【精选】苏科版数学七年级上册 代数式综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)
1.从2开始,连续的偶数相加时,它们的和的情况如下表:
S和n之间有什么关系?用公式表示出来,并计算以下两题:
(1)2a+4a+6a+…+100a;
(2)126a+128a+130a+…+300a.
【答案】(1)解:依题可得:S=n(n+1).
2a+4a+6a+…+100a,
=a×(2+4+6+…+100),
=a×50×51,
=2550a.
(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,
=a×(2+4+6+…+300),
=a×150×151,
=22650a.
又∵2a+4a+6a+…+124a,
=a×(2+4+6+…+124),
=a×62×63,
=3906a,
∴126a+128a+130a+…+300a,
=22650a-3906a,
=18744a.
【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.
(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,
2.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.
(1)每个盒子需________个长方形,________个等边三角形;
(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).
现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.
①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;
②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.
【答案】(1)3;2
(2)解:①∵裁剪x张时用方法一,
∴裁剪(19−x)张时用方法二,
∴侧面的个数为:6x+4(19−x)=(2x+76)个,
底面的个数为:5(19−x)=(95−5x)个;
②由题意,得
解得:x=7,
经检验,x=7是原分式方程的解,
∴盒子的个数为:
答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.
【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;
故答案为3,2.
【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

(2)①由题意知裁剪x张用方法一,则(19-x)张用方法二,再根据方法一二所得的侧面数与底面数列代数式。

②根据每个三棱柱的底面数目与侧面数目的比列方程,求解x,由此计算出侧面总个数,即可求得盒子的个数。

3.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.
当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1
(1)若y2= + ,求y2的值
(2)若y3= + + ,则y3的值为________;
(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.
【答案】(1)解:∵ =±1, =±1,
∴y2= + =±2或0
(2)±1或±3
(3)2017;4032
【解析】【解答】解:(2)∵ =±1, =±1, =±1,
∴y3= + + =±1或±3.
故答案为±1或±3,
( 3 )由(1)(2)可知,
y1有两个值,y2有三个值,y3有四个值,…,
由此规律可知,y2016有2017个值,
最大值为2016,最小值为﹣2016,
最大值与最小值的差为4032.
故答案分别为2017,4032.
【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。

(2)根据题意先求出=±1,=±1,=±1,分情况讨论求出y3的4个值。

(3)根据(1)(2)的规律,可知y2016就有2017个不同的值,最大值的和是2016个1相加,最小值的和是2016个-1相加,再求出它们的差即可。

4.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:
(1)数轴上表示2和5的两点之间的距离是________,数轴上表示2和﹣3的两点之间的距离是________
(2)数轴上表示x和﹣2的两点之间的距离表示为________.
(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=________
(4)若|x+3|+|x﹣5|=8,利用数轴求出x的整数值.
【答案】(1)3;5
(2)|x+2|
(3)6
(4)解:∵|x+3|+|x﹣5|=8,
∴﹣3≤x≤5,
∵x为整数,
∴x=﹣3,﹣2,﹣1,0,1,2,3,4,5
【解析】【解答】解:(1)数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=6;
故答案为:3,5;|x+2|;6.
【分析】(1)根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上两点间的距离是大数减小数,可得答案;(3)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案;(4)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案.
5.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.
A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.
B家的规定如下表:
数量范围(千克)0~500部分500以上~15001500以上~2500部分2500以上部分
价格补贴零售价的95%零售价的85%零售价的75%零售价的70%
(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;
(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听
完,提出两个问题希望同学们帮忙解决:
①能否举例说明A店买的多反而便宜?
②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;
注:不同的单价,补贴价格也不同;只需提前算好即可填下表:
数量范围(千克)0~500部分500以上~15001500以上~25002500以上部分
价格补贴0元300▲▲
B家:500×6×95%+200×6×85%=3870元
(2)解:A家:6x×90%=5.4x,
B家:500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200
(3)解:①当他要批发不超过500千克苹果时,很明显在A家批发更优惠;
当他要批发超过500千克但不超过1000千克苹果时,
设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,
A家费用-B家费用=0.42x-300,要使A店买的多反而便宜即是0.42x-300>0,解得:x>
∴当x> 时,A店买的多反而便宜;
②当购买数量为1500以上~2500时,B家需要的总价=500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200
又总价=购买数量×单价+价格补贴
∴价格补贴=1200元,
当购买数量为2500以上部分时,B家需要的总价=500×6×95%+1000×6×85%+(2500-1500)×6×75%+(x-2500)×6×70%=4.2x+1950
∴价格补贴=1950元.
【解析】【分析】(1)A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+(700-500)×单价×85%;把相关数值代入求解即可;(2)根据“A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+1000×单价×85%+(x-1500)×单价×75%”;(3)①当他要批发超过500千克但不超过1000千克苹果时,设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,A家费用-B家费用=0.42x-300;即可举例说明A店买的多反而便宜;②分别求出B家批发各个价格所需要的费用的等式即可求解.
6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为,宽为的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.
(1)能否用只含的式子表示出图②中两块阴影部分的周长和?________(填“能”或“不能”);
(2)若能,请你用只含的式子表示出中两块阴影部分的周长和;若不能,请说明理由. 【答案】(1)能
(2)解:能,理由如下:
设小长方形的长为a,宽为b,
上面的长方形周长为:
下面的长方形周长为:
两式联立,总周长为:
(由图可得)
阴影部分总周长为
【解析】【解答】解:(1)能;故答案为能;
【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到,代入计算即可得到结果.
7.观察下列等式:
(1) ________,
(2)猜想规律 ________,
(3)有以上情形,你能求出下面式子的结果吗?
________,
(4)已知,求的值.
【答案】(1)
(2)
(3)
(4)解:∵


∴x=1

【解析】【解答】解:(1)
,
故答案为:
( 2 )猜想
故答案为:
( 3 )由以上情形,求出下面式子的结果:
故答案为:
【分析】(1)利用多项式乘以多项式的法则:用一个多项式的每一项分别去乘以另一个多项式的每一项,再把所得的积相加,最后合并同类项化为最简形式即可;
(2)通过观察(1)中两个等式的左右两边的特点即可得出通用公式:

(3)此题直接逆用(2)发现的通过公式即可直接得出答案;
(4)由等式的性质,在两边同时乘以(x-1),然后根据(2)发现的通用公式即可得出,解方程即可求出x的值,再代入代数式,按有理数的乘方运算即可算出答案。

8.
(1)已知3x2-5x+1=0,求下列各式的值:①3x+ ;②9x2+ ;
(2)若3x m+1-2x n-1+x n是关于x的二次多项式,试求3(m-n)2-4(n-m)2-(m-n)3+2(n-m)3的值.
【答案】(1)解:①∵3x2﹣5x+1=0,∴3x﹣5 0,∴3x 5;
②∵3x 5,∴,∴ 25,∴ 19
(2)解:3(m﹣n)2﹣4(n﹣m)2﹣(m﹣n)3+2(n﹣m)3
=﹣(m﹣n)2+3(n﹣m)3
∵3x m+1﹣2x n﹣1+x n是关于x的二次多项式,∴或或
或,解得:或或或.
①当m=1,n=2时,原式=﹣(1﹣2)2+3(2﹣1)3=﹣1+3=2;
②当m=1,n=1时,原式=﹣(1﹣1)2+3(1﹣1)3=0;
③当m=0,n=2时,原式=﹣(0﹣2)2+3(2﹣0)3=﹣4+24=20;
④当m=﹣1,n=2时,原式=﹣(﹣1﹣2)2+3(2+1)3=﹣9+81=72.
综上所述:原式的值为2或0或20或72
【解析】【分析】(1)①根据等式的性质,由3x2-5x+1=0 得出3x﹣5 + 0,即3x
+ 5;②将3x+ 5的两边完全平方,再利用完全平方公式展开移项合并同类项即可;
(2)首先将代数式合并同类项化为最简形式;由于多项式中,次数最高的项的次数就是单项式的次数,根据3x m+1﹣2x n﹣1+x n是关于x的二次多项式,即可列出关于m,n的方程
组:或或或,一一求解即可分别得出m,n的值,再分别代入代数式化简的结果即可算出答案。

9.某市居民使用自来水按如下标准收费(水费按月缴纳):
户月用水量单价
不超过12 m3的部分a元∕m3
超过12 m3但不超过20 m3的部分1.5a元∕m3
超过20 m3的部分2a元∕m3
(2)设某户月用水量为n 立方米,当n>20时,则该用户应缴纳的水费________元(用含a、n的整式表示);
(3)当a=2时,甲、乙两用户一个月共用水40 m3 ,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3 ,,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).
【答案】(1)解:2×12+2×1.5×(20-12)+2×2×(28-20)=80元
答:该用户这个月应缴纳80元水费
(2)2an-16a
(3)解:∵甲用户缴纳的水费超过了24元
∴x>12
①12<x≤20
甲:2×12+3×(x-12)=3x-12
乙:20≤40-x<28
12×2+8×3+4×(40-x-20)=128-4x
共计:3x-12+128-40x=116-x
②20≤x≤28
甲:2×12+3×8+4(x-20)=4x-32
乙:12≤40-x≤20
2×12+3×(40-x-12)=108-3x
共计:4x-32+108-3x=x+76
③28≤x≤40
甲:2×12+3×8+4×(x-20)=4x-32
乙:0≤40-x≤12
2×(40-x)=80-2x
共计:4x-32+80-2x=2x+48
答:甲、乙两用户共缴纳的水费为
【解析】【解答】解:(2) 2an-16a
【分析】(1)根据表中数据可知28>20,再根据表中数据列式计算,可求出结果。

(2)根据n>20,可得出12a+8×1.5a+2a(n-20),化简即可。

(3)根据已知甲用户缴纳的水费超过了24元,可知a>12,再再分情况讨论:①12<x≤20;②20≤x≤28;③28≤x≤40,分别用含x的代数式表示出甲和乙所付的水费,再求出它们的和即可。

10.某单位在十月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为4000 元/人,两家旅行社同时又对10 人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有n(n>10)人,则甲旅行社的费用为________元,乙旅行社的费用为________元;(用含 n 的代数式表示)
(2)假如这个单位现组织共30 名员工到旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.
(3)如果计划在十月份外出旅游七天,这七天的日期之和(不包含月份)为105,则他们于十月________号出发.
【答案】(1)3000n;3200(n-1)
(2)解:当n=30时:
甲: (元),
乙: (元),
因为90000<92800,所以选择甲旅行社更优惠
(3)12
【解析】【解答】解:(1)甲旅行社的费用为
乙旅行社的费用为
故答案为3000n;3200(n-1);
( 3 ) 设 x 号出发,则 x+x+1+x+2+x+3+x+4+x+5+x+6=105,
解得 x=12,所以他们于十月 12 号出发.
【分析】(1)按照两个旅行社的优惠方法,分别表示出各自的费用。

(2)将n=30分别代入(1)中的代数式求值,再比较大小即可得出结果。

(3)设 x 号出发,根据这七天的日期之和(不包含月份)为 105,建立关于x的方程,求解即可。

11.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=.
利用数轴,根据数形结合思想,回答下列问题:
(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和的两点之间的距离为________
(2)数轴上表示和1两点之间的距离为________,数轴上表示和两点之间的距离为________
(3)若表示一个实数,且,化简,
(4)的最小值为________,
的最小值为________.
(5)的最大值为________
【答案】(1)4;3
(2);
(3)8
(4)7;6
(5)4
【解析】【解答】解:(1)数轴上表示2和6两点之间的距离,
数轴上表示1和的两点之间的距离;
( 2 )数轴上表示和1两点之间的距离,
数轴上表示和两点之间的距离;
( 3 )∵,
∴ ;
( 4 )∵的几何意义为到-3与到4的距离和,
∴取最小值时,在-3与4之间,即最小值,
同理可得的最小值为6;
( 5 )∵取最大值时,最小,
∴,,
∴最大值 .
【分析】(1)(2)根据数轴上表示的任意两点间的距离等于这两个点所表示的数的差的绝对值即可得出答案;
(3)根据x的取值范围,根据有理数的减法法则判断出绝对值符号里面运算结果的正负,再根据绝对值的意义去掉绝对值符号,再合并同类项即可;
(4)根据题意表示x与-3距离和x与4的距离的和,要求距离和的最小值,根据两点之间距离最短从而得出当x介于-3 与4之间的任意一个位置的时候,其和就是最短的,根据有理数的减法法则判断出绝对值符号里面运算结果的正负,再根据绝对值的意义去掉绝对值符号即可;同理算出
的最小值;
(5)取最大值时,最小,根据绝对值的非负性即可得出,,从而代入即可算出答案。

12.小明拿扑克牌若干张变魔术,将这些扑克牌平均分成三份,分别放在左边,中间,右边,第一次从左边一堆中拿出两张放在中间一堆中,第二次从右边一堆中拿出一张放在中间一堆中,第三次从中间一堆中拿出一些放在左边一堆中,使左边的扑克牌张数是最初的2倍.
(1)如一开始每份放的牌都是8张,按这个规则魔术,你认为最后中间一堆剩________张牌?
(2)此时,小慧立即对小明说:“你不要再变这个魔术了,只要一开始每份放任意相同张数的牌(每堆牌不少于两张),我就知道最后中间一堆剩几张牌了,我想到了其中的奥秘!”请你帮小慧揭开这个奥秘.(要求:用所学的知识写出揭秘的过程)
【答案】(1)1
(2)解:不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,按这样的游戏规则:第一次:左边,中间,右边的扑克牌分别是(x-2)张,(x+2)张,x张;第二次:左边,中间,右边的扑克牌分别是(x-2)张,(x+3)张,(x-1)张,第三次:若中间一堆中拿y张扑克牌到左边,此时左边有(x-2)+y=2x张;即:y=2x-(x-2)=(x+2)张,所以,这时中间一堆剩(x+3)-y=(x+3)-(x+2)=1张扑克牌,所以,最后中间一堆只剩1张扑克牌.【解析】【解答】解:(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,由题意列等式的x-2+y=2x,
解得y=x+2,
即y是x的一次函数,
当x=8时,y=10,
把x=8,y=10代入x+2-y+1=1.
最后中间一堆剩1张牌,
故答案为:1;
【分析】(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,第一次从左边一堆中拿出两张放在中间一堆中左边一堆剩x-2张,第二次左边的牌的数量没有发生变化,第三次从中间一堆中拿出y张放在左边一堆中,左边一堆中共有(x-2+y)张,又第三次后左边的扑克牌张数是最初的2倍.从而列出方程,然后举哀那个x=8代入即可算出y
的值,进而即可得出答案;
(2)不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,分别写出第一次,第二次,第三次左边、中间、右边的牌的数量,然后根据题意列出方程,求解即可。

相关文档
最新文档