(2021年整理)云南中考数学总复习专题训练:专题五阅读理解题(含新定义)
2021年云南省数学中考试题(含答案)
个小题1居中,故这五的值为函数的取值范围是.已知扇形的圆心角为半径为,则该扇形的面积为(结果保留).观察下列图形的排列规律(其中、、分别表示三角形、正方形、五角星),若第一个图形是三角形,则第18个图形是 .(填图形名称)[答案] 五角星解: 图形的排列规律是3的循环,而余数为,所以第18个图形也就是第三个图形,即五角星.三、解答题(本大题共9个小题,满分58分)(本小题5分)如图,在中, ,点是边上的一点,,且, 过点作交于点。
求证:[证明] 如图, (两直线平行,同位角相等) 又,在中⒓y =x ⒔120︒3cm 2m π▲■★▲■★▲■★▲■★▲■★▲■★▲■★1836÷=0DM AC =M ME BC ∥AB E ABC MED∆≅∆ME BC ∥DEM B ∴∠=∠DM AB ⊥ 90MDE ∴∠=︒90C ∠=︒MDE C∴∠=∠ABC MED ∆∆和(本小题6分)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少件,求该企业捐给甲、乙两所学校的矿泉水各多少件?[答案] 捐给甲校1200件,捐给乙校800件.解:(一元法)设该企业捐给乙校的矿泉水件数是,则捐给甲校的矿泉水件数是,依题意得方程:, 解得:, 所以,该企业捐给甲校的矿泉水1200件,捐给乙校的矿泉水800件.(二元法)设该企业捐给甲校的矿泉水件数是,捐给乙校的矿泉水件数是,依题意得方程组: 解得:,所以,该企业捐给甲校的矿泉水是1200件,捐给乙校的矿泉水是800件.(本小题7分)某同学在学习了统计知识后,就下表所列的5种用牙不良习惯对全班每一个同学进行了问卷调查(每个被调查的同学必须选择而且只能在5种用牙不良习惯中选择一项),调查结果如下统计图所示:根据以上统计图提供的信息,回答下列问题:(1)这个班共有多少学生?()()()B DEM C MDE AC DM⎧∠=∠⎪∠=∠⎨⎪=⎩已证已证已知ABCMED ∴∆≅∆()AAS ⒘2000400x 2400x -(2400)2000x x -+=800x =24001200x -=x y 20002400x y x y +=⎧⎨=-⎩1200x =800y =⒙(2)这个班中有类用牙不良习惯的学生多少人?占全班人数的百分比是多少?(3)请补全条形统计图.(4)根据调查结果,估计这个年级名学生中有类用牙不良习惯的学生多少人?[答案] (1)60人。
2021年中考数学专题复习:新定义和阅读理解题
2021年中考数学专题复习:新定义和阅读理解题“新定义”题指给出一个从未接触过的新规定,要求现学现用,“给什么,用什么”是应用新“定义”解题的基本思路.这类试题的特点:源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等等.在解决它们过程中又可产生了许多新方法、新观念,增强了学生创新意识.阅读理解题源于课本,高于课本,既考查阅读能力,又综合考查学生的数学意识和数学综合应用能力,尤其侧重于考查学生的数学思维能力和创新意识. 这类题目的结构一般为:给出一段阅读材料,学生通过阅读,将材料所给的信息加以搜集整理,在此基础上,按照题目的要求进行推理解答.一、新定义1.对于任意两个不相等的数a,b定义一种新运算“⊕”如下:a⊕b=a+ba-b,如:3⊕2=3+23-2=5,那么12⊕4=________.2.定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4-3)-1=7-1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=________.4.用⊕定义一种新运算:对于任意实数m和n,规定m⊕n=m2n-mn-3n,如:1⊕2=12×2-1×2-3×2=-6.(1)求(-2)⊕3;(2)若3⊕m≥-6,求m的取值范围,并在所给的数轴上表示出解集.5.定义:分数nm(m,n为正整数且互为质数)的连分数1a1+1a2+1a3+…(其中a1,a2,a3,…为整数,且等式右边的每一个分数的分子都为1),记作n m =⊕ 1a 1+1a 2+1a 3+…,例如719=⊕1197=12+57=12+175=12+11+25=12+11+152=12+11+12+12,719的连分数为12+11+12+12,记作719=⊕12+11+12+12,则________=⊕11+12+13.6.定义一种新运算⎠⎛b a n·x n -1dx =a n -b n ,例如⎠⎛n k 2xdx =k 2-n 2,若⎠⎛5mm -x -2dx =-2,则m=( )A .-2 B. -25 C .2 D.257.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )A .y =-xB .y =x +2C .y =2xD .y =x 2-2x8.对于一个函数,自变量x 取c 时,函数值y 等于0,则称c 为这个函数的零点.若关于x 的二次函数y =-x 2-10x +m(m≠0)有两个不相等的零点x 1,x 2(x 1<x 2),关于x 的方程x 2+10x -m -2=0有两个不相等的非零实数根x 3,x 4(x 3<x 4),则下列关系式一定正确的是( A )A .0<x 1x 3<1 B.x 1x 3>1 C .0<x 2x 4<1 D.x 2x 4>1二、阅读理解题1.阅读理解:已知两点M(x 1,y 1),N(x 2,y 2),则线段MN 的中点K(x ,y)的坐标公式为:x =x 1+x 22,y =y 1+y 22.如图,已知点O 为坐标原点,点A(-3,0),⊕O 经过点A ,点B 为弦PA 的中点.若点P(a ,b),则有a ,b 满足等式:a 2+b 2=9.设B(m ,n),则m ,n 满足的等式是( )A .m 2+n 2=9 B.922322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-n mC .(2m +3)2+(2n)2=3D .(2m +3)2+4n 2=9 2.已知点P(x 0,y 0)到直线y =kx +b 的距离可表示为d =||kx 0+b -y 01+k 2,例如:点(0,1)到直线y =2x +6的距离d =||2×0+6-11+22= 5.据此进一步可得两条平行线y =x 和y =x -4之间的距离为________.3.阅读材料:设a→=(x 1,y 1),b→=(x 2,y 2),如果a→⊕b→,则x 1·y 2=x 2·y 1.根据该材料填空,已知a→=(4,3),b→=(8,m),且a→⊕b→,则m =________. 4.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x =N(a >0且a≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 525可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a (M·N)=log a M +log a N(a >0,a≠1,M >0,N >0),理由如下: 设log a M =m ,log a N =n ,则M =a m ,N =a n , ⊕M·N =a m ·a n =a m+n,由对数的定义得m +n =log a (M·N) 又⊕m +n =log a M +log a N , ⊕log a (M·N)=log a M +log a N. 根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式___________________________________;(2)log a MN =__________.(a >0,a≠1,M >0,N >0) (3)拓展运用:计算log 69+log 68-log 62=________. 5.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依次类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为________,第5项是________.(2)如果一个数列a 1,a 2,a 3,…,a n …,是等差数列,且公差为d ,那么根据定义可得到:a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,…,a n -a n -1=d ,….所以 a 2=a 1+da 3=a 2+d =(a 1+d)+d =a 1+2d , a 4=a 3+d =(a 1+2d)+d =a 1+3d , ……由此,请你填空完成等差数列的通项公式: a n =a 1+(________)d.(3)-4041是等差数列-5,-7,-9…的第________项. 6.阅读下面的材料:如果函数y =f(x)满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f(x 1)<f(x 2),则称f(x)是增函数; (2)若x 1<x 2,都有f(x 1)>f(x 2),则称f(x)是减函数. 例题:证明函数f(x)=6x (x >0)是减函数. 证明:设0<x 1<x 2,f(x 1)-f(x 2)=6x 1-6x 2=6x 2-6x 1x 1x 2=6(x 2-x 1)x 1x 2. ⊕0<x 1<x 2,⊕x 2-x 1>0,x 1x 2>0.⊕6(x 2-x 1)x 1x 2>0.即f(x 1)-f(x 2)>0. ⊕f(x 1)>f(x 2).⊕函数f(x)=6x (x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f(x)=1x2+x(x <0),f(-1)=1(-1)2+(-1)=0,f(-2)=1(-2)2+(-2)=-74. (1)计算:f(-3)=________,f(-4)=________;(2)猜想:函数f(x)=1x 2+x(x <0)是________函数(填“增”或“减”).参考答案一 1.2 2.C 3.1.14.解:(1)(-2)※3=(-2)2×3-(-2)×3-33=43+23-33=3 3.(2)∵3※m ≥-6,∴32·m -3m -3m ≥-6. 解得:m ≥-2.将解集表示在数轴上如下:5.710 6.B 7.B 8.A二 1.D 2.22 3.6 4.(1)4=log 381(或log 381=4) (2)log a M -log a N (3)2 5.(1)5 25 (2)n -1 (3)2019 6.(1)-269 -6316 (2)增。
2021年云南省中考数学试题(word版,含答案解析)
2021年云南省中考数学试卷(共23题,满分120分)一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.(4分)某地区2021年元旦的最高气温为9C ︒,最低气温为2C ︒-,那么该地区这天的最低气温比最高气温低( ) A .7C ︒B .7C ︒-C .11C ︒D .11C ︒-2.(4分)如图,直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2(∠= )A .60︒B .55︒C .50︒D .45︒3.(4分)一个10边形的内角和等于( ) A .1800︒B .1660︒C .1440︒D .1200︒4.(4分)在ABC ∆中,90ABC ∠=︒.若100AC =,3sin 5A =,则AB 的长是( ) A .5003B .5035C .60D .805.(4分)若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是( ) A .1a <B .1aC .1a 且0a ≠D .1a <且0a ≠6.(4分)按一定规律排列的单项式:2a ,34a ,49a ,516a ,625a ,⋯,第n 个单项式是( ) A .2n l n a +B .21n n a -C .1n n n a +D .2(1)n n a +7.(4分)如图,等边ABC ∆的三个顶点都在O 上,AD 是O 的直径.若3OA =,则劣弧BD 的长是( )A .2π B .π C .32π D .2π8.(4分)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援.某公司在疫情期间为疫区生产A 、B 、C 、D 四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A .单独生产B 型帐篷的天数是单独生产C 型帐篷天数的3倍B .单独生产B 型帐篷的天数是单独生产A 型帐篷天数的1.5倍C .单独生产A 型帐篷与单独生产D 型帐篷的天数相等 D .每天单独生产C 型帐篷的数量最多二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)已知a ,b 21(2)0a b +-=,则a b -= .10.(3分)若反比例函数的图象经过点(1,2)-,则该反比例函数的解析式(解析式也称表达式)为 . 11.(3分)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为 .12.(3分)如图,在ABC ∆中,点D ,E 分别是BC ,AC 的中点,AD 与BE 相交于点F .若6BF =,则BE 的长是 .13.(3分)分解因式:34x x -= .14.(3分)已知ABC ∆的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC ∆的一条边长为6,则点D 到直线AB 的距离为 .三、解答题(本大题共9小题,共70分)15.(6分)计算:201tan 452(3)(21)2(6)23-︒-++-+⨯-. 16.(6分)如图,在四边形ABCD 中,AD BC =,AC BD =,AC 与BD 相交于点E .求证:DAC CBD ∠=∠.17.(8分)垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析. (1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是 (填写“方案一”、“方案二”或“方案三” );(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x 分)样本容量 平均分 及格率优秀率最高分 最低分 100 83.5995%40%10052分数段 5060x <6070x <7080x <8090x <90100x频数5 7 18 30 40结合上述信息解答下列问题:①样本数据的中位数所在分数段为 ;②全校1565名学生,估计竞赛分数达到“优秀”的学生有 人.18.(6分)“30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措.机场、车站、出租车、景区、手机短信⋯⋯,“30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质.刚刚过去的“五⋅一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用A 、B 两种客房一天,供当天使用.下面是有关信息:请根据上述信息,分别求今年5月1日该旅行社租用的A 、B 两种客房每间客房的租金,19.(7分)为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”.该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记为1x 、2x ,1名男生,记为1y ;在八年级选出3名同学,其中1名女生,记为3x ,2名男生,分别记为2y 、3y .现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数; (2)求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P .20.(8分)如图,四边形ABCD 是矩形,E 、F 分别是线段AD 、BC 上的点,点O 是EF 与BD 的交点.若将BED ∆沿直线BD 折叠,则点E 与点F 重合. (1)求证:四边形BEDF 是菱形;(2)若2ED AE =,33AB AD ⋅=,求EF BD ⋅的值.21.(8分)某鲜花销售公司每月付给销售人员的工资有两种方案. 方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l ,射线2l 分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y (单位:元)和2y (单位:元)与其当月鲜花销售量x (单位:千克)(0)x 的函数关系. (1)分别求1y 、2y 与x 的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?22.(9分)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥. (1)求证:DC 是O 的切线; (2)若23OA OD =,3BE =,求DA 的长.23.(12分)已知抛物线22y x bx c =-++经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小.设r 是抛物线22y x bx c =-++与x 轴的交点(交点也称公共点)的横坐标,97539521601r r r r r m r r +-++-=+-. (1)求b 、c 的值;(2)求证:4222160r r r -+=;(3)以下结论:1m <,1m =,1m >,你认为哪个正确?请证明你认为正确的那个结论.2021年云南省中考数学参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.(4分)某地区2021年元旦的最高气温为9C ︒,最低气温为2C ︒-,那么该地区这天的最低气温比最高气温低( ) A .7C ︒B .7C ︒-C .11C ︒D .11C ︒-【分析】根据题意,列出减法算式计算即可. 【解答】解:9(2)--92=+11(C)︒=,故选:C .【点评】本题考查了有理数的减法的应用,解题的关键是:减去一个数等于加上这个数的相反数. 2.(4分)如图,直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2(∠= )A .60︒B .55︒C .50︒D .45︒【分析】由对顶角相等可得,3155∠=∠=︒,又//a b ,由两直线平行,同位角相等可得,2355∠=∠=︒. 【解答】解:如图,155∠=︒,1∠和3∠是对顶角,3155∴∠=∠=︒, //a b , 2355∴∠=∠=︒.故选:B .【点评】本题主要考查平行线的性质,对顶角相等等内容,题目比较简单,掌握相关定理可快速解答. 3.(4分)一个10边形的内角和等于( ) A .1800︒B .1660︒C .1440︒D .1200︒【分析】根据多边形的内角和等于(2)180n -⋅︒即可得解. 【解答】解:根据多边形内角和公式得,10边形的内角和等于:(102)180********-⨯︒=⨯︒=︒,故选:C .【点评】此题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键. 4.(4分)在ABC ∆中,90ABC ∠=︒.若100AC =,3sin 5A =,则AB 的长是( ) A .5003B .5035C .60D .80【分析】利用三角函数定义计算出BC 的长,然后再利用勾股定理计算出AB 长即可. 【解答】解:100AC =,3sin 5A =, 60BC ∴=,2280AB AC BC ∴=-=,故选:D .【点评】此题主要考查了锐角三角函数的定义,关键是掌握正弦定义.5.(4分)若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是( ) A .1a <B .1aC .1a 且0a ≠D .1a <且0a ≠【分析】由一元二次方程2210ax x ++=有两个不相等的实数根,即可得判别式△0>,0a ≠,继而可求得a 的范围.【解答】解:一元二次方程2210ax x ++=有两个不相等的实数根,0a ∴≠,△224241440b ac a a =-=-⨯⨯=->,解得:1a <, 故选:D .【点评】此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△0>.6.(4分)按一定规律排列的单项式:2a ,34a ,49a ,516a ,625a ,⋯,第n 个单项式是( ) A .2n l n a +B .21n n a -C .1n n n a +D .2(1)n n a +【分析】观察字母a 的系数、次数的规律即可写出第n 个单项式. 【解答】解:第1个单项式22111a a +=⋅, 第2个单项式322142a a +=⋅, 第3个单项式423193a a +=⋅, 第4个单项式5241164a a +=⋅,⋯⋯∴第(n n 为正整数)个单项式为21n n a +,故选:A .【点评】本题主要考查数字的变化规律,解题的关键是分别从系数、字母指数寻找其与序数间的规律. 7.(4分)如图,等边ABC ∆的三个顶点都在O 上,AD 是O 的直径.若3OA =,则劣弧BD 的长是( )A .2πB .πC .32π D .2π【分析】连接OB、BD,由等边ABC∆,可得60D C∠=∠=︒,且OB OD=,故BOD∆是等边三角形,60BOD∠=︒,又半径3OA=,根据弧长公式即可得劣弧BD的长.【解答】解:连接OB、BD,如图:等边ABC∆,60C∴∠=︒,弧AB=弧AB,60D C∴∠=∠=︒,OB OD=,BOD∴∆是等边三角形,60BOD∴∠=︒,半径3OA=,∴劣弧BD的长为603180ππ⨯=,故选:B.【点评】本题考查等边三角形及圆的弧长,解题的关键是掌握弧长公式并能熟练应用.8.(4分)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援.某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A .单独生产B 型帐篷的天数是单独生产C 型帐篷天数的3倍B .单独生产B 型帐篷的天数是单独生产A 型帐篷天数的1.5倍C .单独生产A 型帐篷与单独生产D 型帐篷的天数相等 D .每天单独生产C 型帐篷的数量最多【分析】由条形统计图可得生产四种型号的帐篷的数量,分别求出四种帐篷所需天数即可判断各选项. 【解答】解:A 、单独生产B 帐篷所需天数为2000030%41500⨯=(天),单独生产C 帐篷所需天数为2000015%13000⨯=(天),∴单独生产B 型帐篷的天数是单独生产C 型帐篷天数的4倍,此选项错误;B 、单独生产A 帐篷所需天数为2000045%24500⨯=(天),∴单独生产B 型帐篷的天数是单独生产A 型帐篷天数的2倍,此选项错误;C 、单独生产D 帐篷所需天数为2000010%21000⨯=(天),∴单独生产A 型帐篷与单独生产D 型帐篷的天数相等,此选项正确;D 、单由条形统计图可得每天单独生产A 型帐篷的数量最多,此选项错误;故选:C .【点评】本题考查扇形统计图、条形统计图的综合运用,解题关键在于结合两个统计图,找到总数与各部分的关系.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)已知a ,b 2(2)0b -=,则a b -= 3- . 【分析】根据两个非负数的和是0,因而两个非负数同时是0,即可求解.【解答】解:2(2)0b -=10,2(2)0b -,10a ∴+=,20b -=,解得1a =-,2b =,123a b ∴-=--=-.故答案为:3-.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.10.(3分)若反比例函数的图象经过点(1,2)-,则该反比例函数的解析式(解析式也称表达式)为2y x=-. 【分析】先设ky x =,再把已知点的坐标代入可求出k 值,即得到反比例函数的解析式. 【解答】解:设k y x=, 把点(1,2)-代入函数ky x=得2k =-, 则反比例函数的解析式为2y x=-,故答案为2y x=-.【点评】主要考查了用待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键. 11.(3分)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为 3π .【分析】由三视图得此几何体为:圆柱,并得到球的半径、圆柱的底面半径和高,由体积公式计算出几何体的体积.【解答】解:由三视图知几何体为圆柱, 且底面圆的半径是1,高是3,∴这个几何体的体积为:2133ππ⨯⨯=.故选:3π.【点评】本题考查由三视图求体积,解题的关键是熟练掌握三视图的作图规则,由三视图还原出实物图的几何特征12.(3分)如图,在ABC∆中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若6BF=,则BE的长是9.【分析】由题意可知,DE是ABC∆的中线,则//DE AB,且12DE AB=,可得12DE EFAB BF==,代入BF的长,可求出EF的长,进而求出BE的长.【解答】解:如图,在ABC∆中,点D,E分别是BC,AC的中点,//DE AB ∴,且12DE AB=,∴12 DE EFAB BF==,6BF=,3EF∴=.9BE BF EF∴=+=.故答案为:9.【点评】本题主要考查三角形中位线,平行线分线段成比例等知识,熟练掌握相关知识是解题基础.13.(3分)分解因式:34x x-=(2)(2)x x x+-.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x-,2(4)x x=-,(2)(2)x x x=+-.故答案为:(2)(2)x x x+-.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.14.(3分)已知ABC ∆的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC ∆的一条边长为6,则点D 到直线AB 的距离为322或3或626-或632- .【分析】分两种情况:①当B 为直角顶点时,过D 作DH AB ⊥于H ,由AHD ∆和BHD ∆是等腰直角三角形可得AH D H BH ==,故12DH BC =,若6AC =,则322DH =,即点D 到直线AB 的距离为322;若6AB BC ==,则点D 到直线AB 的距离为3;②当B 不是直角顶点时,过D 作DH BC ⊥于H ,由CDH ∆是等腰直角三角,得AD DH CH ==,证明()ABD HBD AAS ∆≅∆,有AB BH =,若6AB AC ==时,则此时点D 到直线AB 的距离为626-;若6BC =,则此时点D 到直线AB 的距离为632-. 【解答】解:①当B 为直角顶点时,过D 作DH AB ⊥于H ,如图:ABC ∆的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D ,ABC ∴∆是等腰直角三角形,45ABD ADH ∠=∠=︒,12AD CD AC ==, AHD ∴∆和BHD ∆是等腰直角三角形, AH D H BH ∴==,12DH BC ∴=, 若6AC =,则cos4532BC AC =⋅︒=,此时32DH =,即点D 到直线AB 32若6AB BC ==,则132DH BC ==,即点D 到直线AB 的距离为3;②当B 不是直角顶点时,过D 作DH BC ⊥于H ,如图:ABC ∆的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D , CDH ∴∆是等腰直角三角,AD DH CH ==,在ABD ∆和HBD ∆中,ABD HBD A DHBBD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD HBD AAS ∴∆≅∆,AB BH ∴=,若6AB AC ==时,6BH =,2262BC AB AC +=626CH BC BH ∴=-=,626AD ∴=,即此时点D 到直线AB 的距离为626;若6BC =,则cos4532AB BC =⋅︒=,32BH ∴= 632CH ∴=-632AD ∴=-D 到直线AB 的距离为632-综上所述,点D 到直线AB 32或3或626或632- 32或3或626或632- 【点评】本题考查正方形、等腰直角三角形性质及应用,涉及角平分线、勾股定理、解直角三角形等知识,解题的关键是理解题意,正确分类,画出图形.三、解答题(本大题共9小题,共70分)15.(6分)计算:201tan 452(3)(21)2(6)23-︒-++--+⨯-. 【分析】先分别计算乘方,特殊角三角函数值,零指数幂,负整数指数幂,然后在按照有理数的混合运算顺序和法则进行计算.【解答】解:原式1191422=++--6=.【点评】本题考查有理数的混合运算,特殊角三角函数值,零指数幂及负整数指数幂,掌握运算顺序准确计算是解题关键.16.(6分)如图,在四边形ABCD 中,AD BC =,AC BD =,AC 与BD 相交于点E .求证:DAC CBD ∠=∠.【分析】证明()CDA DCB SSS ∆≅∆,即可求解. 【解答】证明:在DCA ∆和DCB ∆中,AD BCAC BD DC CD =⎧⎪=⎨⎪=⎩, ()CDA DCB SSS ∴∆≅∆,DAC CBD ∴∠=∠.【点评】本题考查的是全等三角形的判定与性质,在判定三角形全等时,关键是选择恰当的判定条件. 17.(8分)垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析. (1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是方案三(填写“方案一”、“方案二”或“方案三”);(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)5060x<6070x<7080x<8090x<90100x57183040结合上述信息解答下列问题:①样本数据的中位数所在分数段为;②全校1565名学生,估计竞赛分数达到“优秀”的学生有人.【分析】(1)根据抽样的代表性、普遍性和可操作性可知,方案三符合题意;(2)①根据样本的中位数,估计总体中位数所在的范围;②样本中“优秀”人数占调查人数的40100,因此估计总体1565人的40%是“优秀”.【解答】解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本进行调查分析,是最符合题意的.故答案为:方案三;(2)①样本总数为:57183040100++++=(人),成绩从小到大排列后,处在中间位置的两个数都在8090x<,因此中位数在8090x<组中;②由题意得,401565626100⨯=(人),故答案为:①8090x<;②626.【点评】本题考查抽样调查、中位数的意义,样本估计总体是统计中常用的方法.18.(6分)“30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措.机场、车站、出租车、景区、手机短信⋯⋯,“30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质.刚刚过去的“五⋅一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用A 、B 两种客房一天,供当天使用.下面是有关信息:请根据上述信息,分别求今年5月1日该旅行社租用的A 、B 两种客房每间客房的租金,【分析】设每间B 客房租金为x 元,根据“用2000元租到A 客房数量与用1600元租到B 客房数量相同”列出方程并解答.【解答】解:设每间B 客房租金为x 元,则每间A 客房租金为(40)x +元,根据题意可得:2000160040x x=+, 解得:160x =,经检验:160x =是原分式方程的解,且符合实际,16040200+=元,∴每间A 客房租金为200元,每间B 客房租金为160元.【点评】本题考查了分式方程的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.19.(7分)为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”.该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记为1x 、2x ,1名男生,记为1y ;在八年级选出3名同学,其中1名女生,记为3x ,2名男生,分别记为2y 、3y .现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数;(2)求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P.【分析】(1)根据题意和题目中的数据,可以画出相应的树状图,并写出一共有多少种可能性;(2)根据(1)中的结果和树状图,可以得到选出的代表队中的两名同学恰好是一名男生和一名女生的概率P.【解答】解:(1)树状图如下图所示:由上可得,出现的代表队一共有9种可能性;(2)由(1)可知,一共9种可能性,其中一男一女出现有5种,故选出的代表队中的两名同学恰好是一名男生和一名女生的概率59P=.【点评】本题考查列表法与树状图法,解答本题的关键是画出相应的树状图,求出相应的概率.20.(8分)如图,四边形ABCD是矩形,E、F分别是线段AD、BC上的点,点O是EF与BD的交点.若将BED∆沿直线BD折叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若2ED AE=,33AB AD⋅=,求EF BD⋅的值.【分析】(1)证明OBF ODE∆≅∆,得到OF OE=即可得出结论.(2)由2ED AE=,33AB AD⋅=BEDF的面积,进而可得出EF BD⋅的值.【解答】解:(1)证明:矩形ABCD沿EF折叠,使B,D重合,OB OD∴=,EF BD⊥,四边形ABCD是矩形,90C∴∠=︒,//AD BC,ODE OBF∴∠=∠,在OBF ∆和ODE ∆中,OBF ODE OB ODBOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()OBF ODE ASA ∴∆≅∆,OE OF ∴=,OB OD =,∴四边形BFDE 是平行四边形,EF BD ⊥,∴四边形BFDE 是菱形.(2)如图,AB AD ⋅=,12ABD S AB AD ∆∴=⋅ 2ED AE =,23ED AD ∴=, :2:3BDE ABD S S ∆∆∴=,BDE S ∆∴=∴菱形BEDF的面积122BDE EF BD S ∆=⋅==EF BD ∴⋅= 【点评】本题考查了翻折变换的性质、菱形的判定与性质、矩形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.21.(8分)某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l ,射线2l 分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y (单位:元)和2y (单位:元)与其当月鲜花销售量x (单位:千克)(0)x 的函数关系.(1)分别求1y 、2y 与x 的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?【分析】(1)由待定系数法就可以求出解析式;(2)利用(1)中求出的两函数的解析式,把70x =代入求解即可.【解答】解:(1)设11y k x =,根据题意得140120k =,解得130k =,130(0)y x x ∴=;设22y k x b =+,根据题意,得2800401200b k b =⎧⎨+=⎩,解得210800k b =⎧⎨=⎩,210800(0)y x x ∴=+;(2)当70x =时,1307021002000y =⨯=>;2107080015002000y =⨯+=<;∴这个公司采用了方案一给这名销售人员付3月份的工资.【点评】本题考查了待定系数法求一次函数的解析式的运用,一元一次不等式的运用,设计方案的运用,解答时认真分析,弄清函数图象的意义是关键.22.(9分)如图,AB是O的直径,点C是O上异于A、B的点,连接AC、BC,点D在BA的延长线上,且DCA ABC∠=∠,点E在DC的延长线上,且BE DC⊥.(1)求证:DC是O的切线;(2)若23OAOD=,3BE=,求DA的长.【分析】(1)连接OC,由等腰三角形的性质得出OCB OBC∠=∠,由圆周角定理得出90ACB∠=︒,证出90DCO∠=︒,则可得出结论;(2)设2OA OB x==,3OD x=,证明DCO DEB∆∆∽,由相似三角形的性质得出35OC ODBE DB==,求出OC的长,则可求出答案.【解答】(1)证明:连接OC,OC OB=,OCB OBC∴∠=∠,ABC DCA∠=∠,OCB DCA∴∠=∠,又AB 是O 的直径,90ACB ∴∠=︒,90ACO OCB ∴∠+∠=︒,90DCA ACO ∴∠+∠=︒,即90DCO ∠=︒,DC OC ∴⊥, OC 是半径,DC ∴是O 的切线;(2)解:23OA OD =,且OA OB =, 设2OA OB x ==,3OD x =,5DB OD OB x ∴=+=, ∴35OD DB =, 又BE DC ⊥,DC OC ⊥,//OC BE ∴,DCO DEB ∴∆∆∽, ∴35OC OD BE DB ==, 3BE =,95OC ∴=, 925x ∴=, 910x ∴=, 910AD OD OA x ∴=-==, 即AD 的长为910. 【点评】本题考查了圆周角定理、平行线的性质、等腰三角形的性质、切线的判定、相似三角形的判定与性质等知识;熟练掌握切线的判定与相似三角形的判定和性质是解题的关键.23.(12分)已知抛物线22y x bx c =-++经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小.设r 是抛物线22y x bx c =-++与x 轴的交点(交点也称公共点)的横坐标,97539521601r r r r r m r r +-++-=+-. (1)求b 、c 的值;(2)求证:4222160r r r -+=;(3)以下结论:1m <,1m =,1m >,你认为哪个正确?请证明你认为正确的那个结论.【分析】(1)当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,可得对称轴为直线4x =-,且抛物线22y x bx c =-++经过点(0,2)-,列出方程组即可得答案;(2)由r 是抛物线22162y x x =---与x 轴的交点的横坐标,可得2810r r ++=,218r r +=-,两边平方得222(1)(8)r r +=-,4222164r r r ++=,即可得结果4222160r r r -+=;(3)1m >正确,可用比差法证明,由(2)可得426210r r -+=,即753620r r r -+=,而975395952111601601r r r r r r m r r r r +-++--=-=+-+-,再由2810r r ++=,判断0r <,956010r r +-<, 故950601r r r >+-,从而1m >. 【解答】(1)解:22y x bx c =-++经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,即对称轴为直线4x =-, ∴244c b =-⎧⎪⎨-=-⎪⎩-,解得162b c =-⎧⎨=-⎩; (2)证明:由题意,抛物线的解析式为22162y x x =---, r 是抛物线22162y x x =---与x 轴的交点的横坐标,221620r r ∴++=,2810r r ∴++=,218r r ∴+=-222(1)(8)r r ∴+=-,4222164r r r ∴++=,4222160r r r ∴-+=;(3)1m >正确,理由如下:由(2)知:4222160r r r -+=;426210r r ∴-+=,753620r r r ∴-+=, 而9753952111601r r r r r m r r +-++--=-+- 9753959521(601)601r r r r r r r r r +-++--+-=+- 7539562601r r r r r r -++=+- 95601r r r =+-, 由(2)知:2810r r ++=,281r r ∴=--,210r --<,80r ∴<,即0r <,956010r r ∴+-<, ∴950601r r r >+-, 即10m ->,1m ∴>.【点评】本题考查二次函数综合知识,涉及二次函数图象上的点坐标、对称轴、增减性、与x 轴交点坐标等知识,解题的关键是用比差法时,判断r 和95601r r +-的符号.。
中考数学复习新定义题型专题训练
中考数学复习新定义题型专题训练典例精析:例1.我们把分子为1的分数叫做理想分数,如,,,111234任何一个理想分数都可以写成两个不同理想分数的和,如()=+;=+;=+;=1111111111236341245209 ;根据对上述式子的观察思考:如果理想分数111n a b=+(n 是不小于2的正整数),那么a b += (用含n 的点评:本题可以视为“规律性的题型中的定义”,主要是根据定义(本题是“理想分数”)计算推理发现规律,从实例规律迁移解决问题.2.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是1112=--,1-的差倒数为()11112=--,现已知11x 3=-,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依次类推,则 2020x =.例2.我们把a b c d 称作二阶行列式,规定它的运算法则为a bad bc c d=-,比如:232534245=⨯-⨯=-,如果有23x01x->,则x 的取值范围为 . 分析:根据二阶行列式规定的运算法则可知:()2x 3x 10--⨯> ,解得:x 1>;∴故应填:x 1>.点评:本题可以视为“运算建模题型中定义”,主要是根据定义所规定的运算法则进行运算推理来解决问题;这类题可以串联起数学的多个知识点,是中考中出现频率比较高的一种题型.追踪练习:1.对于点(),x y 的一次操作变换()(),,1p x y x y x y =+-,且规定()()(),,n 1n 1p x y P P x y -=(n 为大于1的整数);如()(),,1p 1231=-,()()()(),,(.),2111p 12P 12P 3124==-=,(),3p 12=((,))(,)(,)122P p 12p 2462==-,则(,)2019p 11-= ( )A.(),100902-B.(),101002-C.(),100902D.()101002、2.对于正数x ,如果规定()1f x 1x =+,例如:()11f 4145==+,114f 14514⎛⎫== ⎪⎝⎭+;根据上面的规定计算()()()()111f 2019f 2018f 2f 1f f f 220182019⎛⎫⎛⎫⎛⎫++++++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 的值为, ()()()()111f 2020f 2019f 2f 1f f f 220192020⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值二阶行列式运算法则”,计算填空:; ⑵.x 3x 2x 4x 3+---= ;⑶.2x x 26x 2x-=+,则x = .4.若定义()a,b ☆()m,n am bn =+ ,则⎛⋅ ⎝= .5.对于两个不相等的实数a,b,定义一种新的运算如下,)a b a b 0=+> ,如:32= ()654 的值.6.我们定义a b ad bc c d =-,比如:()121623661236-=-⨯-⨯=--=-;若x,y 均为点评:本题可以视为“探索题型中的新定义”,主要是根据定义计算推理论证,这类题一般要在定义的前提下进行匪类讨论,往往和存在性问题交融在一起.追踪练习:1.若平面直角坐标系中,两点关于过原点的一条直线成轴对称,则这两点就是互为镜面点, 这条直线叫镜面直线,如(),A 23)和(),B 32是以x y =为镜面直线的镜面点. ⑴.若(),M 41和(),N 14--是一对镜面点,则镜面直线为 .⑵.若以y =为镜面直线,则(),E 20-的镜面点为 .2.如图,A,B 是⊙O 上的两个顶点,P 是⊙O 上的动点(P 不与A,B 重合),我们称APB∠是⊙O 上关于点A,B 的滑动角.3.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内ABCD 的准内点.⑴.如图2,AFD ∠与DEC ∠的角平分线相交于点P .求证:点P 是四边形ABCD 的准内点.⑵.分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)⑶.判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.( )②任意凸四边形一定只有一个准内点.( )③若点P 是四边形ABCD 的准内点,则PA PB PC PD +=+或PA PC PB PD +=+( ).例4. 对于实数a b 、,定义运算某“*”:()()22a ab a b a b ab b a b ⎧-≥⎪=⎨-<⎪⎩*.例如42*,因为42>,所以2424428=-⨯=*.若12x x 、是一元二次方程2x 5x 60-+=的两个根,则*12x x = .分析:∵12x x 、是一元二次方程2x 5x 60-+=的两个根∴()()x 2x 30--= 解得:x 3= 或x 2=①.当12x 3,x 2== 时,1x *2x =23233-⨯=;②.当12x 2,x 3== 时,1x *2x =22333⨯-=-.故应填:3或3-. 点评:本题可以视为“开放题型中的新定义”,本题的结论是开放的,常常要根据条件分类讨论,结合对应的定义法则进行运算推理(实际上是同一名称多种形式),这类题容易漏解.追踪练习:1. 对实数a ☆b ()()-⎧>≠⎪=⎨≤≠⎪⎩b b a a b,a 0a a b,a 0 ;比如2☆3-==3128,计算[2☆()-4]× [()-4☆()-2]= .2.在平面直角坐标系xOy 中,对于任意两点()111P x ,y 和()222P x ,y 的“非常距离”,给出以下概念:若1212x x y y -≥- ,则点1P 和点2P 的“非常距离”距离为12x x -;.若1212x x y y -<- ,则点1P 和点2P 的“非常距离”距离为12y y -.例如:点()1P 1,2和()2P 3,5。
最新中考数学新定义题型专题复习资料
新定义型专题(一)专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力(二)解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.(三)考点精讲考点一:规律题型中的新定义 例1.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= .考点二:运算题型中的新定义例2.对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a ba b a b a b+=+(>)﹣,如:323*2532+==﹣,那么6*(5*4)= .例3.我们定义ab ad bc cd=-,例如2345=2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1<14x y <3,则x+y 的值是 .考点三:探索题型中的新定义例4.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD 的准内点.(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)(3)判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.()②任意凸四边形一定只有一个准内点.()③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.()考点四:阅读材料题型中的新定义阅读材料我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;请解决以下问题:如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;(1)写出筝形的两个性质(定义除外);(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.真题演练1.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几点结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗b)+(b⊗a)=2ab;④若a⊗b=0,则a=0.其中正确结论序号是.(把在横线上填上你认为所有正确结论的序号)2.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线,例如平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有;(2)如图,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S =S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不梯形ABCD写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.3. 如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7……叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K ,56K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( )A.20112π B.20113π C.20114π D.20116π一、选择题1、定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是( )A. 56B. 15C.5D.62.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A 、1,2B 、1,3C 、4,2D 、4,33.(2010浙江杭州,10,3分)定义[a ,b ,c ]为函数y =a x 2+bx c +的特征数,下面给出特征数为[2m ,1﹣m ,﹣1﹣m]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(18,33);②当m >0时,函数图象截x 轴所得的线段长度大于32; ③当m <0时,函数在x >14时,y 随x 的增大而减小; ④当m ≠0时,函数图象经过同一个点. 其中正确的结论有( ) (第12题图)A B CD EF K 1 K 2K 3K 4K 5K 6K 74.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
中考数学压轴题重难点突破五 新定义问题(阅读理解) 类型三:定义新概念
1+3 ×3 是 6 的阶梯三分法,即 F(6)= 2 =2.若正整数 p 是另一个正整数 q 的立方,则 F(p)= 2 .
n)是“相随数对”,则 3m+2[3m+(2n-1)]的值为
( A)
A.-2
B.-1
C.2
D.3
9.★(2022·娄底)若 10x=N,则称 x 是以 10 为底 N 的对数.记作:x=
lg N.例如:102=100,则 2=lg 100;100=1,则 0=lg 1.对数运算满
足:当 M>0,N>0 时,lg M+lg N=lg(MN).例如:lg 3+lg 5=lg 15,
沿直线 l 运动(BD 在直线 l 上),BD=2,AB∥y 轴,当矩形 ABCD 是⊙M 的
“伴侣矩形”时,点 C 的坐标为
13 3-2,-
2
3或
3 3+2,
23.
19.(2022·南通)定义:函数图象上到两坐标轴的距离都不大于 n(n≥0)
的点叫做这个函数图象的“n 阶方点”.例如,点31,13是函数 y=x 图象 的“12阶方点”;点(2,1)是函数 y=2x图象的“2 阶方点”. (1)在①-2,-12;②(-1,-1);③(1,1)三点中,是反比例函数 y=1x图象的“1 阶方点”的有 ②③(选填序号);
类型三:定义新概念 (省卷 2021T9,2019T17;兰州 2022T27,2016T20)
(2021·永州)定义:若 10x=N,则 x=log10 N,x 称为以 10 为底的 N
中考数学复习专项练习卷_新定义型问题(含答案解析)
中考数学二轮复习精品资料附参考答案新定义型问题一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例2 (2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。
(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.思路分析:(1)按照定义新运算a⊕b=a(a-b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a-b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,即可在数轴上表示.解:(1)∵a⊕b=a(a-b)+1,∴(-2)⊕3=-2(-2-3)+1=10+1=11;(2)∵3⊕x<13,∴3(3-x)+1<13,9-3x+1<13,-3x<3,x>-1.在数轴上表示如下:例3 (2013•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5思路分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选C.点评:本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.-CE PC PC a s2考点四:开放题型中的新定义例4 (2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.思路分析:(1)要证明BD是四边形ABCD的和谐线,只需要证明△ABD和△BDC是等腰三角形就可以;»BC上任意一点构成的四边形(2)根据扇形的性质弧上的点到顶点的距离相等,只要D在ABDC就是和谐四边形;连接BC,在△BAC外作一个以AC为腰的等腰三角形ACD,构成的四边形ABCD就是和谐四边形,(3)由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图4,图5,图6三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠BCD 的度数.解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;(2)由题意作图为:图2,图3(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点思路分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上.解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=-x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.对应训练5.(2013•天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形四、中考真题演练一、选择题1.(2013•成都)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=-x+3 B.y= 5xC.y=2x D.y=-2x2+x-71.C2.(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.DA.40 B.45 C.51 D.563.C4.(2013•乌鲁木齐)对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.D5.(2013•常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()A.B.C.D.5.C二、填空题6.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.6.30°7.(2013•宜宾)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.三、解答题10.(2013•莆田)定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.(3)作EF ⊥AB 于F ,EG ⊥AD 于G ,EH ⊥CD 于H ,∴∠BFE =∠CHE =90°.∵AE 平分∠BAD ,DE 平分∠ADC ,∴EF =EG =EH ,在Rt △EFB 和Rt △EHC 中BE CE EF EH=⎧⎨=⎩, ∴Rt △EFB ≌Rt △EHC (HL ),∴∠3=∠4.∵BE =CE ,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC =∠DCB ,∵ABCD 为AD 截某三角形所得,且AD 不平行BC ,∴ABCD 是“准等腰梯形”.当点E 不在四边形ABCD 的内部时,有两种情况:如图4,当点E 在BC 边上时,同理可以证明△EFB ≌△EHC ,∴∠B =∠C ,∴ABCD 是“准等腰梯形”.如图5,当点E 在四边形ABCD 的外部时,同理可以证明△EFB ≌△EHC ,∴∠EBF =∠ECH .∵BE =CE ,∴∠3=∠4,∴∠EBF -∠3=∠ECH -∠4,即∠1=∠2,。
2021年云南省中考数学试卷及答案解析
2021年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.2.(3分)如图所示,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.3.(3分)要使有意义,则x的取值范围是.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m=.5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB =6,AC=2,则DE的长是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×1078.(4分)下列几何体中,主视图是长方形的是()A.B.C.D.9.(4分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)10.(4分)下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于()A.B.C.D.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.(4分)如图所示,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE 得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.14.(4分)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.16.(6分)如图,已知AD=BC,BD =AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G 700044002400200019001800180018001200月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(元/辆)车型大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,重足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.2020年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.【解答】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.2.【解答】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.3.【解答】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.4.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.5.【解答】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.6.【解答】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.【解答】解:1500000=1.5×106,故选:C.8.【解答】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.9.【解答】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.10.【解答】解:了解三名学生视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是比可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.11.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.12.【解答】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.13.【解答】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.14.【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.三、解答题(本大题共9小题,共70分)15.【解答】解:原式=÷=•=,当x=时,原式=2.16.【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.17.【解答】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700,9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.18.【解答】解:设原计划每年绿化升级改造面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.19.【解答】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.20.【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x=,∴AB=.21.【解答】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.22.【解答】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠ABC=∠ADC=120°,∵CE⊥AB,CF⊥AD,∴CE=CF,∵H为对角线AC的中点,∴EH=FH=AC,∵∠CAE=30°,∵CE=AC,∴CE=EH=CF=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.23.【解答】解:(1)把A、C点的坐标代入抛物线解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m﹣3),∴PE=m2﹣3m,DE=m﹣3,∵∠PHE=∠DGE=90°,∠PEH=∠DEG,∴△PEH∽△DEG,∴,∴,∵m=3(舍),或m=5,∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为。
中考数学全面突破《新定义及阅读理解型问题》练习题含答案
题型4 新定义及阅读理解型问题题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a,b,定义一种新运算“⊗”为:a⊗b=1a-b2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x⊗(-2)=2x-4-1的解是( )A. x=4B. x=5C. x=6D. x=72.对于实数a、b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如max{4,-2}=4,max{3,3}=3.若关于x 的函数为y=max{x+3,-x+1},则该函数的最小值是( )A. 0B. 2C. 3D. 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( )①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大.其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a ≥b )a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________. 6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算.现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0),例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM ·AB ,BN 2=AN ·AB ,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________.8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程. 证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O ,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹); (2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q(p ,q 是正整数,且p ≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x ≤y ≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7, 所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y=x-1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=3x+9的位置关系并说明理由;(3)已知直线y=-2x+4与y=-2x-6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形;(2)如图②,求证:∠OAB=∠OAE′.【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________;(4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”);(5)图中,“叠弦角”的度数为__________(用含n的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B【解析】根据题意a⊗b=1a-b2,则x⊗(-2)=1x-(-2)2=1x-4,又∵x⊗(-2)=2x-4-1,∴1x-4=2x-4-1,解得x=5,经检验x=5是原方程的根,∴原方程x⊗(-2)=2x-4-1的解是x=5.2. B【解析】当x+3≥-x+1时,max{x+3,-x+1}=x+3,此时x ≥-1,∴y≥2;当x+3<-x+1时,max{x+3,-x+1}=-x+1,此时x<-1,∴y>2.综上y的最小值为2.3. B【解析】①∵24=16,∴log216=4,故①正确;②∵52=25,∴log525=2,故②不正确;③∵2-1=12,∴log212=-1,故③正确.4. C【解析】∵a@b=(a+b)2-(a-b)2,若a@b=0,则(a+b)2-(a-b)2=0,∴(a+b)2=(a-b)2, ∴a+b=±(a-b),∴a=0或b=0,∴①正确;∵a@b=(a+b)2-(a-b)2,∴a@(b+c)=[a+(b+c)]2-[a-(b+c)]2=[a+(b +c)+a-(b+c)][a+(b+c)-(a-b-c)]=4ab+4ac,∵a@b+a@c=(a+b)2-(a-b)2+(a+c)2-(a-c)2=a2+2ab+b2-a2+2ab-b2+a2+2ac+c2-a2+2ac-c2=4ab+4ac,∴a@(b+c)=a@b+a@c,∴②正确;∵a@b=(a+b)2-(a -b)2=a2+2ab+b2-a2+2ab-b2=4ab,当a=b=0时,满足a@b=a2+5b2,∴③错误;若矩形的周长固定,设为2c,则2c=2a+2b,b=c-a,a@b=(a+b)2-(a-b)2=4ab=4a(c-a)=-4(a-12c)2+c2,∴当a=12c时,4ab有最大值是c2,即a=b时,a@b的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32.7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN ·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ), ∴MB =MG. 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF 是“匀称三角形”. 理由如下:如解图②,第9题解图②连接AD 、OD , ∵AB 是⊙O 直径, ∴AD ⊥BC , ∵AB =AC , ∴D 是BC 中点, ∵O 是AB 中点, ∴OD 是△ABC 的中位线, ∴OD ∥AC.∵DF 切⊙O 于D 点, ∴OD ⊥DF , ∴EF ⊥AF ,过点B 作BG ⊥EF 于点G ,易证Rt △BDG ≌Rt △CDF(AAS ), ∴BG =CF , ∵BE CF =53, ∴BE BG =53, ∵BG ∥AF(或Rt △BEG ∽Rt △AEF), ∴BE BG =AE AF =53.在Rt △AEF 中,设AE =5k ,则AF =3k , 由勾股定理得,EF =4k ,∴AF +EF +AE 3=3k +4k +5k 3=4k =EF ,∴△AEF 是“匀称三角形”.10. (1)证明:∵m 是一个完全平方数,∴m =p ×q ,当p =q 时,p ×q 就是m 的最佳分解, ∴F(m)=p q =pp=1.(2)解:由题意得,(10y +x)-(10x +y)=18, 得y =x +2(y ≤9),∴t =10x +y =10x +x +2=11x +2(1≤x ≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个, ∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179, ∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22. (2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2, 又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切. (3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25, ∴这两条直线之间的距离为2 5. 12. (1)选择图①.证明:依题意得∠DAD ′=60°,∠PAO =60°.∵∠DAP =∠DAD ′-∠PAD ′=60°-∠PAD ′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD ′,∴∠DAP =∠D ′AO. ∵∠D =∠D ′,AD =AD ′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO ,又∵∠PAO=60°,∴△AOP是等边三角形.选择图②.证明:依题意得∠EAE′=60°,∠PAO=60°. ∵∠EAP=∠EAE′-∠PAE′=60°-∠PAE′,∠E′AO=∠PAO-∠PAE′=60°-∠PAE′,∴∠EAP=∠E′AO(ASA).∵∠E=∠E′,AE=AE′,∴△EAP≌△E′AO,∴AP=AO,又∵∠PAO=60°,∴△AOP是等边三角形.第12题解图(2)证明:如解图,连接AC,AD′,CD′.∵AE′=AB,∠E′=∠B=180°×(5-2)=108°,E′D′=BC,5∴△AE′D′≌△ABC(SAS),∴AD′=AC,∠AD′E′=∠ACB,∴∠AD′C=∠ACD′,∴∠OD ′C =∠OCD ′, ∴OC =OD ′,∴BC -OC =E ′D ′-OD ′,即BO =E ′O. ∵AB =AE ′,∠B =∠E ′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE ′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD ′中,⎩⎪⎨⎪⎧OA =OA BA =D ′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D ′AO , 由(1)知∠D ′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO , ∵∠EAB =15×180°×(5-2)=108°,∴∠PAE +∠BAO =48°, 同理可证得∠OAB =∠PAE ,∴∠OAB =12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,AO =AP ,且∠PAO =60°,故△AOP 是等边三角形.(5)60°-180°n(n ≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n 边形的内角度数减去60°之后再除以2,即∠OAB =180°(n -2)n-60°2,化简得∠OAB =60°-180°n(n ≥3).13. 解:(1)由题意得n =1, ∴抛物线y =x 2-2x +1=(x -1)2,顶点为Q(1,0),将(1,0)代入y =mx +1,得m =-1, ∴m =-1,n =1.(2)由题意设“路线”L 的解析式为y =a(x -h)2+k , ∵顶点Q 的坐标在y =6x 和y =2x -4上,∴⎩⎪⎨⎪⎧k =6hk =2h -4, 解得h =-1或3,∴顶点Q 的坐标为(-1,-6)或(3,2), ∴y =a(x +1)2-6或y =a(x -3)2+2, 又∵“路线”L 过P(0,-4),代入解得a =2(顶点为(-1,-6)), a =-23(顶点为(3,2)),∴y =2(x +1)2-6或y =-23(x -3)2+2,即y =2x 2+4x -4或y =-23x 2+4x -4.(3)由题可知抛物线顶点坐标为(-3k 2-2k +12a ,4ak -(3k 2-2k +1)24a ),设带线l :y =px +k ,代入顶点坐标得p =3k 2-2k +12,∴y =3k 2-2k +12x +k ,令y =0,则带线l 交x 轴于点(-2k3k 2-2k +1,0),令x =0,则带线l 交y轴于点(0,k),∵k ≥12>0,∴3k 2-2k +1=3(k -13)2+23>0,∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k+3,令t =1k ,∵12≤k ≤2,∴12≤t ≤2, ∴S =1t 2-2t +3,∴1S=t 2-2t +3=(t -1)2+2, 故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。
中考数学压轴题新定义和阅读理解型问题17个填空题解析版
01.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=_____________.【答案】60【解析】由题意可知:,解得:.∵x<y,∴原式=5×12=60.故答案为:60.【关键点拨】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.02.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①,①×3得3S=3+32+33+…+32018+32019 ②,②﹣①得2S=32019﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52018=____.【答案】【解析】设S=1+5+52+53+…+52018 ①,则5S=5+52+53+54…+52019②,②﹣①得:4S=52019﹣1,所以S=,故答案为:.【关键点拨】本题考查了规律型——数字的变化类,涉及了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.03.对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2= .【答案】6.【解析】∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m2+n2=(m+n)2﹣2mn=6.故答案为:6.【关键点拨】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.04.规定:,如:,若,则=__.【答案】1或-3【解析】依题意得:(2+x)x=3,整理,得x2+2x=3,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-3.故答案是:1或-3.【关键点拨】用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.05.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.【答案】1【解析】由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为:1.【关键点拨】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.06.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为______.【答案】1【解析】∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【关键点拨】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.07.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是_____.【答案】【解析】在菱形上建立如图所示的矩形EAFC,设AF=x,则CF=x,在Rt△CBF中,CB=1,BF=x﹣1,由勾股定理得:BC2=BF2+CF2,即:12=(x-1)2+(x)2,解得:x=或0(舍),即它的宽的值是,故答案为:.【关键点拨】本题考查了新定义题,矩形的性质、勾股定理等,根据题意正确画出图形,熟练应用相关的知识进行解答是关键.08.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【关键点拨】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.09.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P 作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为_____.【答案】(﹣2,5)【解析】如图作ND∥x轴交y轴于D,作NC∥y轴交x轴于C.MN交y轴于K.∵NK=MK,∠DNK=∠BMK,∠NKD=∠MKB,∴△NDK≌△MBK,∴DN=BM=OC=2,DK=BK,在Rt△KBM中,BM=2,∠MBK=60°,∴∠BMK=30°,∴DK=BK=BM=1,∴OD=5,∴N(-2,5),故答案为(-2,5)【关键点拨】本题考查坐标与图形变化,轴对称等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是_____;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是_____.【答案】14 21【解析】图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:,以∠APB为内角的正多边形的边数为:,∴图案外轮廓周长是=﹣2+﹣2+﹣2=+﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则则会标的外轮廓周长是=﹣6=21,故答案为:14,21.【关键点拨】本题考查了阅读理解问题和正多边形的边数与内角、外角的关系,明确正多边形的各内角相等,各外角相等,且外角和为360°是关键,并利用数形结合的思想解决问题.11.若为实数,则表示不大于的最大整数,例如,,等.是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.【关键点拨】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.12.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.【答案】.【解析】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥C F,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案为:.【关键点拨】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.13.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【答案】9或13或49.【解析】①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9. 故答案为:9或13或49.【关键点拨】本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.14.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=_____.(结果保留根号)【答案】【解析】依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6×××1=2.故答案为:2.【关键点拨】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.15.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=_____.【答案】4【解析】∵4※x=42+x=20,∴x=4.故答案为:4.【关键点拨】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x的一元一次方程是解题的关键.16.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”.当双曲线的眸径为6时,的值为__________.【答案】【解析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(-,-),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(-,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(-+2,+2).又∵点P′在双曲线y=上,∴(-+2)•(+2)=k,解得:k=.故答案为:.【关键点拨】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、矩形的性质以及解一元一次方程,利用矩形的性质结合函数图象找出点P′的坐标是解题的关键.17.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC的布罗卡尔点,若PA=,则PB+PC=_____.【答案】1+.【解析】作CH⊥AB于H.∵CA=CB,CH⊥AB,∠ACB=120°,∴AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,∴AB=2BH=2•BC•cos30°=BC,∵∠PAC=∠PCB=∠PBA,∴∠PAB=∠PBC,∴△PAB∽△PBC,∴,∵PA=,∴PB=1,PC=,∴PB+PC=1+.故答案为1+.【关键点拨】本题考查等腰三角形的性质、相似三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是准确寻找相似三角形解决问题.。
云南中考数学总复习专题训练:专题五 阅读理解题(含新定义)
专题五 阅读理解题(含新定义)1.(2019·十堰)对于实数a ,b ,定义运算“※”如下,a※b=a2-ab ,例如,5※3=52-5×3=10.若(x +1)※(x-2)=6,则x 的值为______.2.(2019·怀化)根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,…,an ,…(n 为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即a1a2=q(常数),那么这一列数a1,a2,a3,…,an ,…成等比数列,这一常数q 叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和.解:令S =1+3+32+33+ (3100)则3S =3+32+33+…+3100+3101,因此,3S -S =3101-1,∴S=3101-12, 即1+3+32+33+…+3100=3101-12. 仿照例题,等比数列1,5,52,53,…,52 018的和为________.3.(2019·日照)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y =m x(m <0)与y =x2-4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m 的取值范围为____________________.4.(2019·娄底)已知:[x]表示不超过x 的最大整数.例:[3.9]=3,[-1.8]=-2.令关于k 的函数f(k)=[k +14]-[k 4](k 是正整数).例:f(3)=[3+14]-[34]=1.则下列结论错误的是( )A .f(1)=0B .f(k +4)=f(k)C .f(k +4)≥f(k)D .f(k)=0或1 5.(2019·日照)定义一种对正整数n 的“F”运算:①当n 是奇数时,F(n)=3n +1;当n 为偶数时,F(n)=n 2k (其中k 是使n 2k为奇数的正整数)…,两种运算交替重复进行.例如,取n=24,则:若n=13,则第2 018次“F运算”的结果是( )A.1 B.4 C.2 018 D.42 0186.(2019·潍坊)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P 的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是( )A.Q(3,240°) B.Q(3,-120°)C.Q(3,600°) D.Q(3,-500°)7.(2019·凉山州)我们常用的数是十进制数,如4 657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0、1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110 101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53,那么二进制中的数101 011等于十进制中的哪个数?8.(2019·自贡)阅读下列材料;对数的创始人是苏格兰数学家纳皮尔(j.Napier,1550年~1617年).纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler,1707年~1783年),才发现指数和对数的联系.对数的定义:一般地,若ax=N(a>0,a≠1),那么数x叫做以a为底N的对数,记作x=logaN.比如指数式24=16可转化为对数式4=log216,对数式2=log525,可转化为52=25,我们根据对数的定义可得到对数的一个性质:loga(M·N)=loga M+loga N(a>0,a≠1,M>0,N>0)理由如下:设loga M=m,loga N=n,则M=am,N=an,∴M·N=am·an=am+n,由对数的定义得:m+n=loga(M·N),又∵m+n=loga M+loga N,∴loga(M·N)=loga M+loga N,解决以下问题:(1)将指数式43=64转化成对数式___________________;(2)证明loga M N=loga M -loga N(a>0,a≠1,M>0,N>0);. (3)拓展应用:计算log3 2+log3 6-log3 4=______.9.(2019·张家界)阅读理解题.在平面直角坐标系xOy 中,点P(x0,y0)到直线Ax +By +C =0(A2+B2≠0)的距离公式为:⎪⎪⎪⎪⎪⎪Ax0+By0+C A2+B2, 例如,求点P(1,3)到直线4x +3y -3=0的距离.解:由直线4x +3y -3=0知:A =4,B =3,C =-3,∴P(1,3)到直线4x +3y -3=0的距离为:d =|4×1+3×3-3|42+32=2, 根据以上材料,解决下列问题:(1)求点P1(0,0)到直线3x -4y -5=0的距离.(2)若点P2(1,0)到直线x +y +C =0的距离为2,求实数C 的值.10.(2019·深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形.如图,在△CFE 中,CF =6,CE =12,∠FCE=45°,以点C 为圆心,以任意长为半径作弧AD ,再分别以点A 和点D 为圆心,大于12AD 长为半径作弧,交EF 于点B ,AB∥CD.(1)求证:四边形ACDB 为△FEC 的亲密菱形;(2)求四边形ACDB 的面积.11.(2019·重庆A 卷)对于任意一个四位数n ,如果千位与十位上的数字之和为9,百位与个位上数字之和也为9,则称n 为“极数”.(1)请任意写出三个“极数”,并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a 是另一个正整数b 的平方,则称正整数a 是完全平方数.若四位数m 为“极数”,记D(m)=m 33.求满足D(m)是完全平方数的所有m. 参考答案【专题类型突破】1.1 【解析】 由于(x +1)※(x-2)=6,∴(x+1)2-(x +1)(x -2)=6,即有3x +3=6,解得x=1.2.52 019-14【解析】令S=1+5+52+53+…+52 018,则5S=5+52+53+…+52 018+52 019,因此,5S-S=52 019-1,∴S=52 019-14,即1+5+52+53+…+52 018=52 019-14.3.-2≤m<-1 【解析】当x=1时,y=x2-4=1-4=-3.∴在第四象限内在二次函数y=x2-4的图象上和图象上方的整点有3个,坐标为(1,-1)、(1,-2)、(1,-3).当反比例函数y=mx(m<0)的图象经过点(1,-2),即m=xy=-2时,在第四象限内围成的封闭图形(包括边界)内的整点的个数为2个,当反比例函数y=mx(m<0)的图象经过点(1,-1),即m=xy=-1时,在第四象限内围成的封闭图形(包括边界)内的整点的个数为3个,∵在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴m的取值范围为-2≤m<-1.4.C 【解析】根据题目中的约定关于k的函数f(k)=[k+14]-[k4](k是正整数),f(1)=[1+14]-[14]=0-0=0,选项A正确;f(k+4)=[k+4+14]-[k+44]=(1+[k+14])-(1+[k4])=[k+14]-[k4]=f(k),选项B正确,选项C不正确.由此也可得选项D正确.5.A 【解析】根据题意,得第一次:当n=13时,F①=3×13+1=40,第二次:当n=40时,F②=4023=5,第三次:当n=5时,F①=3×5+1=16,第四次:当n=16时,F②=16 24=1,第五次:当n=1时,F①=3×1+1=4,第六次:当n=4时,F②=422=1,…,从第四次开始,结果就只是1,4两个数循环出现,∵(2 018-3)÷2=1 007……1,第2 018次“F运算”的结果是1.故选A.6.D 【解析】∵点P与点Q关于点O成中心对称,故点P只需再旋转180°就得到点Q.则P(3,60°)再按顺时针旋转180°得到Q(3,240°);或P(3,60°)按逆时针旋转180°得到Q(3,-120°);Q(3,240°)按顺时针旋转360°后回到原位置,故还可表示为Q(3,600°);或Q(3,-120°)按逆时针再旋转360°后回到原位置,故还可表示为Q(3,-480°),故(3,-500°)是错误的.7.解: 101 011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43. 8.解: (1)log4 64=3;(2)设loga M=m,loga N=n,则am=M,an=N,∴MN=aman=am-n,由对数的定义得m-n=logaMN,又∵m-n=loga M-loga N,∴loga MN=loga M-loga N(a>0,a≠1,M>0,N>0).(3)log3 2+log3 6-log3 4=log32×64=log3 3=1.9.解: (1)|3×0-4×0-5|32+42=1;(2)∵2=|1×1+1×0+C|2,∴|C+1|=2,∴C+1=±2,∴C1=1,C2=-3.10.(1)证明:由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的平分线,则∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=AB,∴四边形ACDB是菱形.∵∠ACD与△FCE中∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形.(2)解: 设菱形ACDB 的边长为x ,可证:△FAB∽△FCE,则FA FC =AB CE ,即6-x 6=x 12, 解得:x =4,过A 点作AH⊥CD 于点H ,如解图,在Rt△ACH 中,∠ACH=45°, ∴AH=AC 2=2 2. ∴四边形ACDB 的面积为:4×22=8 2.11.解: (1)如1 188,2 475,9 900等,猜想任意一个“极数”是99的倍数.理由如下:设任意一个“极数”为xy(9-x)(9-y)=1 000x +100y +10(9-x)+(9-y)=1 000x +100y +90-10x +9-y=990x +99y +99=99(10x +y +1).∵x,y 为整数,∴(10x+y +1)为整数,则任意一个“极数”是99的倍数.(2)设m =xy(9-x)(9-y)(其中1≤x≤9,0≤y≤9,且x ,y 为整数,) 则由题意得D(m)=99(10x +y +1)33=3(10x +y +1). ∵1≤x≤9,0≤y≤9,∴33≤3(10x+y +1)≤300.∵D(m)为完全平方数且为3的倍数,∴D(m)可取36,81,144,225.①D(m)=36时,3(10x +y +1)=36,10x +y +1=12,x =1,y =1,m =1 188,②D(m)=81时,3(10x +y +1)=81,10x +y +1=27,x =2,y =6,m =2 673,③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,x=4,y=7,m=4 752,④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,x=7,y=4,m=7 425,综上所述,满足D(m)为完全平方数的m的值为1 188,2 673,4 752,7 425.。
中考数学复习阅读理解专题试题
阅读理解专题阅读理解型问题一般文字表达较长,信息量较大,各种关系错综复杂,往往是先给一个材料,或者介绍一个新的知识点,或者给出针对某一种题目的解法,然后再给合条件出题.解决这类题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含的数学知识、结论,或者提醒的数学规律,或者暗示的解题方法,然后展开联想,如何从题目给定的材料获得新信息、新知识、新方法进展迁移,建模应用,解决题目中提出的问题.一、新定义型例1 对于实数a ,b ,定义运算“*〞:a*b =22()().a ab a b ab b a b ⎧-⎪⎨-⎪⎩≥,<例如:4*2,因为4>2,所以4*2=42-4×2=8.假设x 1,x 2是一元二次方程x 2-5x +6=0的两个根,那么x 1*x 2=_________________.分析:用公式法或者因式分解法求出方程的两个根,然后利用新定义解之.解:可以用公式法求出方程x 2-5x +6=0的两个根是2和3,可能是x 1=2,x 2=3,也可能是x 1=3,x 2=2,根据所给定义运算可知原题有两个答案3或者-3..此题容易无视讨论思想,会少一种情况.评注:此题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考察了学生观察问题,分析问题,解决问题的才能. 跟踪训练:1.假设定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,那么((2,3))g f -等于〔 〕A .〔2,-3〕B .〔-2,3〕C .〔2,3〕D .〔-2,-3〕2.对于实数x,我们规定【x 】表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,假设5104=⎥⎦⎤⎢⎣⎡+x ,那么x 的值可以是〔 〕 A .40 B .45 C .51 D .56二、类比型例2 阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:01-x 3x 2 01x 2-x <,>++等 .那么如何求出它们的解集呢?根据我们学过的有理数除法法那么可知,两数相除,同号得正,异号得负,其字母表达式为:〔1〕假设a >0 ,b >0 ,那么b a >0,假设a <0 ,b <0,那么b a>0; 〔2〕假设a >0 ,b <0 ,那么b a <0 ,假设a <0,b >0 ,那么ba<0.反之,〔1〕假设b a>0,那么⎩⎨⎧⎩⎨⎧;<,<或,>,>0b 0a 0b 0a 〔2〕假设ba<0 ,那么__________或者_____________. 根据上述规律,求不等式 ﹙A ﹚ ,>012x +-x ﹙B ﹚2x 2-3x+2021<2021的解集. 分析:对于〔2〕,根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后解一元一次不等式组即可.对于〔A 〕,据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;对于〔B 〕,将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可. 解:〔2〕假设<0,那么或者故答案为或者;由上述规律可知,不等式﹙A ﹚转化为或者所以x >2或者x <﹣1.不等式﹙B ﹚即为2x 2-3x+1<0.∵2x 2-3x+1=﹙x -1﹚〔2x-1〕,∴2x 2-3x+1<0可化为﹙x -1﹚〔2x-1〕<0.由上述规律可知①10230x x ->⎧⎨-<⎩或者②10230x x -<⎧⎨->⎩解不等式组①,无解, 解不等式组②,得21<x<1. ∴不等式2x 2-3x+2021<2021的解集为21<x<1. 评注:此题本质是一元一次不等式组的应用,读懂题目信息,理解不等式转化为不等式组的方法是解题关键.例4 阅读材料:关于三角函数还有如下的公式:sin 〔α±β〕=sinαcosβ±cosαsinβ;tan 〔α±β〕=tan tan 1tan tan αβαβ± .利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan〔45°-30°〕=tan 45-tan 301tan 45tan 30︒︒+︒︒=1==根据以上阅读材料,请选择适当的公式解答下面问题 〔1〕计算:sin15°;〔2〕一铁塔是标志性建筑物之一〔图1〕,小草想用所学知识来测量该铁塔的高度,如图2,小草站在与塔底A 相距7米的C 处,测得塔顶的仰角为75°,小草的眼睛离地面的间隔DC ,〕.分析:〔1〕把15°化为〔45°-30°〕以后,再利用公式sin 〔α±β〕=sinαcosβ±cosαsinβ计算,即可求出sin15°的值;〔2〕先根据锐角三角函数的定义求出BE 的长,再根据AB=AE+BE 即可得出结论. 解:﹙1﹚sin15°=sin〔45°-30°〕=sin45°cos30°-232162622-==〔2〕在Rt △BDE 中,∵∠BED=90°,∠BDE=75°,DE=AC=7米, ∴BE=DEtan ∠BDE=DEtan75°. ∵tan75°=tan〔45°+30°〕=tan 45tan 301tan 45tan 30︒+︒-︒︒=31(33)(33)126333(33)(33)1+++==+--3∴BE=7〔333≈27.7〔米〕. 答:乌蒙铁塔的高度约为.评注:此题考察了特殊角的三角函数值和仰角的知识,此题难度中等,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.例5阅读材料:小艳在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=〔1+〕2.擅长考虑的小艳进展了以下探究:设a+b=〔m+n〕2〔其中a,b,m,n均为正整数〕,那么有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小艳就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小艳的方法探究并解决以下问题:〔1〕当a,b,m,n均为正整数时,假设a+b=,用含m,n的式子分别表示a,b,得:a= ,b= ;〔2〕利用所探究的结论,找一组正整数a,b,m,n填空: + =〔 + 〕2;〔3〕假设a+4=,且a,m,n均为正整数,求a的值.分析:〔1〕根据完全平方公式的运算法那么,即可得出a,b的表达式;〔2〕首先确定m,n的正整数值,然后根据〔1〕的结论即可求出a,b的值;〔3〕根据题意,4=2mn,首先确定m,n的值,通过分析m=2,n=1或者者m=1,n=2,然后即可确定a的值.解:〔1〕∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn.〔2〕设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4,2,1,1.〔3〕由题意,得a=m2+3n2,b=2mn.∵4=2mn,且m,n为正整数,∴m=2,n=1或者者m=1,n=2.∴a=22+3×12=7,或者a=12+3×22=13.评注:此题主要考察二次根式的混合运算,完全平方公式,关键在于纯熟运算完全平方公式和二次根式的运算法那么.例6 阅读:大家知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图3-①.观察图①可以得出,直线x=1与直线y=2x+1的交点P 的坐标(1,3)就是方程组⎩⎨⎧=+-=012,1y x x 的解,所以这个方程组的解为⎩⎨⎧==.3,1y x 在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它的左侧局部,如图3-②. y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的局部,如图3-③.(5) 图3答复以下问题:(1)在如图3-④所示直角坐标系中,用作图象的方法求出方程组⎩⎨⎧+-=-=22,2x y x 的解;(2)用阴影表示不等式组⎪⎩⎪⎨⎧≥+-≤-≥0,22,2y x y x 所围成的区域.分析:通过阅读材料可知,要解决第(1)小题,只要画出函数x=-2和y=-2x+2的图象,找出它们的交点坐标即可;第(2)小题,该不等式组表示的区域就是直线x=-2及其右侧的局部,直线y=-2x+2及其下方的局部和y=0及其上方的局部所围成的公一共区域.解:〔1〕如图3-⑤所示,在坐标系中分别作出直线x=-2和直线y=-2x+2,观察图象可知,这两条直线的交点是P(-2,6). 所以⎩⎨⎧=-=6,2y x 是方程组⎩⎨⎧+-=-=22,2x y x 的解. 〔2〕如图3-⑤所示.评注:此题给出了一个全新的知识情景,通过阅读材料,可知材料中给出一种解决问题的方法,即方程组的解就是两个函数图象的交点坐标;不等式或者不等式组的解集可以用坐标系中图形区域直观地表示出来,不仅要掌握这种方法,还能在原解答的根底上,用这种方法解决类似的问题.解答这类问题的关键是弄清解题原理,详细分析解题思路,梳理前后的因果关系以及每一步变形的理论根据,然后给出问题的解答.通过该题的解答,我们理解了用函数的图象来解方程组或者不等式组,是解方程组或者不等式组的一种特殊方法. 跟踪训练:3.先阅读理解下面的例题,再按要求解答以下问题:解一元二次不等式x 2-4>0. 解:不等式x 2-4>0可化为 〔x+2〕〔x-2〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得 ①2020x x +>⎧⎨->⎩②2020x x +<⎧⎨-<⎩解不等式组①,得x >2,解不等式组②,得x <-2.∴〔x+2〕〔x-2〕>0的解集为x >2或者x <-2,即一元二次不等式x 2-4>0的解集为x >2或者x <-2.〔1〕一元二次不等式x 2-16>0的解集为 ; 〔2〕分式不等式103x x ->-的解集为 ;材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为23326A =⨯=.一般地,从n 个不同的元素中选取m 个元素的排列数记作mn A .(1)(2)(3)(1)m n A n n n n n m =---⋅⋅⋅-+ 〔m ≤n 〕.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个不同的元素中选取2个元素的组合,组合数为2332321C ⨯==⨯. 例:从6个不同的元素选3个元素的组合数为3665420321C ⨯⨯==⨯⨯.阅读后答复以下问题:〔1〕从5张不同的卡片中选出3张排成一列,有几种不同的排法? 〔2〕从某个学习小组8人中选取3人参加活动,有多少种不同的选法? 答案:1. 解:由题意,得f(2,-3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),应选B . 2 .C3.解:〔1〕不等式x 2-16>0可化为 〔x+4〕〔x-4〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得①4040x x +>⎧⎨->⎩或者②4040x x +<⎧⎨-<⎩解不等式组①,得x>4,解不等式组②,得x<-4.∴〔x+4〕〔x-4〕>0的解集为x>4或者x<-4,即一元二次不等式x2-16>0的解集为x>4或者x<-4.〔2〕∵13xx->-,∴1030xx->⎧⎨->⎩或者1030xx-<⎧⎨-<⎩解得x>3或者x<1.4.解:〔1〕3554360A=⨯⨯=;〔2〕3887656 321C⨯⨯==⨯⨯.励志赠言经典语录精选句;挥动**,放飞梦想。
云南中考数学总复习专题训练:专题五 阅读理解题(含新定义)
专题五 阅读理解题(含新定义)1.(·十堰)对于实数a ,b ,定义运算“※”如下,a※b=a 2-ab ,例如,5※3=52-5×3=10.若(x +1)※(x-2)=6,则x 的值为______. 2.(·怀化)根据下列材料,解答问题. 等比数列求和:概念:对于一列数a 1,a 2,a 3,…,a n ,…(n 为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即a 1a 2=q(常数),那么这一列数a 1,a 2,a 3,…,a n ,…成等比数列,这一常数q 叫做该数列的公比. 例:求等比数列1,3,32,33,…,3100的和. 解:令S =1+3+32+33+…+3100, 则3S =3+32+33+…+3100+3101,因此,3S -S =3101-1,∴S=3101-12,即1+3+32+33+…+3100=3101-12.仿照例题,等比数列1,5,52,53,…,52 018的和为________.3.(·日照)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y =mx (m <0)与y =x 2-4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m 的取值范围为____________________. 4.(·娄底)已知:[x]表示不超过x 的最大整数.例:[3.9]=3,[-1.8]=-2.令关于k 的函数f(k)=[k +14]-[k 4](k 是正整数).例:f(3)=[3+14]-[34]=1.则下列结论错误的是( )A .f(1)=0B .f(k +4)=f(k)C .f(k +4)≥f(k)D .f(k)=0或15.(·日照)定义一种对正整数n 的“F”运算:①当n 是奇数时,F(n)=3n +1;当n 为偶数时,F(n)=n 2k (其中k 是使n2k 为奇数的正整数)…,两种运算交替重复进行.例如,取n =24,则:若n =13,则第2 018次“F 运算”的结果是( ) A .1 B .4 C .2 018 D .42 0186.(·潍坊)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O 称为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径.点P 的极坐标就可以用线段OP 的长度以及从Ox 转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3, -300°)或P(3,420°)等,则点P 关于点O 成中心对称的点Q 的极坐标表示不正确的是( )A .Q(3,240°)B .Q(3,-120°)C .Q(3,600°)D .Q(3,-500°)7.(·凉山州)我们常用的数是十进制数,如4 657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0、1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110 101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53,那么二进制中的数101 011等于十进制中的哪个数? 8.(·自贡)阅读下列材料;对数的创始人是苏格兰数学家纳皮尔(j .Napier ,1550年~年).纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Eu l er ,1707年~1783年),才发现指数和对数的联系.对数的定义:一般地,若a x =N(a>0,a≠1),那么数x 叫做以a 为底N 的对数,记作x =l og a N.比如指数式24=16可转化为对数式4=l og 216,对数式2=l og 525,可转化为52=25,我们根据对数的定义可得到对数的一个性质:l og a (M·N)=l og a M +l og a N(a>0,a≠1,M>0,N>0)理由如下: 设l og a M =m ,l og a N =n ,则M =a m ,N =a n ,∴M·N=a m ·a n =a m +n ,由对数的定义得:m +n =l og a (M·N), 又∵m+n =l og a M +l og a N , ∴l og a (M·N)=l og a M +l og a N , 解决以下问题:(1)将指数式43=64转化成对数式___________________; (2)证明l og a MN =l og a M -l og a N(a>0,a≠1,M>0,N>0);.(3)拓展应用:计算l og 3 2+l og 3 6-l og 3 4=______. 9.(·张家界)阅读理解题.在平面直角坐标系xOy 中,点P(x 0,y 0)到直线Ax +By +C =0(A 2+B 2≠0)的距离公式为:⎪⎪⎪⎪⎪⎪⎪⎪Ax 0+By 0+C A 2+B 2, 例如,求点P(1,3)到直线4x +3y -3=0的距离. 解:由直线4x +3y -3=0知:A =4,B =3,C =-3,∴P(1,3)到直线4x +3y -3=0的距离为:d =|4×1+3×3-3|42+32=2, 根据以上材料,解决下列问题:(1)求点P 1(0,0)到直线3x -4y -5=0的距离.(2)若点P 2(1,0)到直线x +y +C =0的距离为2,求实数C 的值.10.(·深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形.如图,在△CFE 中,CF =6,CE =12,∠F CE =45°,以点C 为圆心,以任意长为半径作弧AD ,再分别以点A 和点D 为圆心,大于12AD 长为半径作弧,交EF 于点B ,AB ∥CD.(1)求证:四边形ACDB 为△FE C 的亲密菱形; (2)求四边形ACDB 的面积.11.(·重庆A 卷)对于任意一个四位数n ,如果千位与十位上的数字之和为9,百位与个位上数字之和也为9,则称n 为“极数”.(1)请任意写出三个“极数”,并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a 是另一个正整数b 的平方,则称正整数a 是完全平方数.若四位数m 为“极数”,记D(m)=m33.求满足D(m)是完全平方数的所有m.参考答案【专题类型突破】1.1 【解析】 由于(x +1)※(x-2)=6,∴(x+1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1.2.52 019-14【解析】 令S =1+5+52+53+…+52 018,则5S =5+52+53+…+52 018+52 019,因此,5S -S =52 019-1,∴S=52 019-14,即1+5+52+53+…+52 018=52 019-14.3.-2≤m<-1 【解析】 当x =1时,y =x 2-4=1-4=-3.∴在第四象限内在二次函数y =x 2-4的图象上和图象上方的整点有3个,坐标为(1,-1)、(1,-2)、(1,-3).当反比例函数y =mx (m <0)的图象经过点(1,-2),即m =xy=-2时,在第四象限内围成的封闭图形(包括边界)内的整点的个数为2个,当反比例函数y =mx (m <0)的图象经过点(1,-1),即m =xy =-1时,在第四象限内围成的封闭图形(包括边界)内的整点的个数为3个,∵在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴m 的取值范围为-2≤m<-1. 4.C 【解析】 根据题目中的约定关于k 的函数f(k)=[k +14]-[k4](k 是正整数),f(1)=[1+14]-[14]=0-0=0,选项A 正确;f(k +4)=[k +4+14]-[k +44]=(1+[k +14])-(1+[k 4])=[k +14]-[k4]=f(k),选项B 正确,选项C 不正确.由此也可得选项D 正确.5.A 【解析】 根据题意,得第一次:当n =13时,F①=3×13+1=40,第二次:当n =40时,F②=4023=5,第三次:当n =5时,F①=3×5+1=16,第四次:当n =16时,F②=1624=1,第五次:当n =1时,F①=3×1+1=4,第六次:当n =4时,F②=422=1,…,从第四次开始,结果就只是1,4两个数循环出现,∵(2 018-3)÷2=1 007……1,第2 018次“F 运算”的结果是1.故选A.6.D 【解析】 ∵点P 与点Q 关于点O 成中心对称,故点P 只需再旋转180°就得到点Q.则P(3,60°)再按顺时针旋转180°得到Q(3,240°);或P(3,60°)按逆时针旋转180°得到Q(3,-120°);Q(3,240°)按顺时针旋转360°后回到原位置,故还可表示为Q(3,600°);或Q(3,-120°)按逆时针再旋转360°后回到原位置,故还可表示为Q(3,-480°),故(3,-500°)是错误的. 7.解: 101 011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.8.解: (1)l og 4 64=3;(2)设l og a M =m ,l og a N =n ,则a m =M ,a n =N , ∴M N =a m a n =a m -n,由对数的定义得m -n =l og a M N , 又∵m-n =l og a M -l og a N ,∴l og a MN =l og a M -l og a N(a>0,a≠1,M>0,N>0).(3)l og 3 2+l og 3 6-l og 3 4=l og 32×64=l og 3 3=1.9.解: (1)|3×0-4×0-5|32+42=1; (2)∵2=|1×1+1×0+C|2,∴|C+1|=2, ∴C+1=±2, ∴C 1=1,C 2=-3.10.(1)证明: 由已知得:AC =CD ,AB =DB , 由已知尺规作图痕迹得:BC 是∠FCE 的平分线,则∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB, ∴∠ACB=∠ABC,∴AC=AB , 又∵AC=CD ,AB =DB , ∴AC=CD =DB =AB , ∴四边形ACDB 是菱形.∵∠ACD 与△FCE 中∠FCE 重合,它的对角∠ABD 顶点在EF 上, ∴四边形ACDB 为△FEC 的亲密菱形.(2)解: 设菱形ACDB 的边长为x ,可证:△FAB∽△FCE ,则FA FC =AB CE ,即6-x 6=x12,解得:x =4,过A 点作AH⊥CD 于点H ,如解图, 在Rt△ACH 中,∠ACH=45°, ∴AH=AC2=2 2.∴四边形ACDB 的面积为:4×22=8 2. 11.解: (1)如1 188,2 475,9 900等, 猜想任意一个“极数”是99的倍数.理由如下: 设任意一个“极数”为 xy(9-x)(9-y)=1 000x +100y +10(9-x)+(9-y) =1 000x +100y +90-10x +9-y =990x +99y +99 =99(10x +y +1). ∵x,y 为整数,∴(10x+y +1)为整数,则任意一个“极数”是99的倍数.(2)设m =xy(9-x)(9-y)(其中1≤x≤9,0≤y≤9,且x ,y 为整数,) 则由题意得D(m)=99(10x +y +1)33=3(10x +y +1).∵1≤x≤9,0≤y≤9, ∴33≤3(10x +y +1)≤300. ∵D(m)为完全平方数且为3的倍数, ∴D(m)可取36,81,144,225. ①D(m)=36时,3(10x +y +1)=36, 10x +y +1=12, x =1,y =1,m =1 188,②D(m)=81时,3(10x +y +1)=81, 10x +y +1=27, x =2,y =6,m =2 673,③D(m)=144时,3(10x +y +1)=144, 10x +y +1=48, x =4,y =7,m =4 752,④D(m)=225时,3(10x +y +1)=225, 10x +y +1=75, x =7,y =4,m =7 425,综上所述,满足D(m)为完全平方数的m 的值为1 188,2 673,4 752,7 425.。
2021年云南省中考数学复习题及答案 (3)
2021年中考数学复习题25.(11分)如图,在矩形ABCD中,AB=6,BC=8,点P在线段AD上,由点D向点A 运动,当点P与点A重合时,停止运动.以点P为圆心,PD为半径作⊙P,⊙P与AD 交于点M点Q在⊙P上且在矩形ABCD外,∠QPD=120°(1)当PD=2时PC=4,扇形QPD的面积=4π,点C到⊙P的最短距离=2;(2)⊙P与AC相切时求PC的长?(3)如图⊙P与AC交于点E、F当EF=6.4时,求PD的长?(4)请从下面两问中,任选一道进行作答.①当⊙P与△ABC有两个公共点时,直接写出PD的取值范围;②直接写出点Q的运动路径长以及BQ的最短距离.【解答】解:(1)如图1,连接PC,QP,PC交⊙P于T,∵矩形ABCD∴∠ADC=90°,CD=AB=6,AD=BC=8,在Rt△CDP中,由勾股定理得:PC===4,∵∠QPD=120°,PD=2∴=4πCT=CP﹣PT=4﹣2=2故答案为:4,4π,2;(2)如图2,⊙P与AC相切时,设切点为点H,连接PH,则PH⊥AC,∵四边形ABCD是矩形,∴∠ADC=90°,在Rt△ADC中,AB=6,BC=8,∴AC=10,在Rt△ADC中,sin∠DAC=,设⊙P半径为x,则PH=PD=x,AP=8﹣x,在Rt△AHP中,sin∠P AH=,∴,∴x=3,在Rt△PDC中,CD=6,PD=3,∴PC=3;(3)如图3,过点P作PH⊥AC,连接PF;则∠PHA=∠ADC=90°,∵∠P AH=∠DAC,∴△AHP∽△ADC,∴,设⊙P半径为x,则PF=PD=x,AP=8﹣x,∴PH=(8﹣x),在⊙P中,FH⊥AC,EF=6.4,∴HF=3.2,在Rt△PHF中,+3.22=x2,∴x=4或x=﹣13(舍),∴PD=4;(4)①如图4,作P′M⊥AC于M,作P″N⊥BC于N,当P′M=P′D时,⊙P′与AC相切,只有1个公共点,由(2)知,此时PD=3,当P″N=6时,⊙P″与△ABC有3个公共点;当6<PN≤PB时,⊙P与△ABC有3个公共点;PB2=AB2+AP2,AP2=(AD﹣PD)2∴62+(8﹣PD)2=PD2,解得:PD=综上所述,PD的范围为:3<PD<6或<PD≤8;②如图5,∵∠QPD=120°,当点P与点A重合时,AQ=AD∴点Q的运动路径是线段DQ,∠DAQ=120°,∠ADQ=∠AQD=30°,BQ的最短距离是点B到直线CQ的距离;过点B作BK⊥CQ于K,BK交AD于S,过A作AL⊥CQ于L,连接BD,AQ,∵AL⊥CQ,∴∠ALD=∠ALQ=90°,∵AQ=AD,AL=AL∴Rt△ADL≌Rt△AQL∴DL=QL,∠DAL=∠QAL=60°,∴,即:DL=AD•sin∠DAL=8sin60°=4∴DQ=2DL=8在Rt△BCD中,BD===10设SD=m,则SK=m,AS=8﹣m∵∠ASB=∠DSK=90°﹣∠ADQ=90°﹣30°=60°,∴∠ABS=30°∴=tan∠ABS,即8﹣m=6tan30°,解得:m=8﹣2∴KS=(8﹣2)=4﹣,BS=2AS=4∴BK=KS+BS=4﹣+4=3+4故点Q的运动路径长是8,BQ的最短距离是3+4.。
2021年云南中考数学真题答案大全
2021年云南中考数学真题答案大全刷中考试题可指引考生了解中考题型、命题思路、考查重点及难易程度等。
考生在短时间内接触了大量题目,查缺补漏,才能更好地抓紧时间,增强复习效率。
不至于复习不知哪看起,没有重点,犹如大海捞针。
下面就是小编整理的2021年云南中考数学真题答案大全,希望大家喜欢。
数学学习方法一、初中数学学习的一般方法:1.突出一个“勤”字(克服一个“惰”字)数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”“勤能补拙是良训,一分辛劳一分才:我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字“聪”:怎么个勤法,?要做到五勤:“耳勤” “眼勤”(耳朵听,眼睛看,接受信息)“口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)“手勤”(动手多实践,不仅光做题,做课件,做模型)最大的提高学习效率,首先要做到——上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识2.学好初中数学还有两个要点,要狠抓两个要点:学好数学,一要(动手),二要(动脑)。
动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么动手就是多实践,多做题,要“拳不离手”“曲不离口”同学就是“题不离手”,这两个要点大家要记住。
“动脑又动手,才能最大地发挥大脑的效率”3.做到“三个一遍”大家听过“失败是成功之母”听过“重复是学习之母”吗?培根——“知识就是力量”“重复是学习之母”如何重复?上课要认真听一遍,动手推一遍,想一遍下课和考试前都看一遍4.重视“四个依据”读好一本教科书——它是教学、中考的主要依据;记好一本笔记——它是教师多年经验的结晶;做好做净一本习题集——它是使知识拓宽;记好一本心得笔记,最好每人自己准备一本错题集二、分课前、课上、课后三个方面来谈一谈数学的学习。
1.课前做什么,预习。
有的同学会认为预习是浪费时间,上课听老师讲讲不就可以了,为什么还要花时间预习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南中考数学总复习专题训练:专题五阅读理解题(含新定义)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(云南中考数学总复习专题训练:专题五阅读理解题(含新定义))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为云南中考数学总复习专题训练:专题五阅读理解题(含新定义)的全部内容。
专题五阅读理解题(含新定义)1.(2019·十堰)对于实数a,b,定义运算“※”如下,a※b=a2-ab,例如,5※3=52-5×3=10.若(x+1)※(x-2)=6,则x的值为______.2.(2019·怀化)根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,…,an,…(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即错误!=q(常数),那么这一列数a1,a2,a3,…,an,…成等比数列,这一常数q叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和.解:令S=1+3+32+33+ (3100)则3S=3+32+33+…+3100+3101,因此,3S-S=3101-1,∴S=错误!,即1+3+32+33+…+3100=错误!.仿照例题,等比数列1,5,52,53,…,52 018的和为________.3.(2019·日照)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=错误!(m<0)与y=x2-4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为____________________.4.(2019·娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[-1.8]=-2。
令关于k的函数f(k)=[错误!]-[错误!](k是正整数).例:f(3)=[错误!]-[错误!]=1.则下列结论错误的是( )A.f(1)=0 B.f(k+4)=f(k)C.f(k+4)≥f(k)D.f(k)=0或15.(2019·日照)定义一种对正整数n的“F”运算:①当n是奇数时,F(n)=3n+1;当n为偶数时,F(n)=错误!(其中k是使错误!为奇数的正整数)…,两种运算交替重复进行.例如,取n=24,则:若n=13,则第2 018次“F运算”的结果是( )A.1 B.4 C.2 018 D.42 0186.(2019·潍坊)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°) B.Q(3,-120°)C.Q(3,600°)D.Q(3,-500°)7.(2019·凉山州)我们常用的数是十进制数,如4 657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0、1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110 101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53,那么二进制中的数101 011等于十进制中的哪个数?8.(2019·自贡)阅读下列材料;对数的创始人是苏格兰数学家纳皮尔(j.Napier,1550年~1617年).纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler,1707年~1783年),才发现指数和对数的联系.对数的定义:一般地,若ax=N(a〉0,a≠1),那么数x叫做以a为底N的对数,记作x=logaN.比如指数式24=16可转化为对数式4=log216,对数式2=log525,可转化为52=25,我们根据对数的定义可得到对数的一个性质:loga (M·N)=loga M +loga N(a>0,a≠1,M 〉0,N>0)理由如下:设loga M =m,loga N =n ,则M =am,N =an,∴M·N=am·an=am +n ,由对数的定义得:m +n =loga(M·N),又∵m+n =loga M +loga N ,∴loga(M·N)=loga M +loga N ,解决以下问题:(1)将指数式43=64转化成对数式___________________;(2)证明loga M N=loga M -loga N(a 〉0,a≠1,M 〉0,N>0);。
(3)拓展应用:计算log3 2+log3 6-log3 4=______.9.(2019·张家界)阅读理解题.在平面直角坐标系xOy 中,点P(x0,y0)到直线Ax +By +C =0(A2+B2≠0)的距离公式为:错误!,例如,求点P (1,3)到直线4x +3y -3=0的距离.解:由直线4x +3y -3=0知:A =4,B =3,C =-3,∴P(1,3)到直线4x +3y -3=0的距离为:d =错误!=2,根据以上材料,解决下列问题:(1)求点P1(0,0)到直线3x -4y -5=0的距离.(2)若点P2(1,0)到直线x +y +C =0的距离为错误!,求实数C 的值.10.(2019·深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形.如图,在△CFE 中,CF =6,CE =12,∠FCE=45°,以点C 为圆心,以任意长为半径作弧AD ,再分别以点A 和点D 为圆心,大于错误!AD 长为半径作弧,交EF 于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.11.(2019·重庆A卷)对于任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”,并猜想任意一个“极数"是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=m33.求满足D(m)是完全平方数的所有m。
参考答案【专题类型突破】1.1 【解析】由于(x+1)※(x-2)=6,∴(x+1)2-(x+1)(x-2)=6,即有3x+3=6,解得x=1。
2。
错误!【解析】令S=1+5+52+53+…+52 018,则5S=5+52+53+…+52 018+52 019,因此,5S-S=52 019-1,∴S=错误!,即1+5+52+53+…+52 018=错误!.3.-2≤m<-1 【解析】当x=1时,y=x2-4=1-4=-3.∴在第四象限内在二次函数y=x2-4的图象上和图象上方的整点有3个,坐标为(1,-1)、(1,-2)、(1,-3).当反比例函数y=错误!(m<0)的图象经过点(1,-2),即m=xy=-2时,在第四象限内围成的封闭图形(包括边界)内的整点的个数为2个,当反比例函数y=错误!(m<0)的图象经过点(1,-1),即m=xy=-1时,在第四象限内围成的封闭图形(包括边界)内的整点的个数为3个,∵在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴m的取值范围为-2≤m<-1.4.C 【解析】根据题目中的约定关于k的函数f(k)=[错误!]-[错误!](k是正整数),f(1)=[错误!]-[错误!]=0-0=0,选项A正确;f(k+4)=[错误!]-[错误!]=(1+[错误!])-(1+[错误!])=[错误!]-[错误!]=f(k),选项B正确,选项C不正确.由此也可得选项D正确.5.A 【解析】根据题意,得第一次:当n=13时,F①=3×13+1=40,第二次:当n=40时,F②=错误!=5,第三次:当n=5时,F①=3×5+1=16,第四次:当n =16时,F②=错误!=1,第五次:当n=1时,F①=3×1+1=4,第六次:当n=4时,F②=错误!=1,…,从第四次开始,结果就只是1,4两个数循环出现,∵(2 018-3)÷2=1 007……1,第2 018次“F运算”的结果是1。
故选A.6.D 【解析】∵点P与点Q关于点O成中心对称,故点P只需再旋转180°就得到点Q.则P(3,60°)再按顺时针旋转180°得到Q(3,240°);或P(3,60°)按逆时针旋转180°得到Q(3,-120°);Q(3,240°)按顺时针旋转360°后回到原位置,故还可表示为Q(3,600°);或Q(3,-120°)按逆时针再旋转360°后回到原位置,故还可表示为Q(3,-480°),故(3,-500°)是错误的.7.解: 101 011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43。
8.解: (1)log4 64=3;(2)设loga M=m,loga N=n,则am=M,an=N,∴错误!=错误!=am-n,由对数的定义得m-n=loga错误!,又∵m-n=loga M-loga N,∴loga错误!=loga M-loga N(a>0,a≠1,M〉0,N〉0).(3)log3 2+log3 6-log3 4=log3错误!=log3 3=1.9.解:(1)错误!=1;(2)∵错误!=错误!,∴|C+1|=2,∴C+1=±2,∴C1=1,C2=-3.10.(1)证明:由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的平分线,则∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=AB,∴四边形ACDB是菱形.∵∠ACD与△FCE中∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形.(2)解:设菱形ACDB的边长为x,可证:△FAB∽△FCE,则错误!=错误!,即错误!=错误!,解得:x=4,过A点作AH⊥CD于点H,如解图,在Rt△ACH中,∠ACH=45°,∴AH=错误!=2错误!.∴四边形ACDB的面积为:4×2错误!=8错误!。