2009年广东省中山市初中毕业生学业考试

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年广东省中山市初中毕业生学业考试
数 学
说明:
1.全卷共4页,考试用时100分钟,满分为120分.
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.4的算术平方根是( ) A .2±
B .2
C

D
2.计算32
()a 结果是( ) A .6
a
B .9
a
C .5
a
D .8
a
3.如图所示几何体的主(正)视图是( )
C .
4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )
A . 10
7.2610⨯元 B .9
72.610⨯元 C .11
0.72610⨯元 D .11
7.2610⨯元
5.方程组22
30
10x y x y +=⎧⎨+=⎩
的解是( ) A .1113x y =⎧⎨
=⎩
22
13x y =-⎧⎨
=-⎩ B .12123
3
11x x y y ==-⎧⎧⎨⎨
=-=⎩⎩ C . 12123
31
1x x y y ==-⎧⎧⎨
⎨==-⎩⎩ D.1212
1
1
3
3x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 二、填空题:(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.
6.分解因式2
2
33x y x y --- .
7.已知O ⊙的直径8cm AB C =,为O ⊙上的一点,30BAC ∠=°,则BC = cm .
8.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元.
9.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是
45
,则n =_____________.
10.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖________块(用含n 的代数式表示).
……
(1) (2) (3)
三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算:1
sin 30π+32
-
+0°+(). 12.(本题满分6分)解方程2
21
11
x x =--- 13.(本题满分6分)如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使CE CD =,
(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写
作法,保留作图痕迹); (2)求证:BM EM =.
14.(本题满分6分)已知:关于x 的方程2
210x kx +-=
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是1-,求另一个根及k 值.
15.(本题满分6分)如图所示,A 、B 两城市相距100km ,现
计划在这两座城市间修建一条高速公路(即线段AB ),经测量,
森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护
1.732 1.414)
第7题图
B
第10题图 A
D
第13题图
30° A B
F
E P
45°
第15题图
四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 17.(本题满分7分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.
18.(本题满分7分)在ABCD 中,10AB =,AD m =,60D ∠=°,以AB 为直径作O ⊙, (1)求圆心O 到CD 的距离(用含m 的代数式来表示); (2)当m 取何值时,CD 与O ⊙相切.
19.(本题满分7分)如图所示,在矩形ABCD 中,12AB AC =,=20,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ,再以11A B 、
1A C 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边
图2
乒乓球
20% 足球
排球 篮球
40%
图1 第17题图 第18题图
作第3个平行四边形1121O B B C ……依次类推. (1)求矩形ABCD 的面积;
(2)求第1个平行四边形1OBB C 、第2个平行四边形111A B C C 和第6个平行四边形的面积.
五、解答题(三)(本大题3小题,每小题9分,共27分) 20、(本题满分9分)
(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,
求证:阴影部分四边形OFCG 的面积是ABC △的面
积的13.
(2)如图2,若DOE ∠保持120°角度不变, 求证:当DOE ∠绕着O 点旋转时,由两条半径和
ABC △的两条边围成的图形(图中阴影部分)面积
始终是ABC △的面积的1
3

21.(本题满分9
分)小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
A 1
O 1
A 2
B 2 B 1
C 1 B C 2
A O
D
第19题图 C 第20题图
D 图1 图2
22.(本题满分9分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,
(1)证明:Rt Rt ABM MCN △∽△;
(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的
值.
广东省中山市2009年初中毕业生学业考试
数学试题参考答案及评分建议
一、选择题(本大题5小题,每小题3分,共15分) 1.B 2.A 3.B 4.A 5.D
二、填空题(本大题5小题,每小题4分,共20分)
6.()(3)x y x y +-- 7.4 8.96 9.8 10.10,31n + 三、解答题(一)(本大题5小题,每题6分,共30分) 11.解:原式=
11
3122
+-+ ·
·················································································· 4分 =4. ······························································································· 6分
12.解:方程两边同时乘以(1)(1)x x +-, ······························································· 2分
2(1)x =-+, ···································································································· 4分
3x =-, ·
·········································································································· 5分 经检验:3x =-是方程的解. ················································································ 6分 13.解:(1)作图见答案13题图,
··························································· 2分 (2)ABC △是等边三角形,D 是AC 的中点,
BD ∴平分ABC ∠(三线合一)
, 2ABC DBE ∴∠=∠. ·
························································································ 4分 N
D
A C B
M
第22题图
答案13题图
A
C B
D
E M
CE CD =,
CED CDE ∴∠=∠.
又ACB CED CDE ∠=∠+∠,
2ACB E ∴∠=∠. ·
···························································································· 5分 又ABC ACB ∠=∠, 22DBC E ∴∠=∠, DBC E ∴∠=∠, BD DE ∴=. 又DM BE ⊥,
BM EM ∴=. ·
································································································· 6分 14.解:(1)2
210x kx +-=,
2242(1)8k k ∆=-⨯⨯-=+, ·············································································· 2分
无论k 取何值,2
k ≥0,所以2
80k +>,即0∆>,
∴方程2210x kx +-=有两个不相等的实数根. ························································ 3分
(2)设2
210x kx +-=的另一个根为x ,
则12k x -=-
,1(1)2x -=-,·············································································· 4分 解得:1
2
x =,1k =,
∴2210x kx +-=的另一个根为1
2
,k 的值为1. ····················································· 6分
15.解:过点P 作PC AB ⊥,C 是垂足,
则30APC ∠=°,45BPC ∠=°, ····································· 2分
tan30AC PC =°,tan 45BC PC =°,
AC BC AB +=, ·
······················································· 4分 tan30tan 45100PC PC ∴+
=°°,
11003PC ⎛⎫∴+= ⎪ ⎪⎝⎭, ···················································
5分 50(350(3 1.732)63.450PC ∴=⨯->≈≈,
答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.································································································ 6分 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.解:设每轮感染中平均每一台电脑会感染x 台电脑, ············································ 1分 依题意得:1(1)81x x x +++=, ··········································································· 3分
2(1)81x +=,
答案15题图
A B
F E P C
19x +=或19x +=-,
12810x x ==-,(舍去),··················································································· 5分 33(1)(18)729700x +=+=>. ············································································ 6分
答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台. ························································································································ 7分 17.解:(1)2020%100÷=(人). ····································································· 1分
(2)30
100%30%100
⨯=, ·
·················································································· 2分 120%40%30%10%---=,
36010%36⨯=°°. ·
··························································································· 3分 (3)喜欢篮球的人数:40%10040⨯=(人), ························································ 4分 喜欢排球的人数:10%10010⨯=(人). ································································ 5分
······················· 7分
18.解:(1)分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E ,点F ,
AE OF OF ∴∥,就是圆心O 到CD 的距离. 四边形ABCD 是平行四边形,
AB CD AE OF ∴∴=∥,. ·
················································································· 2分
在Rt ADE △中,60sin sin 60AE AE
D D AD AD
∠=∠==°
,,°,
222
AE AE m OF AE m m ====,,, ························································ 4分 答案17题图
答案18
题图(1)
答案18题图(2)
圆心到CD 的距离OF
. ··········································································· 5分 (2)
3
OF =
, 为O ⊙的直径,且10AB =,
当5OF =时,CD 与O ⊙相切于F 点,
5m ==, ··················································································· 6分
当3
m =
时,CD 与O ⊙相切. ······································································· 7分 19.解:(1)在Rt ABC △
中,
16BC =,
1216192ABCD S AB BC ==⨯=矩形. ······································································ 2分
(2)
矩形ABCD ,对角线相交于点O ,
4ABCD OBC S S ∴=△. ···························································································· 3分
四边形1OBB C 是平行四边形,
11OB CB OC BB ∴∥,∥,
11OBC B CB OCB B BC ∴∠=∠∠=∠,.

BC CB =,
1OBC B CB ∴△≌△,
11
2962OBB C OBC ABCD S S S ∴==
=△, ·
······································································ 5分 同理,1111111
48222
A B C C OBB C ABCD S S S ==⨯⨯=, ························································ 6分
第6个平行四边形的面积为61
32
ABCD S =. ······························································· 7分
五、解答题(三)(本大题3小题,每小题9分,共27分) 20.证明:(1)如图1,连结OA OC ,, 因为点O 是等边三角形ABC 的外心,
所以Rt Rt Rt OFC OGC OGA △≌△≌△. ····························· 2分
2OFCG OFC OAC S S S ==△△,
答案20题图(1)
A
E O G F
B
C
D
因为1
3OAC ABC S S =△△, 所以1
3
OFCG
ABC S S =△. ·
······················································································· 4分 (2)解法一: 连结OA OB ,和OC ,则AOC COB BOA △≌△≌△,12∠=∠, ·
·························· 5分 不妨设OD 交BC 于点F ,OE 交AC 于点G ,
3412054120AOC DOE ∠=∠+∠=∠=∠+∠=°,°,
35∴∠=∠. ······································································· 7分 在OAG △和OCF △中, 1235OA OC ∠=∠⎧⎪
=⎨⎪∠=∠⎩
,,,
OAG OCF ∴△≌△, ························································································· 8分 1
3OFCG AOC ABC S S S ∴==△△. ·
·············································································· 9分 解法二: 不妨设OD 交BC 于点F ,OE 交AC 于点G , 作OH BC OK AC ⊥⊥,,垂足分别为H K 、, ·················· 5分 在四边形HOKC 中,9060OHC OKC C ∠=∠=∠=°,°, 360909060120HOK ∴∠=-︒-︒=︒°-?, ·
······················· 6分 即12120∠+∠=°.
又23120GOF ∠=∠+∠=°,
13∴∠=∠. ·
···································································································· 7分 AC BC =, OH OK ∴=,
OGK OFH ∴△≌△, ·
······················································································· 8分 1
3
OFCG OHCK ABC S S S ∴==△. ·
··············································································· 9分
答案20题图(2)
A E O G
F
B C D 1 2 3 4
5 答案第20题图(3) A E
O
G
F B C D 1 3 2
H K。

相关文档
最新文档