;⑥换元法:x x y 21-+= 5、求函数解析式f (x )的一般方法:①待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x ) ②配凑法:,1)1(22xx xx f +=-求f (x );③换元法:x x x f 2)1(+=+,求f (x ) 6、函数的单调性:(1)定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数; 若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。

高考数学知识点总结及复习资料(实用)

高考数学知识点总结及复习资料(实用)

高考数学知识点总结及复习资料(实用)高考数学复习重点第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

高考数学冲刺注意事项重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。

例如:三视图、茎叶图、定积分、正态分布、统计案例等。

立足基础,强调通性通法,增大覆盖面。

从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。

突出新课程理念,关注应用,倡导“学以致用”。

新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。

加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。

有意训练每年高考试题中都出现的高频考点。

高考数学高分学习方法1、先看笔记后做作业。

有的高中学生感到。

老师讲过的,自己已经听得明明白白了。

但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。

因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。

能否坚持如此,常常是好学生与差学生的最大区别。

人教高中 数学必修一必修二的总复习(共32张PPT)

人教高中  数学必修一必修二的总复习(共32张PPT)

4、若
1 a log 1 3 b 3 2
0.2
c2
1 3
,则它们的大小关系为 c>b>a
5、不等式 log2 ( x 7) 4 的解集为———————— 6、若函数 y f ( x) 在(-1,1)上是减函数,且 f (1 a) f (2a 1) , 则a的取值范围为 0 a 2
3、 判断f(-x)与f(x)之间的关系。 类型题:必修一课本:P35例5 ;P75第4题 综合题: 必修一课本: P82 第10题;P83第3题
例:已知函数
f ( x) loga
x 1 (a 0且a 1) 【必修一优化方案P52例3】 x 1
(1)求函数的定义域 (2)判断函数的奇偶性和单调性
高中数学必修一 【复习重点】
(1)基本特性:确定性、互异性、无序性 1、集合: (2)元素和集合的关系: a A, a B (3)子集、真子集、集合相等:
A B
(子集)
A
B(真子集)
A B
(4)交集、并集、补集: A B A B CU A B {x 2k 1 x 2k 1} 例:1、设集合 A {x 3 x 2}
x2 2 x 则 x 0 时, f ( x) ———————
(3)判断函数的单调性:
证明步骤:1、取点; 2、列差式; 3、化简后与0比较大小; 4、下结论。
类型题:必修一课本:P29例2 P31例4 P78例1
(4) 判断函数的奇偶性:
判断步骤:1、求定义域; 2、判断定义域是否关于原点对称;
平行x轴的线段平行于x’ 轴; (3)确定线段长度
平行x轴的线段长度保持不变; (4)成图

高中数学必修1 知识要点复习提纲(共44张)PPT课件

高中数学必修1 知识要点复习提纲(共44张)PPT课件

是R上的增函数
是R上的减函数
比较下列各题中两数值的大小
(1)1.72.5,1.73.
(2) 0.8-0.1 ,0.8-0.2
(3) 2.13.4,0.42.8
11
(4) 2 3 , 3 3
对数函数y=logax (a>0,且a≠1)
a>1
0<a<1
图y
y
0 (1,0)

x
0 (1,0)
x
定义域 : ( 0,+∞)
二、函数的定义域
例3、求下列函数的定义域
1) f (x) 3 4 x (x 4)0 x 1 log 2 (x 1)
2、抽象函数的定义域
1)已知函数y=f(x)的定义域是[1,3], 求f(2x-1)的定义域
1 2 x 1 3 , 1 x 2 , 函 数 的 定 义 域 为 x | 1 x 2 .
2)已知函数y=f(x)的定义域是[0,5), 求g(x)=f(x-1)- f(x+1)的定义域
0x15, 1x6, 0x15,1x4,1x4,
函数的定义域为x|1x4.
三、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例 (1)已f知 (x)x24x3,求 f(x1) (2)已f知 (x1)x22x,求 f(x)
的n次方根.
点此播放讲课视频
3.根式
当n为正奇数时,n an a ,
当n为正偶数时, n an | a|a ,a0 a,a0
4.分数指数幂
(1)正数的分数指数幂:
m
an n am
m
,a n
1
n am
点此播放讲课视频
5.对数
axN xloaN g.

高中数学必修一专题复习

高中数学必修一专题复习

第一章集合与函数概念知识架构第一讲 集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:三:集合的基本运算①两个集合的交集:A B = {}x x A x B ∈∈且; ②两个集合的并集: AB ={}x x A x B ∈∈或;③设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。

难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。

重难点: 1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性, 在解题过程中最易被忽视,因此要对结果进行检验; 2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如{})(x f y x =、{})(x f y y =、{})(),(x f y y x =等的差别,如果对集合中代表元素认识不清,将导致求解错误:(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用Venn 图。

3.集合间的关系的几个重要结论 (1)空集是任何集合的子集,即A ⊆φ (2)任何集合都是它本身的子集,即A A ⊆(3)子集、真子集都有传递性,即若B A ⊆,C B ⊆,则C A ⊆ 4.集合的运算性质(1)交集:①A B B A =;②A A A = ;③φφ= A ;④A B A ⊆ ,B B A ⊆ ⑤B A A B A ⊆⇔= ;(2)并集:①A B B A =;②A A A = ;③A A =φ ;④A B A ⊇ ,B B A ⊇ ⑤A B A B A ⊆⇔= ; (3)交、并、补集的关系 ①φ=A C A U ;U A C A U =②)()()(B C A C B A C U U U =;)()()(B C A C B A C U U U =★热点考点题型探析考点一:集合的定义及其关系题型1:集合元素的基本特征[例1](2008年理)定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为( )A .0;B .2;C .3;D .6[解题思路]根据A B *的定义,让x 在A 中逐一取值,让y 在B 中逐一取值,xy 在值就是A B *的元素[解析]:正确解答本题,必需清楚集合A B *中的元素,显然,根据题中定义的集合运算知A B *={}4,2,0,故应选择D【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。

高中数学复习提纲总完整版

高中数学复习提纲总完整版

高中数学复习提纲总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-第一章集合与简易逻辑集合及其运算一.集合的概念、分类:二.集合的特征:⑴确定性⑵无序性⑶互异性三.表示方法:⑴列举法⑵描述法⑶图示法⑷区间法四.两种关系:从属关系:对象∈、∉集合;包含关系:集合⊆、集合五.三种运算:交集:{|}A B x x A x B =∈∈且并集:{|}A B x x A x B =∈∈或补集:U A {|U }x x x A =∈∉且六.运算性质:⑴A ∅=A ,A ∅=∅.⑵空集是任意集合的子集,是任意非空集合的真子集.⑶若B A ⊆,则A B =A ,A B =B .⑷U A A =()∅,U A A =()U ,U U A =()A . ⑸U U AB =()()U A B (),U U A B =()()U A B ().⑹集合123{,,,,}n a a a a ⋅⋅⋅的所有子集的个数为2n ,所有真子集的个数为21n -,所有非空真子集的个数为22n -,所有二元子集(含有两个元素的子集)的个数为2n C .简易逻辑一.逻辑联结词:1.命题是可以判断真假的语句的语句,其中判断为正确的称为真命题,判断为错误的为假命题.2.逻辑联结词有“或”、“且”、“非”.3.不含有逻辑联结词的命题,叫做简单命题,由简单命题再加上一些逻辑联结词构成的命题叫复合命题.4.真值表:二.四种命题:1.原命题:若p则q逆命题:若P则q,即交换原命题的条件和结论;否命题:若q则p,即同时否定原命题的条件和结论;逆否命题:若┑P则┑q,即交换原命题的条件和结论,并且同时否定.2.四个命题的关系:⑴原命题为真,它的逆命题不一定为真;⑵原命题为真,它的否命题不一定为真;⑶原命题为真,它的逆否命题一定为真.三.充分条件与必要条件1.“若p则q”是真命题,记做p q⇒,“若p则q”为假命题,记做p q,2.若p q⇒,则称p是q的充分条件,q是p的必要条件3.若p q⇒,且p q,则称p是q的充分非必要条件;若p q,且p q⇐,则称p是q的必要非充分条件;若p q⇐,则称p是q的充要条件;⇒,且p q若p q,且p q,则称p是q的既不充分也不必要条件.4.若p的充分条件是q,则q p⇒;若p的必要条件是q,则p q⇒.第二章函数指数与对数运算一.分数指数幂与根式:如果n x a=,则称x是a的n次方根,0的n次方根为0,若0a≠,则当n为奇数时,a的n次方根有1n为偶数时,负数没有n次方根,正数a的n次方根有2个,其中正的n.负的n次方根记做1.负数没有偶次方根;2.两个关系式:n a=||a na n⎧=⎨⎩为奇数为偶数3、正数的正分数指数幂的意义:mna=正数的负分数指数幂的意义:mna-=.4、分数指数幂的运算性质:⑴m n m n a a a +⋅=;⑵m n m n a a a -÷=;⑶()m n mn a a =;⑷()m m m a b a b ⋅=⋅;⑸01a =,其中m 、n 均为有理数,a ,b 均为正整数二.对数及其运算1.定义:若b a N =(0a >,且1a ≠,0)N >,则log a b N =.2.两个对数:⑴常用对数:10a =,10log lg b N N ==;⑵自然对数: 2.71828a e =≈,log ln e b N N ==.3.三条性质:⑴1的对数是0,即log 10a =;⑵底数的对数是1,即log 1a a =;⑶负数和零没有对数.4.四条运算法则:⑴log ()log log a a a MN M N =+;⑵log log log a a a M M N N=-; ⑶log log n a a M n M =;⑷1log log a a M n=. 5.其他运算性质:⑴对数恒等式:log a b a b =; ⑵换底公式:log log log c a c a b b=; ⑶log log log a b a b c c ⋅=;log log 1a b b a ⋅=; ⑷log log m n a a n b b m=. 函数的概念一.映射:设A 、B 两个集合,如果按照某中对应法则f ,对于集合A 中的任意一个元素,在集合B 中都有唯一的一个元素与之对应,这样的对应就称为从集合A 到集合B 的映射.二.函数:在某种变化过程中的两个变量x 、y ,对于x 在某个范围内的每一个确定的值,按照某个对应法则,y 都有唯一确定的值和它对应,则称y 是x 的函数,记做()y f x =,其中x 称为自变量,x 变化的范围叫做函数的定义域,和x 对应的y 的值叫做函数值,函数值y 的变化范围叫做函数的值域.三.函数()y f x =是由非空数集A 到非空数集B 的映射.四.函数的三要素:解析式;定义域;值域.函数的解析式一.根据对应法则的意义求函数的解析式; 例如:已知x x x f 2)1(+=+,求函数)(x f 的解析式.二.已知函数的解析式一般形式,求函数的解析式;例如:已知()f x 是一次函数,且[()]43f f x x =+,函数)(x f 的解析式.三.由函数)(x f 的图像受制约的条件,进而求)(x f 的解析式.函数的定义域一.根据给出函数的解析式求定义域:⑴整式:x R ∈⑵分式:分母不等于0⑶偶次根式:被开方数大于或等于0⑷含0次幂、负指数幂:底数不等于0⑸对数:底数大于0,且不等于1,真数大于0二.根据对应法则的意义求函数的定义域:例如:已知()y f x =定义域为]5,2[,求(32)y f x =+定义域; 已知(32)y f x =+定义域为]5,2[,求()y f x =定义域;三.实际问题中,根据自变量的实际意义决定的定义域.函数的值域一.基本函数的值域问题:二.求函数值域(最值)的常用方法:函数的值域决定于函数的解析式和定义域,因此求函数值域的方法往往取决于函数解析式的结构特征,常用解法有:观察法、配方法、换元法(代数换元与三角换元)、常数分离法、单调性法、不等式法、*反函数法、*判别式法、*几何构造法和*导数法等.反函数一.反函数:设函数()y f x =()x A ∈的值域是C ,根据这个函数中x ,y 的关系,用y 把x 表示出,得到()x y ϕ=.若对于C 中的每一y 值,通过()x y ϕ=,都有唯一的一个x 与之对应,那么,()x y ϕ=就表示y 是自变量,x 是自变量y 的函数,这样的函数()x y ϕ=()y C ∈叫做函数()y f x =()x A ∈的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.二.函数()f x 存在反函数的条件是:x 、y 一一对应.三.求函数()f x 的反函数的方法:⑴求原函数的值域,即反函数的定义域⑵反解,用y 表示x ,得1()x f y -=⑶交换x 、y ,得1()y f x -=⑷结论,表明定义域四.函数()y f x =与其反函数1()y f x -=的关系:⑴函数()y f x =与1()y f x -=的定义域与值域互换.⑵若()y f x =图像上存在点(,)a b ,则1()y f x -=的图像上必有点(,)b a ,即若()f a b =,则1()f b a -=.⑶函数()y f x =与1()y f x -=的图像关于直线y x =对称.函数的奇偶性:一.定义:对于函数()f x 定义域中的任意一个x ,如果满足()()f x f x -=-,则称函数()f x 为奇函数;如果满足()()f x f x -=,则称函数()f x 为偶函数.二.判断函数()f x 奇偶性的步骤:1.判断函数()f x 的定义域是否关于原点对称,如果对称可进一步验证,如果不对称;2.验证()f x 与()f x -的关系,若满足()()f x f x -=-,则为奇函数,若满足()()f x f x -=,则为偶函数,否则既不是奇函数,也不是偶函数. 二.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.三.已知()f x 、()g x 分别是定义在区间M 、N ()MN ≠∅上的奇(偶)函数,分别根据条件判断下列函数的奇偶性.五.若奇函数()f x 的定义域包含0,则(0)0f =.六.一次函数y kx b =+(0)k ≠是奇函数的充要条件是0b =;二次函数2y ax bx c =++(0)a ≠函数的周期性:一.定义:对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,则)(x f 为周期函数,T 为这个函数的一个周期.2.如果函数)(x f 所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期.如果函数()f x 的最小正周期为T ,则函数()f ax 的最小正周期为||T a . 函数的单调性一.定义:一般的,对于给定区间上的函数()f x ,如果对于属于此区间上的任意两个自变量的值1x ,2x ,当x x <时满足:⑴()()f x f x <,则称函数()f x 在该区间上是增函数;⑵()()f x f x >,则称函数()f x 在该区间上是减函数.二.判断函数单调性的常用方法:1.定义法:⑴取值;⑵作差、变形;⑶判断:⑷定论:*2.导数法:⑴求函数f(x)的导数'()f x;⑵解不等式'()0f x>,所得x的范围就是递增区间;⑶解不等式'()0f x<,所得x的范围就是递减区间.3.复合函数的单调性:对于复合函数[()]y f u=,则()=,可根据它们的单调性=,设()u g xy f g x确定复合函数[()]=,具体判断如下表:y f g x4.奇函数在对称区间上的单调性相反;偶函数在对称区间上的单调性相同.函数的图像一.基本函数的图像.二.图像变换:三.函数图像自身的对称四.两个函数图像的对称第三章数列数列的基本概念一.数列是按照一定的顺序排列的一列数,数列中的每一个数都叫做这个数列的项.二.如果数列{}n a 中的第n 项n a 与项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公事,它实质是定义在正整数集或其有限子集的函数解析式.三.数列的分类:按项的特点可分为递增数列、递减数列、常数列、摇摆数列按项数可分为有穷数列和无穷数列四.数列的前n 项和:1231n n n S a a a a a -=+++⋅⋅⋅++n S 与n a 的关系:1112n n n S n a S S n -=⎧=⎨-≥⎩五.如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.如:在数列{}n a 中,11a =,1112n n a a -=+,其中1112n n a a -=+即为数列{}n a 的递推公式,根据数列的递推公式可以求出数列中的每一项,同时可根据数列的前几项推断出数列{}n a 的通项公式,至于猜测的合理性,可利用数学归纳法进行证明.如上述数列{}n a ,根据递推公式可以得到:232a =,374a =,4158a =,53116a =,进一步可猜测1212n n n a --=. 等差数列一.定义:如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.二.通项公式:若已知1a 、d ,则1(1)n a a n d =+-;若已知m a 、d ,则()n m a a n m d =+-三.前n 项和公式:若已知1a ,n a ,则12n n a a S n +=⨯;若已知1a 、d ,则1(1)2n n n S na d -=+ 注:⑴前n 项和公式n S 的推导使用的是倒序相加法的方法.⑵在数列{}n a 中,通项公式n a ,前n 项和公式n S 均是关于项数n 的函数,在等差数列{}n a 通项公式n a 是关于n 的一次函数关系,前n 项和公式n S 是关于n 的没有常数项的二次函数关系.⑶在等差数列中包含1a 、d 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.如果a 、b 、c 成等差数列,则称b 为a 与c 的等差中项,且2a cb +=. 五.证明数列{}n a 是等差数列的方法:1.利用定义证明:1n n a a d --=(2)n ≥2.利用等差中项证明:2a cb += 3.利用通项公式证明:n a an b =+4.利用前n 项和公式证明:2n S an bn =+六.性质:在等差数列}{n a 中,1.若某几项的项数成等差数列,则对应的项也成等差数列,即:若2m n k +=,则2m n k a a a +=.2.若两项的项数之和与另两项的项数之和相等,则对应项的和也相等,即:若m n k l +=+,则m n k l a a a a +=+.3.依次相邻每k 项的和仍成等差数列,即:k S ,2k k S S -,32k k S S -成等差数列.4.n a ,1-n a ,2-n a ,…,2a ,1a 仍成等差数列,其公差为d -.三.等比数列一.定义:如果一个数列从第2项起,每一项与前一项的比都是同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用宇母q (0)q ≠表示.二.通项公式:若已知1a 、q ,则n a =11n a q -;若已知m a 、q ,则n a =n m m a q -三.前n 项和公式:当公比1q =时,1n S na =当公比1q ≠时,若已知1a 、n a 、q ,则n S =11n a a q q--若已知1a 、q 、n ,则1(1)1n n a q S q-=- 注:⑴等比数列前n 项和公式n S 的推导使用的是错位相减的方法.⑵在等比数列中包含1a 、q 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.若a 、b 、c 成等比数列,则称b 为a 与c 的等比中项,且a 、b 、c 满足关系式b =五.证明数列{}n a 是等比数列的方法:1.利用定义证明:1n n a q a -=(2)n ≥ 2.利用等比中项证明:2b ac =3.利用通项公式证明:n n a aq =六.性质:在等比数列}{n a 中,1.若某几项的项数成等差数列,则对应的项成等比数列,即:若2m n k +=,则2m n k a a a ⋅=2.若两项的项数之和与另两项的项数之和相等,则对应项的积相等,即:若m n k l +=+,则m n k l a a a a ⋅=⋅3.若数列公比1q ≠-,则依次相邻每k 项的和仍成等比数列,即k S ,2k k S S -,32k k S S -成等比数列。

高中数学必修一复习

高中数学必修一复习

(
)
D.3
B {1, 2,3, 4} ,则 A B
)
A. {1}
B. {2}
C. {3}
【2018.7 题 1】 已知集合 A 1,0,1, B 0,2 ,则 A
A.
B. 0
C.
1,0
D.
D. {4}
B 等于(
-1,0,1
【2019.7 题 1】已知集合 A {1, 3, 5}, B {4, 5} ,则 A
奇(偶)函数的一些特征
1.若函数f(x)是奇函数,且在x=0处有定义,则
f(0)=0.
2.奇函数图像关于原点对称,且在对称的区间上
不改变单调性.
3.偶函数图像关于y轴对称,且在对称的区间上
改变单调性
5、函数的单调性
单击此处添加标题
(1)根据图像判断函数的单调性
单调递增:图像上升
单调递减:图像下降
x叫做自变量, x的取值范围集合A叫做函数的定义域;
与x的值相对应的y的值叫做函数值,函数值集合
{f(x)|x∈A}叫做函数的值域。值域是集合B的子集。
下列可作为函数y= f (x)的图象的是
y
y
a
b
a
O x0
y
x
a
b
x0 x
O
b

y

O
x0 x

O
x


17
定义域
能使函数式有意义的实数x的集合
例:总复习卷第二部分第3题
答案:A
03
PART Three
基本初等函数
ADD YOUR TITLE HERE
幂函数的一般形式幂函数的一般形式是

高中数学会考复习必背知识点

高中数学会考复习必背知识点

高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.2、包含关系 A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C AB R ⇔=第二章 函数 对数:①、负数和零没有对数;②、1的对数等于0:01log =a ;③、底的对数等于1:1log =a a ;④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=幂的对数:M n M a n a log log =,b mn b a na m log log =。

第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数) (4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d 3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。

(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义: yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα ααcos tan =1cot tan =αα 5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=- )(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=- 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2tan 1tan 22tan -=212cos 2122cos 1cos 2+=+=ααα 9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)、正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角: abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+=第五章、平面向量 1、坐标运算:(1)、设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x AB -+-=;向量a 的模|a |:a a a ⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,0)(=-+a a (4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2,y 2) ,且21PP P P λ= ,则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧==y x第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC- 3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ; 垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)4、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程022=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α;第九章 排列 组合 二项式定理1、排列:(1)、排列数公式: mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).0!=1(2)、全排列:n 个不同元素全部取出的一个排列;!n A nn =)!1(123)2)(1(-⋅=⋅⋅⋅⋅--=n n n n n ; 2、组合:(1)、组合数公式: mn C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(2)、组合数的两个性质:m n C =m n n C - ;m n C +1-m n C =mn C 1+;3、二项式定理 :(1)二项展开式的通项公式(第r +1项):rr n r n r b a C T -+=1)210(n r ,,,= (2)各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r +…+C n n =2n(表示含n 个元素的集合的所有子集的个数)。

高中数学知识点全总结(3篇)

高中数学知识点全总结(3篇)

高中数学知识点全总结一、直线与方程高考考试内容及考试要求:考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;二、直线与方程课标要求:1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。

要点精讲:1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x 轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。

特别地,当直线l与x轴平行或重合时,规定α=0°.倾斜角α的取值范围:0°≤α<180°.当直线l与x轴垂直时,α=90°.2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα(1)当直线l与x轴平行或重合时,α=0°,k=tan0°=0;(2)当直线l与x轴垂直时,α=90°,k不存在。

由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。

3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。

4.两条直线的平行与垂直的判定(1)若l1,l2均存在斜率且不重合:注:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第一章-集合考试容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用^2. 集合的表示法:列举法、描述法、图形表示法^集合元素的特征:确定性、互异性、无序性 ^集合的性质:①任何一个集合是它本身的子集,记为 A A;②空集是任何集合的子集,记为A;③空集是任何非空集合的真子集;如果A B ,同时B A,那么A = B.如果A B, B C,那么A C.[注]:①Z= {整数}(3 Z ={全体整数}(X)②已知集合S中A的补集是一个有限集,贝U集合A也是有限集.(X)(例:S=N ; A= N则CA= {0})③空集的补集是全集.④若集合A=集合B,则C A= , C B = 。

(C B)=D (注:C B = ).3. ①{(x, V)|xy =0 , x£ R, y£R}^标轴上的点集.②((x, y) |xyv 0, x€ R, y€ R 二、四象限的点集 ③{ (x, y) |xy> 0, x£ R, y€ R }一、三象限的点集.[注]:①对方程组解的集合应是点集x y 3例:解的集合{(2, 1)}.2x 3y 1②点集与数集的交集是 .(例:A ={(x, y )| y =x +1} B={y |y =x 2+1}则An B =)4. ①n 个元素的子集有2n 个.②n 个元素的真子集有 2n -1个. ③n 个元素的非空真子集有2n - 2个. 5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题 逆命题.②一个命题为真,则它的逆否命题一定为真 .原命题逆否命题.例:①若a b 5,则a 2或b 3应是真命题.解:逆否:a = 2且b = 3 ,贝U a+b = 5 ,成立,所以此命题为真 .② x 1 且y 2,三二 x y 3.解:逆否:x + y =3 *x = 1 或 y = 2.x 1且y 2扫^x y 3,故x y 3是x 1且y 2的既不是充分,又不是必要条件⑵小围推出大围;大围推不出小围3. 例:若 x 5, x 5或x 2 .4. 集合运算:交、并、补.父:A B {x|x A,且 x B} 并:A^B {x|x A 或x B} 补:G J A {x U,且x A5. 主要性质和运算律求补律:AA U A=()) A U U A=U U U=()) U =UUU( U A)= A(1) 包含关系:A A, A, A U ,C U A U,A B,B C(2) 等价关系:A (3)集合的运算律: 交换律:A B结合律:(A B)分配律:.A (B0-1 律:「A等藉律:A AA C;A 「B A,A 「B B; A B A 「B A A^B BB A; A B B A.C A (B C);(A B) CC) (A B) (A C); A (B,U A A ,U「A A ,U IJ AA, A A A..|J B A, 41 B B. C UA U B UA (B C) C) (A B) (A C) U反演律:U (A n B)= ( U A)U ( U B)U(A U B)= ( U A)A ( U B)6. 有限集的元素个数定义:有限集 A 的元素的个数叫做集合A 的基数,记为card( A)规定card( 4) =0.基本公式:(l)card(A^B) card (A) card (B) card(A 「B) ⑵card (A B I C ) card (A) card (B) card (C)(3)card ( U A)= card(U)- card(A)(二) 含绝对值不等式、一元二次不等式的解法及延伸1. 整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)•- (x-x m )>0(<0)形式,并将各因式 x 的系数化"+”;(为了统 一方便)②求根,并在数轴上表示出来;③ 由右上方穿线,经过数轴上表示各根的点(为什么?);④ 若不等式(x 的系数化"+”后是>0 ”,则找“线”在轴上方的区间;若不等式是“<0”则找“线”在轴下方的区间.O --------- O — ----- --- o ----------- ----------- n ________ J+十 〜xix2*3%ri-3 ■一 --------------- -- 」xm-2 x£ ------------- >xmxn n 1n 2则不等式 a 0x a 1xa 2xcard (A B) card (B ,C) card (C 「A) card(A「B 「C)a n 0( 0)(a 0 0)的解可以根据各区间的符号确定.特例①一元一次不等式ax>b 解的讨论;ax 2bx c 0 (a 0)的解集 xx x 1 或 x x 2b xx2aRax 2bx c 0 (a 0)的解集xg x x 22.分式不等式的解法也>0(或四<o );冬 2(或会< 0)的形式,g(x) g(x) g(x) g(x )3. 含绝对值不等式的解法(2) 定义法:用“零点分区间法”分类讨论.(3) 几何法:根据绝对值的几何意义用数形结合思想方法解题 4. 一元二次方程根的分布一元二次方程 ax 2+bx+c=0(a 丰 0)(1) 根的“零分布”:根据判别式和韦达定理分析列式解之(2) 根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之(三) 简易逻辑1、 命题的定义:可以判断真假的语句叫做命题。

2、 逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由 简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

构成复合命题的形式:p 或q (记作p V q " ); p 且q (记作p A q ");非p (记作"「q”)。

3、 “或”、“且”、“非”的真值判断 (1) “非p”形式复合命题的真假与F 的真假相反;(2) p 且q”形式复合命题当P 与q 同为真时为真,其他情况时为假; (3)p 或q”形式复合命题当p 与q 同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若.?则「q;逆否命题:若.q 则「p°(1) 交换原命题的条件和结论,所得的命题是逆命题; (2) 同时否定原命题的条件和结论,所得的命题是否命题;(3) 交换原命题的条件和结论,并且同时否定,所得的命 题是逆否命题. 5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系: (原命题逆否命题)① 、原命题为真,它的逆命题不一定为真。

② 、原命题为真,它的否命题不一定为真。

(1 )标准化:移项通分化为(2)转化为整式不等式f(x) g(x)0 f(x)g(x) 0;^^ 0 g(x)f(x)g(x) 0 g(x)(1)公式法:axc ,与ax b c(c 0)型的不等式的解法逆命题 若q 则p 互 〔•否 逆否命题 若「q 则「③、原命题为真,它的逆否命题一定为真。

6、如果已知p q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p q 且q p,则称p 是q 的充要条件,记为 p? q.7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。

高中数学第二章-函数考试容:映射、函数、函数的单调性、奇偶性.反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数藉的运算性质.指数函数.对数.对数的运算性质.对数函数. 函数的应用. 考试要求:(1) 了解映射的概念,理解函数的概念.(2) 了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3) 了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.(4) 理解分数指数藉的概念,掌握有理指数藉的运算性质,掌握指数函数的概念、图像 和 性质. (5) 理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6) 能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.幻2.函数知识要点、本章知识网络结构:定义 ---------------- F :A B二、知识回顾: (一)映射与函数1. 映射与一一映射2. 函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因 为这二者确定后,值域也就相应得到确定, 因此只有定义域和对应法则二者完全相同的函数才是同一函数.3. 反函数反函数的定义设函数y f (x)(x A)的值域是C,根据这个函数中 x,y 的关系,用y 把x 表 示出,得到x= (y).若对于y 在C 中的任何一个值,通过x= (y), x 在A 中都有唯一的 值和它对应,那么,x= (y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x= (y)■A \.1,、(y C)叫做函数y f (x)(x A)的反函数,记作x f (y),习惯上改写成映射厂T 研究函数 一—具体函数反函数-图像—生质一^二次函数t -指数一指数函数对数 —对数函数y f 1(x)(二)函数的性质L函数的单调性定义:对于函数f(x)的定义域I某个区间上的任意两个自变量的值x1,x2,⑴若当x1<x2时,都有f(x1)<f(x2),则说f(x)在这个区间上是增函数;⑵若当x i<x2时,都有f(x i)>f(x2),则说f(x)在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数2. 函数的奇偶性偶函数的定义:如果对于函数f(X)的定义域内任盛一个X,都有H・x)』x),那么函数Rx)就叫做偶函数.,(x)是偶函敬g /(-I)=/W奇函数的定义:如果对于函数f(x)的定义域内任意个x,都有么函疵x)就叫做奇函数*f⑴是奇函数»/(-x)=二心与辛二-1典)* 0)J >**iF正确理解奇、偶函数的定义。

相关文档
最新文档