人教版九年级数学下册第28章全章教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.1锐角三角函数
第1课时 正弦函数
1.能根据正弦概念正确进行计算;(重点)
2.能运用正弦函数解决实际问题.(难点)
一、情境导入
牛庄打算新建一个水站,在选择水泵时,必须知道水站(点A )与水面(BC )的高度(AB ).斜坡与水面所成的角(∠C )可以用量角器测出来,水管的长度(AC )也能直接量得.
二、合作探究
探究点一:正弦函数
如图,sin A 等于( )
A .2 B.55 C.12
D. 5 解析:根据正弦函数的定义可得sin A =12
,故选C. 方法总结:我们把锐角A 的对边a 与斜边c 的比叫做∠A 的正弦,记作sin A .即sin A =∠A 的对边斜边=a c . 变式训练:见《学练优》本课时练习“课堂达标训练” 第2题
探究点二:正弦函数的相关应用
【类型一】 在网格中求三角函数值
如图,在正方形网格中有△ABC ,则sin ∠ABC 的值等于( )
A.31010
B.1010
C.13
D .10 解析:∵AB =20,BC =18,AC =2,∴AB 2=BC 2+AC 2,∴∠ACB =90°,∴sin
∠ABC =AC AB =220=1010
.故选B. 方法总结:解决有关网格的问题往往和勾股定理及其逆定理相联系,根据勾股定理求出三边长度,再运用勾股定理的逆定理判断三角形形状.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题 【类型二】 已知三角函数值,求直角三角形的边长
在Rt △ABC 中,∠C =90°,BC =4,sin A =23
,则AB 的长为( ) A.83
B .6
C .12
D .8 解析:∵sin A =BC AB =4AB =23
,∴AB =6.故选B. 方法总结:根据正弦定义表示出边的关系,然后将数值代入求解,记住定义是解决问题的关键.
变式训练:见《学练优》本课时练习“课堂达标训练” 第6题 【类型三】 三角函数与等腰三角形的综合
已知等腰三角形的一条腰长为25cm ,底边长为30cm ,求底角的正弦值.
解析:先作底边上的高AD ,根据等腰三角形三线合一的性质得到BD =12
BC =15cm ,再由勾股定理求出AD ,然后根据三角函数的定义求解.
解:如图,过点A 作AD ⊥BC ,垂足为D .∵AB =AC =25cm ,BC =30cm ,AD 为底边上的高,∴BD =12BC =15cm.由勾股定理得AD =AB 2-BD 2=20cm ,∴sin ∠ABC =AD AB =2025
=45
. 方法总结:求三角函数值一定要在直角三角形中求值,当图形中没有直角三角形时,要通过作高,构造直角三角形解答.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型四】 在复杂图形中求三角函数值
如图,在△ABC 中,AD ⊥BC 于D ,如果AD =9,DC =5,E 为AC 的中点,求sin ∠EDC 的值.
解析:首先利用勾股定理计算出AC 的长,再根据直角三角形的性质可得DE =EC ,根
据等腰三角形性质可得∠EDC =∠C ,进而得到sin ∠EDC =sin ∠C =AD AC
. 解:∵AD ⊥BC ,∴∠ADC =90°,∵AD =9,DC =5,∴AC =92+52=106.∵E 为
AC 的中点,∴DE =AE =EC =12AC ,∴∠EDC =∠C ,∴sin ∠EDC =sin ∠C =AD AC =9106
=9106106
. 方法总结:求三角函数值的关键是找准直角三角形或利用等量代换将角或线段转化进行解答.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题
【类型五】 在圆中求三角函数值
如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.
解析:首先根据垂径定理得出∠ABD =∠ABC ,然后由直径所对的圆周角是直角,得出∠ACB =90°,根据勾股定理算出斜边AB 的长,再根据正弦的定义求出sin ∠ABC 的值,从而得出sin ∠ABD 的值.
解:由条件可知AC ︵=AD ︵,∴∠ABD =∠ABC ,∴sin ∠ABD =sin ∠ABC .∵AB 为直径,
∴∠ACB =90°.在Rt △ABC 中,∵BC =6,AC =8,∴AB =BC 2+AC 2=10,∴sin ∠ABD
=sin ∠ABC =AC AB =45
. 方法总结:求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
1.正弦的定义;
2.利用正弦解决问题.
在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用.
28.1锐角三角函数
第2课时 余弦函数和正切函数
1.理解余弦、正切的概念;(重点)
2.熟练运用锐角三角函数的概念进行有关计算.(重点)
一、情境导入
教师提问:我们是怎样定义直角三角形中一个锐角的正弦的?为什么可以这样定义?
学生回答后教师提出新问题:在上一节课中我们知道,如图所示,在Rt △ABC 中,∠C =90°,当锐角∠A 确定时,∠A 的对边与斜边的比就随之确定了.现在我们要问:其他边之间的比是否也确定了呢?为什么?
二、合作探究
探究点一:余弦函数和正切函数的定义
【类型一】 利用余弦的定义求三角函数值
在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( )
A.513
B.512
C.1213
D.125
解析:∵Rt △ABC 中,∠C =90°,AB =13,AC =12,∴cos A =AC AB =1213
.故选C. 方法总结:在直角三角形中,锐角的余弦等于这个角的邻边与斜边的比值.
变式训练:见《学练优》本课时练习“课堂达标训练” 第2题
【类型二】 利用正切的定义求三角函数值
如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan A =( )
A.35
B.45
C.34
D.43
解析:在直角△ABC 中,∵∠ABC =90°,∴tan A =BC AB =43
.故选D. 方法总结:在直角三角形中,锐角的正切等于它的对边与邻边的比值.
变式训练:见《学练优》本课时练习“课堂达标训练” 第5题
探究点二:三角函数的增减性
【类型一】 判断三角形函数的增减性
随着锐角α的增大,cos α的值( )
A .增大
B .减小
C .不变
D .不确定
解析:当角度在0°~90°之间变化时,余弦值随着角度的增大而减小,故选B.
方法总结:当0°<α<90°时,cos α的值随着角度的增大(或减小)而减小(或增大).
【类型二】 比较三角函数的大小
sin70°,cos70°,tan70°的大小关系是( )
A .tan70°<cos70°<sin70°
B .cos70°<tan70°<sin70°
C .sin70°<cos70°<tan70°
D .cos70°<sin70°<tan70°
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又∵cos70°=sin20°,正弦值随着角的增大而增大,∴sin70°>cos70°=sin20°.故选D.
方法总结:当角度在0°≤∠A ≤90°之间变化时,0≤sin A ≤1,0≤cos A ≤1,tan A ≥0. 探究点三:求三角函数值
【类型一】 三角函数与圆的综合
如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD .
(1)求证:DC =BC ;
(2)若AB =5,AC =4,求tan ∠DCE 的值.
解析:(1)连接OC ,求证DC =BC 可以先证明∠CAD =∠BAC ,进而证明DC ︵=BC ︵;(2)
由AB =5,AC =4,可根据勾股定理得到BC =3,易证△ACE ∽△ABC ,可以求出CE 、DE 的长,在Rt △CDE 中根据三角函数的定义就可以求出tan ∠DCE 的值.
(1)证明:连接OC .∵OA =OC ,∴∠OAC =∠OCA .∵CE 是⊙O 的切线,∴∠OCE =90°.∵AE ⊥CE ,∴∠AEC =∠OCE =90°,∴OC ∥AE ,∴∠OCA =∠CAD ,∴∠CAD =∠BAC ,∴DC ︵=BC ︵.∴DC =BC ;
(2)解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴BC =AB 2-AC 2=52-42=3.∵∠CAE =∠BAC ,∠AEC =∠ACB =90°,∴△ACE ∽△ABC ,∴EC BC =AC AB ,即EC 3=45,EC =125.∵DC =BC =3,∴ED =DC 2-CE 2=32-(125)2=95,∴tan ∠DCE =ED EC =95125
=34
. 方法总结:证明圆的弦相等可以转化为证明弦所对的弧相等.利用圆的有关性质,寻找或构造直角三角形来求三角函数值,遇到比较复杂的问题时,可通过全等或相似将线段进行转化.
变式训练:见《学练优》本课时练习“课后巩固提升” 第5题
【类型二】 利用三角形的边角关系求三角函数值
如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =3
4
,求sin C 的值.
解析:根据tan ∠BAD =34
,求得BD 的长.在直角△ACD 中由勾股定理可求AC 的长,然后利用正弦的定义求解.
解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34
=9,∴CD =BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213
. 方法总结:在不同的直角三角形中,要根据三角函数的定义,分清它们的边角关系,结合勾股定理是解答此类问题的关键.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
三、板书设计
1.余弦函数的定义;
2.正切函数的定义;
3.锐角三角函数的增减性.
在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会做题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目.通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念和基础知识.
28.1锐角三角函数
第3课时 特殊角的三角函数
1.经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)
2.能够进行30°、45°、60°角的三角函数值的计算;(重点)
3.能够结合30°、45°、60°的三角函数值解决简单实际问题.(难点
)
一、情境导入
问题1:一个直角三角形中,一个锐角的正弦、余弦、正切值是怎么定义的?
问题2:两块三角尺中有几个不同的锐角?各是多少度?设每个三角尺较短的边长为1,分别求出这几个锐角的正弦值、余弦值和正切值.
二、合作探究
探究点一:特殊角的三角函数值
【类型一】 利用特殊的三角函数值进行计算
计算:
(1)2cos60°·sin30°-6sin45°·sin60°;
(2)sin30°-sin45°cos60°+cos45°
. 解析:将特殊角的三角函数值代入求解.
解:(1)原式=2×12×12-6×22×32=12-32
=-1; (2)原式=12-2212+22
=22
-3. 方法总结: 解决此类题目的关键是熟记特殊角的三角函数值.
变式训练:见《学练优》本课时练习“课堂达标训练” 第4题
【类型二】 已知三角函数值求角的取值范围
若cos α=23
,则锐角α的大致范围是( ) A .0°<α<30° B .30°<α<45°
C .45°<α<60°
D .0°<α<30°
解析:∵cos30°=32,cos45°=22,cos60°=12,且12<23<22
,∴cos60°<cos α<cos45°,∴锐角α的范围是45°<α<60°.故选C.
方法总结:解决此类问题要熟记特殊角的三角函数值和三角函数的增减性.
【类型三】 根据三角函数值求角度
若3tan(α+10°)=1,则锐角α的度数是( )
A .20°
B .30°
C .40°
D .50° 解析:∵3tan(α+10°)=1,∴tan(α+10°)=
33.∵tan30°=33
,∴α+10°=30°,∴α=20°.故选A.
方法总结:熟记特殊角的三角函数值是解决问题的关键.
变式训练:见《学练优》本课时练习“课堂达标训练”第9题
探究点二:特殊角的三角函数值的应用
【类型一】 利用三角形的边角关系求线段的长
如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4,求BC 的长.
解析:由题意可知△BCD 为等腰直角三角形,则BD =BC ,在Rt △ABC 中,利用锐角三角函数的定义求出BC 的长即可.
解:∵∠B =90°,∠BDC =45°,∴△BCD 为等腰直角三角形,∴BD =BC .在Rt △ABC
中,tan ∠A =tan30°=BC AB ,即BC BC +4=33
,解得BC =2(3+1). 方法总结:在直角三角形中求线段的长,如果有特殊角,可考虑利用三角函数的定义列出式子,求出三角函数值,进而求出答案.
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型二】 判断三角形的形状
已知△ABC 中的∠A 与∠B 满足(1-tan A )2+|sin B -32
|=0,试判断△ABC 的形状. 解析:根据非负性的性质求出tan A 及sin B 的值,再根据特殊角的三角函数值求出∠A 及∠B 的度数,进而可得出结论.
解:∵(1-tan A )2+|sin B -32|=0,∴tan A =1,sin B =32
,∴∠A =45°,∠B =60°,∠C =180°-45°-60°=75°,∴△ABC 是锐角三角形.
方法总结:一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型三】 构造三角函数模型解决问题
要求tan30°的值,可构造如图所示的直角三角形进行计算.作Rt △ABC ,使∠C
=90°,斜边AB =2,直角边AC =1,那么BC =3,∠ABC =30°,∴tan30°=AC BC =13=
3
3
.在此图的基础上,通过添加适当的辅助线,探究tan15°与tan75°的值.
解析:根据角平分线的性质以及勾股定理首先求出CD 的长,进而得出tan15°=CD
BC ,
tan75°=BC
CD
求出即可.
解:作∠B 的平分线交AC 于点D ,作DE ⊥AB ,垂足为E .∵BD 平分∠ABC ,CD ⊥BC ,DE ⊥AB ,∴CD =DE .设CD =x ,则AD =1-x ,AE =2-BE =2-BC =2- 3.在Rt △ADE 中,DE 2+AE 2=AD 2,x 2+(2-3)2=(1-x )2,解得x =23-3,∴tan15°=23-33=2-3,
tan75°=BC CD =3
23-3
=2+ 3.
方法总结:解决问题的关键是添加辅助线构造含有15°和75°的直角三角形,再根据三角函数的定义求出15°和75°的三角函数值.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题 三、板书设计
1.特殊角的三角函数值:
2.
课程设计中引入非常直接,由三角尺引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.在讲解特殊角的三角函数值时讲解的也很细,可以说前面部分的
教学很成功,学生理解的很好.
28.1锐角三角函数
第4课时用计算器求锐角三角函数值及锐角
1.初步掌握用计算器求三角函数值的方法;(重点)
2.熟练运用计算器求三角函数值解决实际问题.(难点)
一、情境导入
教师讲解:通过上面几节课的学习我们知道,当锐角∠A是30°、45°或60°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角∠A不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.
二、合作探究
探究点一:用计算器求锐角三角函数值及锐角
【类型一】已知角度,用计算器求函数值
用计算器求下列各式的值(精确到0.0001):
(1)sin47°;(2)sin12°30′;
(3)cos25°18′;(4)sin18°+cos55°-tan59°.
解析:熟练使用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.
解:根据题意用计算器求出:
(1)sin47°≈0.7314;
(2)sin12°30′≈0.2164;
(3)cos25°18′≈0.9041;
(4)sin18°+cos55°-tan59°≈-0.7817.
方法总结:解决此类问题的关键是熟练使用计算器,使用计算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型二】已知三角函数值,用计算器求锐角的度数
已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数(结果精确到0.1°):
(1)sin A=0.7,sin B=0.01;
(2)cos A=0.15,cos B=0.8;
(3)tan A=2.4,tan B=0.5.
解析:由三角函数值求角的度数时,用到sin,cos,tan键的第二功能键,要注意按键的顺序.
解:(1)sin A =0.7,得∠A ≈44.4°;sin B =0.01得∠B ≈0.6°; (2)cos A =0.15,得∠A ≈81.4°;cos B =0.8,得∠B ≈36.9°; (3)由tan A =2.4,得∠A ≈67.4°;由tan B =0.5,得∠B ≈26.6°.
方法总结:解决此类问题的关键是熟练使用计算器,在使用计算器时要注意按键顺序. 变式训练:见《学练优》本课时练习“课堂达标训练” 第7题 【类型三】 利用计算器验证结论
(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想: ①sin30°________2sin15°cos15°; ②sin36°________2sin18°cos18°; ③sin45°________2sin22.5°cos22.5°; ④sin60°________2sin30°cos30°; ⑤sin80°________2sin40°cos40°.
猜想:已知0°<α<45°,则sin2α________2sin αcos α.
(2)如图,在△ABC 中,AB =AC =1,∠BAC =2α,请根据提示,利用面积方法验证结论.
解析:(1)利用计算器分别计算①至⑤各式中左边与右边,比较大小;(2)通过计算△ABC 的面积来验证.
解:(1)通过计算可知: ①sin30°=2sin15°cos15°; ②sin36°=2sin18°cos18°; ③sin45°=2sin22.5°cos22.5°; ④sin60°=2sin30°cos30°; ⑤sin80°=2sin40°cos40°; sin2α=2sin αcos α.
(2)∵S △ABC =12AB ·sin2α·AC =12sin2α,S △ABC =1
2×2AB sin α·AC cos α=sin α·cos
α,∴sin2α=2sin αcos α.
方法总结:本题主要运用了面积法,通过用不同的方法表示同一个三角形的面积,来得到三角函数的关系,此种方法在后面的学习中会经常用到.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题 【类型四】 用计算器比较三角函数值的大小
用计算器比较大小:20sin87°________tan87°.
解析:20sin87°≈20×0.9986=19.974,tan87°≈19.081,∵19.974>19.081,∴20sin87°>tan87°.
方法总结:利用计算器求值时,要注意计算器的按键顺序. 变式训练:见《学练优》本课时练习“课堂达标训练”第8题 探究点二:用计算器求三角函数值解决实际问题
如图,从A 地到B 地的公路需经过C 地,图中AC =20km ,∠CAB =25°,∠CBA
=37°,因城市规划的需要,将在A 、B 两地之间修建一条笔直的公路.
(1)求改直的公路AB 的长;
(2)公路改直后比原来缩短了多少千米?
解析:(1)作CH ⊥AB 于H .在Rt △ACH 中根据CH =AC ·sin ∠CAB 求出CH 的长,由AH =AC ·cos ∠CAB 求出AH 的长,同理可求出BH 的长,根据AB =AH +BH 可求得AB 的长;(2)在Rt △BCH 中,由BC =CH
sin ∠CBA
可求出BC 的长,由AC +BC -AB 即可得出结论.
解:(1)作CH ⊥AB 于H .在Rt △ACH 中,CH =AC ·sin ∠CAB =AC ·sin25°≈20×0.42=8.4km ,AH =AC ·cos ∠CAB =AC ·cos25°≈20×0.91=18.2km.在Rt △BCH 中,BH =
CH
tan ∠CBA
≈8.4tan37°
=11.1km ,∴AB =AH +BH =18.2+11.1=29.3km.故改直的公路AB 的长为29.3km ;
(2)在Rt △BCH 中,BC =CH sin ∠CBA =CH sin37°≈8.4
0.6
=14km ,则AC +BC -AB =20+14-
29.3=4.7km.
答:公路改直后比原来缩短了4.7km.
方法总结:根据题意作出辅助线,构造出直角三角形是解答此类问题的关键. 变式训练:见《学练优》本课时练习“课后巩固提升”第4题 三、板书设计
1.已知角度,用计算器求函数值;
2.已知三角函数值,用计算器求锐角的度数; 3.用计算器求三角函数值解决实际问题.
备课时尽可能站在学生的角度思考问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折.舍得把课堂让给学生,尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,真正提高课堂教学效率,提高成绩.
28.2.1 解直角三角形
1.理解解直角三角形的意义和条件;(重点)
2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)
一、情境导入
世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数.
在上述的Rt △ABC 中,你还能求其他未知的边和角吗? 二、合作探究
探究点一:解直角三角形
【类型一】 利用解直角三角形求边或角
已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下
列条件解直角三角形.
(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长; (2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长.
解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形. 解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c ,
即c =a cos B =363
2
=243,∴b =sin B ·c =1
2×243=123;
(2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =3
3,∴∠A =30°,∴∠B =60°,
∴c =2a =12 2.
方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.
变式训练:见《学练优》本课时练习“课堂达标训练” 第4题 【类型二】 构造直角三角形解决长度问题
一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,
∠E =30°,∠A =45°,AC =122,试求CD 的长.
解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.
解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×
2
2
=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM
tan60°=43,∴CD =CM -MD =
12-4 3.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
变式训练:见《学练优》本课时练习“课后巩固提升” 第4题 【类型三】 运用解直角三角形解决面积问题
如图,在△ABC 中,已知∠C =90°,sin A =3
7
,D 为边AC 上一点,∠BDC =45°,
DC =6.求△ABC 的面积.
解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解.
解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =3
7,设BC =3k ,则AB =7k (k >0),
在Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,∴BC =CD =3k =6,∴k =2,∴AB =14.在Rt △ABC 中,AC =AB 2-BC 2=142-62=410,∴S △ABC =12AC ·BC =1
2
×410×6=1210.所以△ABC 的面积是1210. 方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题 探究点二:解直角三角形的综合
【类型一】 解直角三角形与等腰三角形的综合
已知等腰三角形的底边长为2,周长为2+2,求底角的度数.
解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.
解:如图,在△ABC 中,AB =AC ,BC =2,∵周长为2+2,∴AB =AC =1.过A 作AD ⊥BC 于点D ,则BD =
22,在Rt △ABD 中,cos ∠ABD =BD AB =2
2
,∴∠ABD =45°,即等腰三角形的底角为45°.
方法总结:求角的度数时,可考虑利用特殊角的三角函数值. 变式训练:见《学练优》本课时练习“课后巩固提升”第2题 【类型二】 解直角三角形与圆的综合
已知:如图,Rt △AOB 中,∠O =90°,以OA 为半径作⊙O ,BC 切⊙O 于点C ,
连接AC 交OB 于点P .
(1)求证:BP =BC ;
(2)若sin ∠P AO =1
3
,且PC =7,求⊙O 的半径.
解析:(1)连接OC ,由切线的性质,可得∠OCB =90°,由OA =OC ,得∠OCA =∠OAC ,再由∠AOB =90°,可得出所要求证的结论;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 和Rt △ACE 中,根据三角函数和勾股定理,列方程解答.
解:(1)连接OC ,∵BC 是⊙O 的切线,∴∠OCB =90°,∴∠OCA +∠BCA =90°.∵OA =OC ,∴∠OCA =∠OAC ,∴∠OAC +∠BCA =90°,∵∠BOA =90°,∴∠OAC +∠APO =90°,∵∠APO =∠BPC ,∴∠BPC =∠BCA ,∴BC =BP ;
(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 中,∵sin ∠P AO =1
3,设OP =x ,AP
=3x ,∴AO =22x .∵AO =OE ,∴OE =22x ,∴AE =42x .∵sin ∠P AO =1
3
,∴在Rt △ACE
中CE AE =13,∴AC AE =22
3,∴3x +742x =223,解得x =3,∴AO =22x =62,即⊙O 的半径为6 2.
方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题 三、板书设计
1.解直角三角形的基本类型及其解法; 2.解直角三角形的综合.
本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.
28.2.2 应用举例
第1课时 解直角三角形的简单应用
1.通过生活中的实际问题体会锐角三角函数在解题过程中的作用;(重点)
2.能够把实际问题转化为数学问题,建立数学模型,并运用解直角三角形求解.(难点)
一、情境导入
为倡导“低碳生活”,人们常选择以自行车作为代步工具.图①所示的是一辆自行车的实物图,图②是这辆自行车的部分几何示意图,其中车架档AC 与CD 的长分别为45cm 和60cm ,且它们互相垂直,座杆CE 的长为20cm.点A 、C 、E 在同一条直线上,且∠CAB =75°.
你能求出车架档AD 的长吗?
二、合作探究
探究点:解直角三角形的简单应用
【类型一】 求河的宽度
根据网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资
江北岸的新大桥.如图,新大桥的两端位于A 、B 两点,小张为了测量A 、B 之间的河宽,在垂直于新大桥AB 的直线型道路l 上测得如下数据:∠BDA =76.1°,∠BCA =68.2°,CD =82米.求AB 的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.
解析:设AD =x m ,则AC =(x +82)m.在Rt △ABC 中,根据三角函数得到AB =2.5(x +
82)m ,在Rt △ABD 中,根据三角函数得到AB =4x ,依此得到关于x 的方程,进一步即可求解.
解:设AD =x m ,则AC =(x +82)m.在Rt △ABC 中,tan ∠BCA =AB AC
,∴AB =AC ·tan ∠BCA =2.5(x +82).在Rt △ABD 中,tan ∠BDA =AB AD
,∴AB =AD ·tan ∠BDA =4x ,∴2.5(x +
82)=4x ,解得x =4103.∴AB =4x =4×4103
≈546.7m. 答:AB 的长约为546.7m.
方法总结:解题的关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.
变式训练:见《学练优》本课时练习“课堂达标训练” 第3题
【类型二】 求不可到达的两点的高度
如图,放置在水平桌面上的台灯的灯臂AB 长为30cm ,灯罩BC 长为20cm ,底座
厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少(结果精确到0.1cm ,参考数据:3≈1.732)?
解析:首先过点B 作BF ⊥CD 于点F ,作BG ⊥AD 于点G ,进而求出FC 的长,再求出BG 的长,即可得出答案.
解:过点B 作BF ⊥CD 于点F ,作BG ⊥AD 于点G ,∴四边形BFDG 是矩形,∴
BG =FD .在Rt △BCF 中,∠CBF =30°,∴CF =BC ·sin30°=20×12
=10cm.在Rt △ABG 中,∵∠BAG =60°,∴BG =AB ·sin60°=30×
32=153cm ,∴CE =CF +FD +DE =10+153+2=12+153≈38.0(cm).
答:此时灯罩顶端C 到桌面的高度CE 约是38.0cm.
方法总结:将实际问题抽象为数学问题,画出平面图形,构造出直角三角形转化为解直角三角形问题.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
【类型三】 方案设计类问题
小锋家有一块四边形形状的空地(如图③,四边形ABCD ),其中AD ∥BC ,BC =
1.6m ,AD =5.5m ,CD =5.2m ,∠C =90°,∠A =53°.小锋的爸爸想买一辆长4.9m ,宽1.9m 的汽车停放在这块空地上,让小锋算算是否可行.小锋设计了两种方案,如图①和图②所示.
(1)请你通过计算说明小锋的两种设计方案是否合理;
(2)请你利用图③再设计一种有别于小锋的可行性方案,并说明理由(参考数据:sin53°
=0.8,cos53°=0.6,tan53°=43
).
解析:(1)方案1,如图①所示,在Rt △AGE 中,依据正切函数求得AG 的长,进而求得DG 的长,然后与汽车的宽度比较即可;方案2,如图②所示,在Rt △ALH 中,依据正切函数求得AL 的长,进而求得DL 的长,然后与汽车的长度比较即可;(2)让汽车平行于AB 停放,如图③,在Rt △AMN 中,依据正弦函数求得AM 的长,进而求得DM 的长.在Rt △PDM 中,依据余弦函数求得PM 的长,然后与汽车的长度比较即可.
解:(1)如图①,在Rt △AGE 中,∵∠A =53°,∴AG =EG tan ∠A =4.943
m ≈3.68m ,∴DG =AD -AG =5.5-3.68=1.82m <1.9m ,故此方案不合理;如图②,在Rt △ALH 中,∵∠A
=53°,LH =1.9m ,∴AL =LH tan53°=1.943
≈1.43m ,∴DL =AD -AL =5.5-1.43=4.07m <4.9m ,故此方案不合理;
(2)如图③,过DA 上一点M 作MN ⊥AB 于点N ,过CD 上一点P 作PQ ⊥AB 于点Q ,
连PM ,在Rt △AMN 中,∵∠A =53°,MN =1.9m ,∴AM =MN sin53°=1.90.8
≈2.4,∴DM =5.5-2.4=3.1m.在Rt △PDM 中,∵∠PMD =∠A =53°,DM =3.1m ,∴PM =DM cos53°=3.10.6
≈5.1m >4.9m ,故此方案合理.
方法总结:本题主要是利用三角函数解决实际问题,关键是把实际问题转化为解直角三角形的问题,利用三角函数解决问题.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
1.求河宽和物体的高度;
2.其他应用类问题.
本节课为了充分发挥学生的主观能动性,可引导学生通过小组讨论,大胆地发表意见,
提高学生学习数学的兴趣.能够使学生自己构造实际问题中的直角三角形模型,并通过解直角三角形解决实际问题.
28.2.2 应用举例
第2课时 利用仰俯角解直角三角形
1.使学生掌握仰角、俯角的意义,并学会正确地判断;(重点)
2.初步掌握将实际问题转化为解直角三角形问题的能力.(难点)
一、情境导入
在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.今天我们就学习和仰角、俯角有关的应用性问题.
二、合作探究
探究点:利用仰(俯)角解决实际问题
【类型一】 利用仰角求高度
星期天,身高均为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一
座塔的高度.如图,小红站在A 处测得她看塔顶C 的仰角α为45°,小涛站在B 处测得塔顶C 的仰角β为30°,他们又测出A 、B 两点的距离为41.5m ,假设他们的眼睛离头顶都是10cm ,求塔高(结果保留根号).
解析:设塔高为x m ,利用锐角三角函数关系得出PM 的长,再利用CP PN
=tan30°,求出x 的值即可.
解:设塔底面中心为O ,塔高x m ,MN ∥AB 与塔中轴线相交于点P ,得到△CPM 、△CPN。