真空吸取技术的发展趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、仿生吸盘
由于常规吸盘多针对特定的工件要求,多适用于平整光滑的平面,适应的工件形状种类少。
为了适应多种工件的夹持需求,基于海洋软体生物灵感,国内外学者对仿生吸盘进行了研究Frank W. Grasso等分析了章鱼吸盘的特点,并指出制造的人工吸盘必须满足三个功能:
人工吸盘必须满足三个功能
①具有漏斗状结构提供表面密封以适应任意几何表面
②具备人工吸盘结构可以产生吸着所需负压力
③外部肌肉使得被吸着的表面能随机械臂自由旋转
周利坤等用仿生学原理和真空吸附原理,以三种仿生凹形漏斗吸盘结构模型为基础,结合章
鱼吸盘平行或并列规则布局的特点,通过力学分析发现,胎面吸盘式花纹绝大部分与冰面发
生有效吸附,可确保提供足够的吸附力,提高汽车在冰面上的防滑能力
但是,因为章鱼吸盘的肌肉组织数目庞大、紧密填满,并具有三维结构特征,人工加工难度
较大。
美国科学家用复合材料3D打印技术制作人工吸盘样品,每个吸盘只有指甲盖大小(图4),并使用这样的吸盘在陆地上进行了吸着实验。
科学家们预测,这样的吸盘在水下使用时,性能可能进一步提升,因为水压能提供更大的压力
对于机器人的执行末端,制造像章鱼吸盘那样的人造装置,需要制作大量的如章鱼组织的人
工肌肉单元,技术难度较高,也需要较高的加工成本。
为了找到更易实现的结构,Jingping Hou等研究了鱿鱼吸盘的仿生结构特性,并以此为基础设计并制作了人工鱿鱼吸盘(图5),可用于软体机器人末端执行器
随着气动技术、生物技术和材料技术的融合,仿生真空吸取技术方兴未艾,这类新兴的仿生
吸盘,使用人工弹性材料,模拟海洋软体生物变形和吸着。
与常规吸盘相比,仿生吸盘能耗
更少,适应性更强,有着良好的发展前景
2、吸盘变形产生真空度
改变吸着容积,从而改变吸着腔压力的方法是另一种真空吸取力产生方法。
弹性体材料围成
一个密闭容腔,弹性体材料变形,使吸盘内腔室容积改变,以产生负压。
胡冰山等设计了带
偏置弹簧的偏动式SMA弹簧驱动器驱动仿生负压吸盘(图6),建立了该吸盘的理论模型,并
通过实验验证了理论模型,吸盘内的负压可达约12kPa,且能耗更少
3、吸盘材料优化
除了负压抽吸、改变吸着容积等方法获得一定的真空度,吸盘的材料性质和吸着面的微结构
也会对吸着效果产生一定的影响
Follador等采用绝缘弹性材料来模拟肌肉柱状纤维束结构,以形成紧密的吸着和密封。
Tramacere等比较了吸着面的微小褶皱构造对吸着效果的影响,在水下静态吸着实验中(图7),液体的种类及杂质、水温、吸盘吸着面的材质特性都会影响吸着效果。
根据章鱼吸盘的解剖
结构,除了依靠顶端的空腔和柔软的侧边来制造压力(差)来形成密闭的真空以外,小吸盘材
料也有特别之处。
基于显微镜和显微CT(微计算机断层扫描技术)的观察结果,吸盘的侧面和
边缘生长着细小的同轴排列的纤维丛,有助于在水底凹凸不平的表面上制造密闭真空
结语
随着研究的深入和技术的进步,合理利用新技术和新方法,能优化吸盘结构、增强吸取效果,推动接触式真空吸取技术朝着多工况适应、多形状夹持、高效节能等方向发展。