初二数学上学期期末考试卷及答案(二)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上学期期末考试卷及答案
三.解答题(共8小题)
21.(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.
22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.
23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).
(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;
(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).
24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:
①∠AED+∠AFD=180°;②DE=DF.
那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:
(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)
25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB 于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.
(1)求证:AB⊥ED;
(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证
明.
27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.
(1)当CM与AB垂直时,求点M运动的时间;
(2)当点A′落在△ABC的一边上时,求点M运动的时间.
28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,
(1)如图1,若∠ACD=60°,则∠AFB=_________;如图2,若∠ACD=90°,则∠AFB=_________;如图3,若∠ACD=120°,则∠AFB=_________;
(2)如图4,若∠ACD=α,则∠AFB=_________(用含α的式子表示);
(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.
参考答案与试题解析
三.解答题(共8小题)
21.(2013•遵义)已知实数a满足a2+2a﹣15=0,求﹣÷的值.
考点:分式的化简求值.
分析:先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.
解答:
解:﹣÷=﹣•=﹣
=,
∵a2+2a﹣15=0,
∴(a+1)2=16,
∴原式==.
点评:此题考查了分式的化简求值,关键是掌握分式化简的步骤,先进行通分,再因式分解,然后把除法转化成乘法,最后约分;化简求值题要将原式化为最简后再代值.
22.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.
考点:分式的化简求值;解二元一次方程组.
专题:探究型.
分析:先根据分式混合运算的法则把原式进行化简,再求出a、b的值代入进行计算即可.
解答:
解:原式=÷﹣
=×﹣
=﹣
=﹣,
∵,
∴,
∴原式=﹣=﹣.
点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
23.(2007•资阳)设a1=32﹣12,a2=52﹣32,…,a n=(2n+1)2﹣(2n﹣1)2(n为大于0的自然数).
(1)探究a n是否为8的倍数,并用文字语言表述你所获得的结论;
(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1,a2,…,a n,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,a n为完全平方数(不必说明理由).
考点:因式分解-运用公式法.
专题:规律型.
分析:(1)利用平方差公式,将(2n+1)2﹣(2n﹣1)2化简,可得结论;
(2)理解完全平方数的概念,通过计算找出规律.
解答:解:(1)∵a n=(2n+1)2﹣(2n﹣1)2=4n2+4n+1﹣4n2+4n﹣1=8n,(3分)
又n为非零的自然数,
∴a n是8的倍数.(4分)
这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数(5分)
说明:第一步用完全平方公式展开各(1),正确化简(1分).
(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.(7分)
n为一个完全平方数的2倍时,a n为完全平方数(8分)
说明:找完全平方数时,错一个扣(1),错2个及以上扣(2分).
点评:本题考查了公式法分解因式,属于结论开放性题目,通过一系列的式子,找出一般规律,考查了同学们的探究发现的能力.
24.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB,垂足为E,DF⊥AC,垂足为F(如图(1)),则可以得到以下两个结论:
①∠AED+∠AFD=180°;②DE=DF.
那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:
(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)
考点:全等三角形的判定与性质;角平分线的性质.
专题:证明题.
分析:(1)过点D作DM⊥AB于M,DN⊥AC于N,根据角平分线上的点到角的两边的距离相等可得DM=DN,再根据∠AED+∠AFD=180°,平角的定义得∠AFD+∠DFN=180°,可以推出∠DFN=∠AED,然后利用角角边定理证明△DME与△DNF全等,根据全等三角形对应边相等即可证明;
(2)不一定成立,若DE、DF在点D到角的两边的垂线段上或垂线段与点A的两侧,则成立,若是同侧则不成立.
解答:解:(1)DE=DF.
理由如下:
过点D作DM⊥AB于M,DN⊥AC于N,
∵AD平分∠BAC,DM⊥AB,DN⊥AC,
∴DM=DN,
∵∠AED+∠AFD=180°,∠AFD+∠DFN=180°,
∴∠DFN=∠AED,
∴△DME≌△DNF(AAS),
∴DE=DF;
(2)不一定成立.
如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立,
经过(1)的证明,若在垂线段上或两侧则成立,
所以不一定成立.
点评:本题考查了角平分线的性质,全等三角形的判定与性质,从题目提供信息找出求证的思路是解题的关键,读懂题目信息比较重要.
25.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB 于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
考点:等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.
专题:压轴题;动点型.
分析:(1))由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;
(2)作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,
再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF 是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.
解答:解:(1)∵△ABC是边长为6的等边三角形,
∴∠ACB=60°,
∵∠BQD=30°,
∴∠QPC=90°,
设AP=x,则PC=6﹣x,QB=x,
∴QC=QB+BC=6+x,
∵在Rt△QCP中,∠BQD=30°,
∴PC=QC,即6﹣x=(6+x),解得x=2,
∴AP=2;
(2)当点P、Q运动时,线段DE的长度不会改变.理由如下:
作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,
又∵PE⊥AB于E,
∴∠DFQ=∠AEP=90°,
∵点P、Q速度相同,
∴AP=BQ,
∵△ABC是等边三角形,
∴∠A=∠ABC=∠FBQ=60°,
在△APE和△BQF中,
∵∠AEP=∠BFQ=90°,
∴∠APE=∠BQF,
∴在△APE和△BQF中,
∴△APE≌△BQF(AAS),
∴AE=BF,PE=QF且PE∥QF,
∴四边形PEQF是平行四边形,
∴DE=EF,
∵EB+AE=BE+BF=AB,
∴DE=AB,
又∵等边△ABC的边长为6,
∴DE=3,
∴当点P、Q运动时,线段DE的长度不会改变.
点评:本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.
26.(2005•江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.
(1)求证:AB⊥ED;
(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证
明.
考点:翻折变换(折叠问题);直角三角形全等的判定.
专题:几何综合题;压轴题.
分析:做此题要理解翻折变换后相等的条件,同时利用常用的全等三角形的判定方法来判定其全等.
解答:证明:(1)由题意得,∠A+∠B=90°,∠A=∠D,
∴∠D+∠B=90°,
∴AB⊥DE.(3分)
(2)∵AB⊥DE,AC⊥BD
∴∠BPD=∠ACB=90°,
∴在△ABC和△DBP,
,
∴△ABC≌△DBP(AAS).(8分)
说明:图中与此条件有关的全等三角形还有如下几对:
△APN≌△DCN、△DEF≌△DBP、△EPM≌△BFM.
点评:此题考查了翻折变换及全等三角形的判定方法等知识点,常用的判定方法有SSS、SAS、AAS、HL等.
27.(2013•沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.
(1)当CM与AB垂直时,求点M运动的时间;
(2)当点A′落在△ABC的一边上时,求点M运动的时间.
考点:翻折变换(折叠问题).
分析:(1)由Rt△ABC中,∠C=90°,CM与AB垂直,易证得△ACM∽△ABC,然后由相似三角形的对应边成比例,即可求得AM的长,即可得点M运动的时间;
(2)分别从当点A′落在AB上时与当点A′落在BC上时去分析求解即可求得答案.
解答:解:(1)∵Rt△ABC中,∠C=90°,CM⊥AB,
∴∠A=∠A,∠AMC=∠ACB=90°,
∴△ACM∽△ABC,
∴,
∵AC=3,BC=4,
∴AB==5,
∴AM==,
∴点M运动的时间为:;
(2)①如图1,当点A′落在AB上时,
此时CM⊥AB,
则点M运动的时间为:;
②如图2,当点A′落到BC上时,CM是∠ACB平分线,
过点M作ME⊥BC于点E,作MF⊥AC于点F,
∴ME=MF,
∵S△ABC=S△ACM+S△BCM,
∴AC•BC=AC•MF+BC•ME,
∴×3×4=×3×MF+×4×MF,
解得:MF=,
∵∠C=90°,
∴MF∥BC,
∴△AMF∽△ABC,
∴,
即,
解得:AM=,
综上可得:当点A′落在△ABC的一边上时,点M运动的时间为:或.
点评:此题考查了相似三角形的判定与性质、折叠的性质以及勾股定理等知识.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.
28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,
(1)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;如图3,若∠ACD=120°,则∠AFB=60°;
(2)如图4,若∠ACD=α,则∠AFB=180°﹣α(用含α的式子表示);
(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.
考点:等边三角形的判定与性质.
专题:证明题;探究型.
分析:(1)如图1,首先证明△BCD≌△ECA,得出∠EAC=∠BDC,再根据∠AFB是△ADF的外角求出其度数.如图2,首先证明△ACE≌△DCB,得出∠AEC=∠DBC,又有∠FDE=∠CDB,进而得出∠AFB=90°.
如图3,首先证明△ACE≌△DCB,得出∠EAC=∠BDC,又有∠BDC+∠FBA=180°﹣∠DCB得到
∠FAB+∠FBA=120°,进而求出∠AFB=60°.
(2)由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的内角和定理得∠CAE=∠CDB,从而得出
∠DFA=∠ACD,得到结论∠AFB=180°﹣α.
(3)由∠ACD=∠BCE得到∠ACE=∠DCB,通过证明△ACE≌△DCB得∠CBD=∠CEA,由三角形内角和定理得到结论∠AFB=180°﹣α.
解答:解:(1)如图1,CA=CD,∠ACD=60°,
所以△ACD是等边三角形.
∵CB=CE,∠ACD=∠BCE=60°,
所以△ECB是等边三角形.
∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,
又∵∠ACD=∠BCE,
∴∠ACE=∠BCD.
∵AC=DC,CE=BC,
∴△ACE≌△DCB.
∴∠EAC=∠BDC.
∠AFB是△ADF的外角.
∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,
∴△ACE≌△DCB.
∴∠AEC=∠DBC,
又∵∠FDE=∠CDB,∠DCB=90°,
∴∠EFD=90°.
∴∠AFB=90°.
如图3,∵∠ACD=∠BCE,
∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.
∴∠ACE=∠DCB.
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
∴∠EAC=∠BDC.
∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣(180﹣∠ACD)=120°,
∴∠FAB+∠FBA=120°.
∴∠AFB=60°.
故填120°,90°,60°.
(2)∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE.
∴∠ACE=∠DCB.
∴∠CAE=∠CDB.
∴∠DFA=∠ACD.
∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.
(3)∠AFB=180°﹣α;
证明:∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB.
在△ACE和△DCB中,
则△ACE≌△DCB(SAS).
则∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.
∠AFB=180°﹣∠EFB=180°﹣α.
点评:本题考查了全等三角形的判定及其性质、三角形内角和定理等知识.。