2024届山东实验中学高三5月高考模拟数学答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2024年普通高等学校招生全国统一考试(模拟)
数学试题参考答案
一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
二、多项选择题:本题共3小题,每小题6分,共18分。
在每小题给出的四个选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分。
三、填空题:本题共3小题,每小题5分,共15分。
12.0; 13.32,,答案不唯一;14.4.
四、解答题:本题共5小题,共77分。
解答应写出文字说明、证明过程或演算步骤。
15.【解析】
(1)此次测试的平均成绩为:
0.2650.3750.4850.19579⨯+⨯+⨯+⨯=; ··································· 5分
(2)由题意可知,录取率为0.3,能进入第一梯队的概率为0.1; ··········· 7分
设录取分数为x ,因为分数落在[90100],的概率为0.1, 分数落在[8090),的概率为0.4,
所以[8090)x ∈,,令0.1(90)0.040.3x +-⨯=,解得85x =, ·········· 10分 所以录取分数大概为85分,进入第一梯队的分数大概为90分, 所以学生甲能被录取,但不能进入第一梯队. ····························· 13分
16.【解析】
若选择① (1)因为
2cos()
cos c a C b B
+π-=
, 由正弦定理得sin cos cos sin 2sin cos 0B C B C A B ++=, ·················· 2分 所以sin()2sin cos 0B C A B ++=,即sin (2cos 1)0A B +=,
从而1
cos 2B =-, ································································ 5分
因为()0B ∈π,,所以23
B π
=. ·············································· 7分
(2)在ABD △中,
sin sin AD c
B ADB
=
∠,
所以sin sin 2c B ADB AD ∠== ··············································· 10分 所以4ADB π∠=,所以12
BAD DAC π
∠=∠=,
所以6
ACB BAC π
∠=∠=
, ····················································· 13分 所以ABC △是等腰三角形,且a c =,
所以2cos 6
b a π
==.
······················································· 15分 若选择② (1)因为
sin sin sin sin A C b c
B C a
+-=
+, 由正弦定理得222
b a
c ac =++, ··············································· 2分
又由余弦定理222
2cos b a c ac B =+-,
从而1
cos 2B =-, ·································································· 5分
()0B ∈π,,所以23
B π
=
. ······················································ 7分 (2)同①中第二问. 若选择③
(1)因为2
2sin sin 2
B
a A ,所以()1cos sin a B A -,
由正弦定理得()sin 1cos sin A B B A -, ····························· 2分
cos 1B B +=,所以1sin 62B π⎛
⎫+= ⎪⎝
⎭ ··························· 5分
因为()0B ∈π,
,所以7666B πππ⎛⎫
+∈ ⎪⎝⎭
,,
所以566B ππ+
=,所以23
B π
=. ················································· 7分 (2)同①中第二问. 17.【解析】
(1)取线段1A B 的中点为H ,连接EH FH ,,
因为F 为线段1AC 的中点,所以FH BC ,且12
FH BC =
; ·
············ 2分 又E 是AD 的中点,所以ED BC ,且1
2
ED BC =
; 所以 ED FH ,且ED FH =,故四边形EDFH 为平行四边形;
所以DF
EH , ·
······································································ 5分 因为DF ⊄平面1A BE ,EH ⊂平面1A BE , 所以 直线DF 平面1A BE ;
························································ 7分
(2)因为E 是AD 的中点,
所以BE AD ⊥,所以1BE A E ⊥; 因为平面1A BE ⊥平面BCDE , 平面1A BE
平面BCDE BE =,
所以1A E ⊥平面BCDE . ·
·························································· 8分 以E 为原点,1EB ED EA ,,分别为x 轴,y 轴,z 轴建立空间直角坐标系, 设2AB =,则(000)E ,,,1(001)A ,,
,00)B
,20)C , 则1(001)EA =,,,1(01)BA =-,(020)BC =,,, ·················· 9分
设平面1A BC 的法向量为()x y z =,,n ,则100BA BC ⎧⋅=⎪⎨⋅=⎪⎩n n
,即020z y ⎧+=⎪⎨=⎪⎩, 取1x =
,则(10=n , ····················································· 11分 设直线1A E 与平面1A BC 所成角为θ, 则1113
sin |cos |2||||
EA EA EA θ⋅=<>=
=,n n n , ·································· 13分 所以直线1A E 与平面1A BC 所成角为
3
π. ······································· 15分 18.【解析】
(1)由题意可知,42p =,所以 2p =, ········································· 2分
所以 抛物线E 的方程为24y x =. ··············································· 4分 (2)(i )设()()1122A x y B x y ,,,,将直线AB 的方程代入24y x =得:
22
2
(24)0k x km x m +-+=,所以2
12122242km m x x x x k k
-+=
=,, ········ 6分 因为直线PA 与PB 倾斜角互补, 所以212121212222
01111PA PB y y kx m kx m k k x x x x --+-+-+=
+=+=----, 即122121211
2(2)(
)2(2)011(1)(1)
x x k k m k k m x x x x +-++-+=++-=----, 所以2
4222(2)
0(2)(2)
km k k k m k m k m --++-=+-++, 即2
422202
km k k k m --+=++,所以1k =-; ·
···································· 10分 (ii )由(i )可知22(24)0x m x m -++=,所以212124
2x x m x x m +=+
=,, 则AB =
因为22(24)40m m ∆=
+->,所以1m >-,即13m -<<,
又点P 到直线AB
, 所以12S ==, ·
······················· 13分 因为21
(3)(1)(3)(3)(22)2
m m m m m -+=--+,
31332232()2327
m m m -+-+-=
,
所以869
S
,当且仅当
322m m -
=+,即13m =时,等号成立,
所以PAB △面积最大值为 ·············································· 17分 19.(1)解:因为1(2,)2
X B ~, 所以X 的分布列为:
(3分)
所以2
221111113
()(log log log ).4422442
H X =-++=(4分) (2)(i )解:记发出信号0和1分别为事件A i ,收到信号0和1分别为事件B i ,i =0,1, 则011(),()1P A p P A p ==-,(5分)
00111001(|)(|),(|)(|)1P B A P B A q P B A P B A q ====-,(6分)
所以0000101()()(|)()(|)P B P A P B A P A P B A =+
(1)(1)12.pq p q p q pq =+--=--+(7分)
所以000000()(|)(|).()12P A P B A pq
P A B P B p q pq
=
=--+(9分)
(ii)证明:由(i)知,0()12P B p q pq =--+, 所以10()1()2P B P B p q pq =-=+-,(10分) 所以22
1(||)log (1)log 122p p
KL X Y p p p q pq p q pq
-=+---++-,(11分) 设1()1ln f x x x =-
-,则21()x
f x x
-=', 当x ∈(0,1)时,()0f x '>,()f x 单调递增; 当(1,)x ∞∈+时,()0f x '<,()f x 单调递减.
所以()(1)0f x f ≤=,即1ln 1x x
≥-, 所以2ln 11
log (1)ln 2ln 2x x x
=
≥-.(13分) 所以11212(||)(1)(1)(1)0ln 2ln 21p q pq p q pq
KL X Y p p p p
--++-≥⋅-+-⋅-=-,(15分) 当且仅当
11122p p p q pq p q pq -==--++-,即1,012
p q =<<时等号成立.
即KL (X ||Y )≥0得证.(17分) 【评分细则】
1.第一问没有交待X 的分布列,直接得到H (X )的值,得1分;若交待
11(0),(1),(2)42P X P X P X ======1
4
没有列表,不扣分;
2.第二问(i)直接得到0()12P B p q pq =--+没有交待过程,扣1分,第二问(ii)
没有交待等号成立条件,扣1分。