三年高考2015_2017高考数学试题分项版解析专题统计文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题21 统计
1.【2017课标1,文2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A .x 1,x 2,…,x n 的平均数
B .x 1,x 2,…,x n 的标准差
C .x 1,x 2,…,x n 的最大值
D .x 1,x 2,…,x n 的中位数
【答案】B
【考点】样本特征数
【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平; 中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;
方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.
2.【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为 A. 3,5 B. 5,5 C. 3,7 D. 5,7
【答案】A 【解析】
试题分析:由题意,甲组数据为56,62,65,70x +,74,乙组数据为59,61,67,60y +,78.要使两组数据中位数相等,有6560y =+,所以5y =,又平均数相同,则
566265(70)745961676578
55
x +++++++++=,解得3x =.故选A.
【考点】茎叶图、样本的数字特征
【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.
3.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是() A .月接待游客逐月增加 B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在7,8月
D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A
【考点】折线图
【名师点睛】用样本估计总体时统计图表主要有
1. 频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长
方形的面积之和为1); 2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. 3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.
4.【 2014湖南文3】对一个容量为N 的总体抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )
123.A p p p =<231.B p p p =<132.C p p p =<123.D p p p ==
【答案】D
【考点定位】抽样调查
【名师点睛】本题主要考查了简单随机抽样,分层抽样,系统抽样,解决问题的关键是根据抽样的原理进行具体分析求得对应概率的关系,属于基础题目.
5.【2015高考湖南,文2】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I所
示;
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151]上的运动员人数为( )
A、3
B、4
C、5
D、6
【答案】B
【解析】根据茎叶图中的数据,得;成绩在区间139,151]上的运动员人数是20,用系统抽样
方法从35人中抽取7人,成绩在区间139,151]上的运动员应抽取
20
74
35
⨯=(人),故选B.
【考点定位】茎叶图
【名师点睛】系统抽样是指当总体中个数较多时,将总体分成均衡的几部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本的抽样方法,其实质为等距抽样.茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.缺点为不能直接反映总体的分布情况. 由数据集中情况可以估计平均数大小,再根据其分散程度可以估测方差大小.
6.2016高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最
高气温和平
均最低气温的雷达图.图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C.下
面叙述不正确的是()
(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大
(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个【答案】D
考点:1、平均数;2、统计图.
【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.7.【2015高考山东,文6】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的标号为( )
(A)①③ (B) ①④ (C) ②③ (D) ②④
【答案】B
【考点定位】1.茎叶图;2.平均数、方差、标准差.
【名师点睛】本题考查茎叶图的概念以及平均数、方差、标准差的概念及其计算,解答本题的关键,是记清公式,细心计算.
本题属于基础题,较全面地考查了统计的基础知识.
8.【2015高考陕西,文2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()
A .93
B .123
C .137
D .167
(高中部)
(初中部)




60%70%
【答案】C
【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=,故答案选C .
【考点定位】概率与统计.
【名师点睛】1.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表各部分数量占总数
的百分数.2.通过扇形图可以很清晰地表示各部分数量同总数之间的关系.
9.【2016高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20), 20,22.5), 22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()
(A )56
(B )60
(C )120
(D )140
【答案】D
考点:频率分布直方图
【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 10.【2014高考陕西版文第9题】某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为和2
s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()
(A ),22s 100+(B )100x +,22s 100+
(C ),2s (D )100x +,2
s 【答案】D 【解析】
试题分析:由题得:12101010x x x x x +++=⨯= ;
222221210()()()1010x x x x x x s s -+-++-=⨯=
若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为:
均值1210(100)(100)(100)
10
x x x y ++++⋅⋅⋅++=
12101210(100)(100)(100)()101001010100
100101010
x x x x x x x x ++++⋅⋅⋅++++⋅⋅⋅++⨯+⨯=
===+
方差222
1210[(100)(100)][(100)(100)][(100)(100)]10
x x x x x x +-+++-++⋅⋅⋅++-+=
222221210()()()101010
x x x x x x s s -+-++-===
故选D
考点:均值和方差.
【名师点晴】本题主要考查的是样本的均值和方差等知识,属于中档题;解题时可以根据均值和方差的定义去计算,也可以直接利用已知的结论或公式得到结果,利用定义时运算量大,也容易出现不必要的错误。

11.【2015高考四川,文3】某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )
(A )抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法 【答案】C
【考点定位】本题考查几种抽样方法的概念、适用范围的判断,考查应用数学方法解决实际问题的能力.
【名师点睛】样本抽样是现实生活中常见的事件,一般地,抽签法和随机数表法适用于样本总体较少的抽样,系统抽样法适用于要将样本总体均衡地分为n 个部分,从每一部分中按规则抽取一个个体;分层抽样法则是当总体明显的分为几个层次时,在每一个层次中按照相同的比例抽取抽取样本.本题条件适合于分层抽样的条件,故应选用分层抽样法.属于简单题. 12.【2015高考重庆,文4】重庆市2013年各月的平均气温(°C)数据的茎叶图如下 0 8 9 1 2 5 8 2 0 0 3
3
8
3
1
2
则这组数据中的中位数是()
(A) 19 (B) 20 (C ) 21.5 (D )23
【答案】B
【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20,故选B.
【考点定位】茎叶图与中位数.
【名师点睛】本题考查复数的概念和运算,采用分母实数化和利用共轭复数的概念进行化解求解.
本题属于基础题,注意运算的准确性.
13.【2015高考北京,文4】某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()A.90B.100C.180D.300
【答案】C
【考点定位】分层抽样.
【名师点晴】本题主要考查的是分层抽样,属于容易题.解题时一定要清楚“320”是指抽取前的人数还是指抽取后的人数,否则容易出现错误.解本题需要掌握的知识点是分层抽样,即
抽取比例 样本容量总体容量

14.【2016高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有
6人,则
A.2号学生进入30秒跳绳决赛
B.5号学生进入30秒跳绳决赛
C.8号学生进入30秒跳绳决赛
D.9号学生进入30秒跳绳决赛 【答案】B
考点:统计
【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.
15. 【2014年普通高等学校招生全国统一考试湖北卷6】根据如下样本数据:
得到的回归方程为a bx y
+=ˆ,则( ) A.0a > ,0<b B.0a > ,0>b C.0a < ,0<b D.0a < ,0>b 【答案】A 【解析】
试题分析:作出散点图,如图所示,
观察图像可知,回归直线的斜率0b <,当0x =时,ˆ0y
a =>.故选A. 考点:根据已知样本数判断线性回归方程中的与的符号,容易题.
【名师点睛】以散点表格为载体,重点考查线性回归方程,其出题角度新颖别致,独居匠心,充分体现了数形结合的思想在数学解题中重要性和实用性,能较好的考查学生准确作图能力和
灵活运用基础知识解决实际问题的能力.
16.【2015高考湖北,文2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()
A .134石
B .169石
C .338石
D .1365石 【答案】B .
【考点定位】本题考查简单的随机抽样,涉及近似计算.
【名师点睛】本题以数学史为背景,重点考查简单的随机抽样及其特点,通过样本频率估算总体频率,虽然简单,但仍能体现方程的数学思想在解题中的应用,能较好考查学生基础知识的识记能力和估算能力、实际应用能力.
17.【2015高考湖北,文4】已知变量和满足关系0.11y x =-+,变量与正相关. 下列结论中正确的是()
A .与负相关,与负相关
B .与正相关,与正相关
C .与正相关,与负相关
D .与负相关,与正相关 【答案】A .
【解析】因为变量和满足关系0.11y x =-+,其中0.10-<,所以与成负相关;又因为变量与正相关,不妨设z ky b =+(0)k >,则将0.11y x =-+代入即可得到:
(0.11)0.1()z k x b kx k b =-++=-++,所以0.10k -<,所以与负相关,综上可知,应选A .
【考点定位】本题考查正相关、负相关,涉及线性回归方程的内容.
【名师点睛】将正相关、负相关、线性回归方程等联系起来,充分体现了方程思想在线性回归方程中的应用,能较好的考查学生运用基础知识的能力.其易错点有二:其一,未能准确理解正相关与负相关的定义;其二,不能准确的将正相关与负相关问题进行转化为直线斜率大于和小于0的问题.
18.【2015湖南文1】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间
139,151]上的运动员人数为( )
A、3
B、4
C、5
D、6
【答案】B
【考点定位】茎叶图
【名师点睛】系统抽样是指当总体中个数较多时,将总体分成均衡的几部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本的抽样方法,其实质为等距抽样.茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.缺点为不能直接反映总体的分布情况. 由数据集中情况可以估计平均数大小,再根据其分散程度可以估测方差大小.
19.【2015新课标2文3】根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是()
A.逐年比较,2008年减少二氧化碳排放量的效果最显著
B.2007年我国治理二氧化碳排放显现成效
C.2006年以来我国二氧化碳年排放量呈减少趋势
D.2006年以来我国二氧化碳年排放量与年份正相关
【答案】 D
【解析】由柱形图可知2006年以来,我国二氧化碳排放量基本成递减趋势,所以二氧化碳排放量与年份负相关,故选D.
【考点定位】本题主要考查统计知识及对学生柱形图的理解
【名师点睛】本题把统计知识与时下的热点环保问题巧妙地结合在一起,该题背景比较新颖,设问比较灵活,是一道考查考生能力的好题.解答此题的关键是学生能从图中读出有用的信息,再根据得到的信息正确作出判断.
20.【2017江苏,3】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.
【答案】
18
【考点】分层抽样
【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =
n ∶N .
21.【2016高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
①第一天售出但第二天未售出的商品有______种; ②这三天售出的商品最少有_______种. 【答案】①16;②29 【解析】
试题分析:①由于前二天都售出的商品有3种,因此第一天售出的有19-3=16种商品第二天未售出;答案为16.
②同①第三售出的商品中有14种第二天未售出,有1种商品第一天未售出,三天总商品种数最少时,是第三天中14种第二天未售出的商品都是第一天售出过的,此时商品总数为29.分别用,,A B C 表示第一、二、三天售出的商品,如图最少时的情形.故答案为29.
C
B
A
1
3
9
14
2
考点:统计分析
【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用. 22. 【2015高考广东,文12】已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,
221x +,⋅⋅⋅,21n x +的均值为.
【答案】11
【考点定位】均值的性质.
【名师点晴】本题主要考查的是均值的性质,属于容易题.解本题需要掌握的知识点是均值和方差的性质,即数据1x ,2x , ,n x 的均值为x ,方差为2s ,则(1)数据1x a ±,2x a ±, ,n x a ±的均值为x a ±,方差为2s ;
(2)数据1kx ,2kx , ,n kx 的均值为kx ,方差为22k s ;
(3)数据1kx a ±,2kx a ±, ,n kx a ±的均值为kx a ±,方差为22k s . 23. 【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.
从这次考试成绩看,
①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是. 【答案】乙;数学
【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学. 【考点定位】散点图.
【名师点晴】本题主要考查的是散点图,属于容易题.解题时一定要抓住重要字眼“语文”和“更”,否则很容易出现错误.解此类图象题一定要观察仔细,分析透彻,提取必要的信息. 24. 【2016高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米). 【答案】1.76
考点:中位数的概念.
【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.
25.【2015高考湖北,文14】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a=_________;
(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.
A.【答案】(Ⅰ)3;(Ⅱ)6000.
【解析】由频率分布直方图及频率和等于1可得
⨯+⨯+⨯+⨯+⨯+⨯=,
0.20.10.80.1 1.50.120.1 2.50.10.11
a
解之得3
⨯+⨯+⨯+⨯=,a=.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6
所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000
⨯=,故应填3;6000. 【考点定位】本题考查频率分布直方图,属基础题.
【名师点睛】以实际问题为背景,重点考查频率分布直方图,灵活运用频率直方图的规律解决实际问题,能较好的考查学生基本知识的识记能力和灵活运用能力.
26.【2015高考福建,文13】某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.【答案】25
【考点】分层抽样.
【名师点睛】本题考查抽样方法,要搞清楚三种抽样方法的区别和联系,其中分层抽样是按比例抽样;系统抽样是等距离抽样,属于基础题.
27.【2017课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,16
1
()(8.5) 2.78i i x x i =--=-∑,其中i x
为抽取的第个零件的尺寸,
1,2,,16i =⋅⋅⋅.
(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)x
s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01

附:样本(,)i i x y (
1,2,,)i n =⋅⋅⋅
的相关系数()()
n
i
i
x x y y r --=
∑,
0.09≈.
【答案】(1)18.0-≈r ,可以;(2)(ⅰ)需要;(ⅱ)均值与标准差估计值分别为10.02,0.09.
16
()(8.5)
0.18i
x x i r --=
=
≈-∑.
由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变
小.
(2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在
(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.
(ii )剔除离群值,即第13个数据,剩下数据的平均数为1
(169.979.22)10.0215
⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.
16
2221
160.212169.971591.134i
i x
==⨯+⨯≈∑,
剔除第13个数据,剩下数据的样本方差为
221
(1591.1349.221510.02)0.00815
--⨯≈,
0.09≈. 【考点】相关系数,方差均值计算 学%
【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.
28.【2017课标II ,文19】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ), 其频率分布直方图如下:
(1) 记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;
(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。

附:

2
2
()()()()()
n ad bc K a b c d a c b d -=
++++
【答案】(1)0.62.(2)有把握(3)新养殖法优于旧养殖法
试题解析:(1)旧养殖法的箱产量低于50kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62 因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表
K 2=20066-343815.705
10010096104
⨯⨯⨯⨯⨯⨯(62)

由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.
(3)箱产量的频率分布直方图平均值(或中位数)在45kg 到50kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法. 【考点】频率分布直方图
【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1; (2)频率分布直方图中均值等于组中值与对应概率乘积的和 (3)均值大小代表水平高低,方差大小代表稳定性
29.【2017北京,文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:20,30),30,40),┄,80,90],并整理得到如下频率分布直方图:
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间40,50)内的人数; (Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试
估计总体中男生和女生人数的比例. 【答案】(Ⅰ)0.4;(Ⅱ)5人;(Ⅲ)3
2
. 【解析】
试题分析:(Ⅰ)根据频率分布直方图,表示分数大于等于70的概率,就求后两个矩形的面积;(Ⅱ)根据公式频数等于100⨯频率求解;(Ⅲ)首先计算分数大于等于70分的总人数,根据样本中分数不小于70的男女生人数相等再计算所有的男生人数,100-男生人数就是女生人数. 试题解析:(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为
(0.020.04)100.6+⨯=,所以样本中分数小于70的频率为10.60.4-=.
所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.
(Ⅲ)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=, 所以样本中分数不小于70的男生人数为1
60302

=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=,男生和女生人数的比例为
60:403:2=.
所以根据分层抽样原理,总体中男生和女生人数的比例估计为3:2. 【考点】频率分布直方图的应用
【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,。

相关文档
最新文档