苏科版数学八年级上册 轴对称解答题同步单元检测(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版数学八年级上册轴对称解答题同步单元检测(Word版含答案)
一、八年级数学轴对称解答题压轴题(难)
1.如图,在ABC
△中,已知AD是BC边上的中线,E是AD上一点,且BE AC
=,延长BE交AC于点F,求证:AF EF
=.
【答案】证明见解析
【解析】
【分析】
延长AD到点G,使得AD DG
=,连接BG,结合D是BC的中点,易证△ADC和
△GDB全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF.
【详解】
如图,延长AD到点G,延长AD到点G,使得AD DG
=,连接BG.
∵AD是BC边上的中线,
∴DC DB
=.
在ADC和GDB
△中,
AD DG
ADC GDB
DC DB
=


∠=∠

⎪=

(对顶角相等),
∴ADC≌GDB
△(SAS).
∴CAD G
∠=∠,BG AC
=.
又BE AC
=,
∴BE BG
=.
∴BED G ∠=∠.
∵BED AEF ∠=∠
∴AEF CAD ∠=∠,即AEF FAE ∠=∠
∴AF EF =.
【点睛】
本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.
2.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC 边上的中线AD 的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD 到E ,使DE=AD ,连接BE.根据SAS 可证得到△ADC ≌△EDB ,从而根据“三角形的三边关系”可求得AD 的取值范围是 .解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(直接运用)如图②,AB ⊥AC ,AD ⊥AE ,AB=AC ,AD=AE ,AF 是ACD 的边CD 上中线.求证:BE=2AF.
(灵活运用)如图③,在△ABC 中,∠C=90°,D 为AB 的中点,DE ⊥DF ,DE 交AC 于点E ,DF 交AB 于点F ,连接EF ,试判断以线段AE 、BF 、EF 为边的三角形形状,并证明你的结论.
【答案】(1)2<AD <10;(2)见解析(3)为直角三角形,理由见解析.
【解析】
【分析】
(1)根据△ADC ≌△EDB ,得到BE=AC=8,再根据三角形的构成三角形得到AE 的取值,再根据D 为AE 中点得到AD 的取值;
(2)延长AF 到H ,使AF=HF ,故△ADF ≌△HCF ,AH=2AF ,由AB ⊥AC ,AD ⊥AE ,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH ,∠DAF=∠CHF ,得到∠ACH+∠CAD=180°,故∠BAE= ACH ,再根据AB=AC ,AD=AE 即可利用SAS 证明△BAE ≌△ACH ,故BE=AH,故可证明BE=2AF.
(3)延长FD 到点G ,使DG=FD ,连结GA ,GE ,证明△DBF ≌△DAG ,故得到FD=GD ,BF=AG,由DE ⊥DF ,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.
【详解】
(1)∵△ADC ≌△EDB ,
∴BE=AC=8,
∵AB=12,
∴12-8<AE<12+8,
即4<AE<20,
∵D为AE中点
∴2<AD<10;
(2)延长AF到H,使AF=HF,
由题意得△ADF≌△HCF,故AH=2AF,
∵AB⊥AC,AD⊥AE,
∴∠BAE+∠CAD=180°,
又∠ACH+∠CAH+∠AHC=180°,
∵∠D=∠FCH,∠DAF=∠CHF,
∴∠ACH+∠CAD=180°,
故∠BAE= ACH,
又AB=AC,AD=AE
∴△BAE≌△ACH(SAS),
故BE=AH,又AH=2AF
∴BE= 2AF.
(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,
由题意得△DBF≌△ADG,
∴FD=GD,BF=AG,
∵DE⊥DF,
∴DE垂直平分GF,
∴EF=EG,
∵∠C=90°,
∴∠B+∠CAB=90°,
又∠B=∠DAG,
∴∠DAG +∠CAB=90°
∴∠EAG=90°,
故EG2=AE2+AG2,
∵EF=EG, BF=AG
∴EF2=AE2+BF2,
则以线段AE、BF、EF为边的三角形为直角三角形.
【点睛】
此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.
3.(1)问题发现.
如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .
①求证:ADC BEC ∆∆≌.
②求AEB ∠的度数.
③线段AD 、BE 之间的数量关系为__________.
(2)拓展探究.
如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .
①请判断AEB ∠的度数为____________.
②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)
【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+
【解析】
【分析】
(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;
(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.
【详解】
解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,
∴AC CB =,CD CE =,
又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,
∴ACD ECB ∠=∠,
∴()ADC BEC SAS ∆∆≌.
②∵CDE ∆为等边三角形,
∴60CDE ∠=︒.
∵点A 、D 、E 在同一直线上,
∴180120ADC CDE ∠=︒-∠=︒,
又∵ADC BEC ∆∆≌,
∴120ADC BEC ∠=∠=︒,
∴1206060AEB ∠=︒-︒=︒.
③AD BE =
ADC BEC ∆∆≌,
∴AD BE =.
故填:AD BE =;
(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,
∴AC CB =,CD CE =,
又∵90ACB DCE ∠=∠=︒,
∴ACD DCB ECB DCB ∠+∠=∠+∠,
∴ACD ECB ∠=∠,
在ACD ∆和BCE ∆中,
AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩

∴E ACD BC ∆∆≌,

ADC BEC ∠∠=.
∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,
∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.
②∵CDA CEB ∆∆≌,

BE AD =.
∵CD CE =,CM DE ⊥, ∴DM ME =.
又∵90DCE ∠=︒,
∴2DE CM =,
∴2AE AD DE BE CM =+=+.
故填:①90°;②2AE BE CM =+.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.
4.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .
(1)求证:2FAD ABD ∠=∠;
(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;
(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.
【答案】(1)详见解析;(2)详见解析;(3)6
【解析】
【分析】
(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;
(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;
(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得
AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.
【详解】
(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,
AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,
180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,
CED ABD ∠=∠,2FAD ABD ∴∠=∠;
(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,
CED ABD ∠=∠,
AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,
∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,
ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,
CE AC =,AB AC ∴=;
(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,
设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,
CA CE =,45AEC EAC α∴∠=∠=︒+,
45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,
AB AC =,∴△ABE ≌△ACH (SAS ),
135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,
过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,
AD CD =,ADK CDH ∠=∠,
∴△AKD ≌△CHD (AAS ),DK DH ∴=,
∵,,AK DF AF AD AE AH ⊥==,
,FK DK EK HK ∴==,
3DH EF ∴==,6DF ∴=.
【点睛】
本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.
5.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且
AD=AE,连接DE.
⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;
⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;
⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.
【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.
【解析】
【分析】
(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设
∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.
【详解】
解: (1)∵∠B=∠C=35°,
∴∠BAC=110° ,
∵∠BAD=80°,
∴∠DAE=30°,
∵AD=AE ,
∴∠ADE=∠AED=75°,
∴∠CDE=∠AED-∠C=75°−35°=40°;
(2)∵∠ACB=75°,∠CDE=18° ,
∴∠E=75°−18°=57°,
∴∠ADE=∠AED=57°,
∴∠ADC=39°,
∵∠ABC=∠ADB+∠DAB=75° ,
∴∠BAD=36°.
(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β
①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α
∴y x y x ααβ=+⎧⎨=-+⎩
①② -②得,2α﹣β=0,
∴2α=β;
②如图2,当点D 在线段BC 上时,∠ADC=y°+α
∴+y x y x ααβ=+⎧⎨=+⎩
①② -①得,α=β﹣α,
∴2α=β;
③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α
∴180180y x y x αβα-++=⎧⎨++=⎩①②
-①得,2α﹣β=0,
∴2α=β.
综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .
【点睛】
本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角
等于与之不相邻的两个内角的和是解答此题的关键.
6.已知:AD 是ABC ∆的高,且BD CD =.
(1)如图1,求证:BAD CAD ∠=∠;
(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;
(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.
图1. 图2. 图3.
【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .
【解析】
【分析】
(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;
(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2
ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;
(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得
Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.
【详解】
解:(1)证明:如图1,
AD BC ⊥,BD CD =
AB AC ∴= BAD CAD ∴∠=∠;
图1
(2)解:在图2中,连接CE
ED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形
60BEC ∴∠= 30BED ∴∠=
由折叠性质可知1'2
ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠
BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=
图2
(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N
'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==
AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=
在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=
令FM m =,则2EF m = 62FG EG EF m ∴=-=-
同理12
FN EF m ==,2124CF FG m ==- 在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=
BF FM CF FN ∴-=+ 10124m m m ∴-=-+
解得1m = 8CF ∴=
图3
故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.
【点睛】
本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.
7.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度
(2)若2ACB B ∠=∠,
①求证:2AB CF =
②若 ,CF a EF b ==,直接写出BD CD
= (用含 ,a b 的式子表示)
【答案】(1)34;(2)①见详解;②
2b a b
- 【解析】
【分析】 (1)由三角形内角和定理和角平分线定义即可得出答案;
(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;
②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出
AH AE a b BC BE a b
-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,
∴180962856ACB ∠=︒-︒-︒=︒,
∵CE 为三角形的角平分线,
∴1282
ACE ACB ∠=∠=︒, ∵AD CE ⊥,
∴902862CAF ∠=︒-︒=︒,
∴966234BAD ∠=︒-︒=︒.
故答案为:34;
(2)①证明:∵22ACB B BCE ∠=∠=∠
∴B BCE ∠=∠
∴BE CE =
过点A 作//AH BC 交CE 与点H ,如图所示:
则,H BCE ACE EAH B ∠=∠=∠∠=∠
∴AH=AC ,H EAH ∠=∠
∴AE=HE
∵AD CE ⊥
∴HF=CF
∴AB=HC=2CF ;
②在AHF △和DCF 中,
H DCF HF CF AFH DFC
∠=∠⎧⎪=⎨⎪∠=∠⎩
∴AHF DCF ≅
∴AH=DC

,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+
∵ //AH BC

AH AE a b BC BE a b -==+ ∴
CD a b BC a b -=+ ∴2BD b CD a b
=-. 故答案为:
2b a b -. 【点睛】
本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.
8.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):
(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;
(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .
【答案】(1)见详解;(2)见详解.
【解析】
【分析】
(1)作线段BC 的垂直平分线,交BC 于点M ,即可;
(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.
【详解】
(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:
(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:
【点睛】
本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.
9.如图,在等边△ABC中,线段AM为BC边上的高,D是AM上的点,以CD为一边,在CD的下方作等边△CDE,连结BE.
(1)填空:∠ACB=____;∠CAM=____;
(2)求证:△AOC≌△BEC;
(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;
(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM 的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.
【答案】(1)60°,30°;(2)答案见解析;(3)60°;(4)∠BFM=60°.
【解析】
【分析】
(1)根据等边三角形的性质即可进行解答;
(2)根据等边三角形的性质就可以得出AC=AC ,DC=EC ,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD ,根据SAS 就可以得出△ADC ≌△BEC ;
(3)补全图形,由△ADC ≌△BEC 得∠CAM=∠CBE=30°,由三角形内角和定理即可求得∠BFM 的度数;
(4)画出相应图形,可知当点D 在线段AM 的延长线上且在BC 下方时,如图,可以得出△ACD ≌△BCE ,进而得到∠CBE=∠CAD=30°,据此得出结论.
【详解】
(1)∵△ABC 是等边三角形,
∴∠ACB=60°;
∴线段AM 为BC 边上的高,
∴∠CAM=
12
∠BAC=30°, 故答案为60,30°; (2)∵△ABC 与△DEC 都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD+∠DCB=∠DCB+∠BCE ,
∴∠ACD=∠BCE.
在△ADC 和△BEC 中,
AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩
, ∴△ACD ≌△BCE(SAS);
(3)补全图形如下:
由(1)(2)得∠CAM=30°,△ADC ≌△BEC ,
∴∠CBE=∠CAM=30°,
∵∠BMF=90°,
∴∠BFM=60°;
(4)当动点D 在射线AM 上,且在BC 下方时,画出图形如下:
∵△ABC 与△DEC 都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠DCB=∠DCB+∠DCE ,
∴∠ACD=∠BCE ,
在△ACD 和△BCE 中,
AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩
, ∴△ACD ≌△BCE(SAS),
∴∠CBE=∠CAD=30°,
又∵∠AMC=∠BMO ,
∴∠AOB=∠ACB=60°.
即动点D 在射线AM 上时,∠AOB 为定值60°.
【点睛】
本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.解题时注意:全等三角形的对应角相等,等边三角形的三个内角都相等,等边三角形的三个内角相等,且都等于60°.
10.如图1,△ABD ,△ACE 都是等边三角形,
(1)求证:△ABE ≌△ADC ;
(2)若∠ACD=15°,求∠AEB 的度数;
(3)如图2,当△ABD 与△ACE 的位置发生变化,使C 、E 、D 三点在一条直线上,求证:AC ∥
BE .
【答案】(1)见解析(2) ∠AEB=15°(3) 见解析
【解析】
试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得
∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.
试题解析:
(1)证明:∵△ABD,△ACE都是等边三角形
∴AB=AD,AE=AC,
∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,
∴,
∴△ABE≌△ADC;
(2)由(1)知△ABE≌△ADC,
∴∠AEB=∠ACD,
∵∠ACD=15°,
∴∠AEB=15°;
(3)同上可证:△ABE≌△ADC,
∴∠AEB=∠ACD,
又∵∠ACD=60°,
∴∠AEB=60°,
∵∠EAC=60°,
∴∠AEB=∠EAC,
∴AC∥BE.
点睛:本题主要考查了等边三角形的性质、全等三角形的判定及性质,证得△ABE≌△ADC 是解决本题的关键.。

相关文档
最新文档