等比数列基础测试题题库 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.在数列{}n a 中,32a =,12n n a a +=,则5a =( )
A .32
B .16
C .8
D .4
2.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记
{}n a 的前n 项积为n
T
,则下列选项错误的是( ) A .01q << B .61a > C .121T > D .131T > 3.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6
B .16
C .32
D .64
4.已知等比数列{}n a 中,1354a a a ⋅⋅=
,公比q =,则456a a a ⋅⋅=( ) A .32
B .16
C .16-
D .32-
5.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}
2
n a 的前n 项和为n T ,若2
(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )
A .()3,+∞
B .()1,3-
C .93,5⎛⎫ ⎪⎝⎭
D .91,5⎛
⎫- ⎪⎝
⎭
6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里
B .86里
C .90里
D .96里
7.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个
单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1
12
2
f - B .第三个单音的频率为14
2
f -
C .第五个单音的频率为1
62f
D .第八个单音的频率为1
122f
8.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40
B .81
C .121
D .242
9.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
10.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,
1021031
01
a a -<-,则使得
1n T >成立的最大自然数n 的值为( )
A .102
B .203
C .204
D .205
11.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16
B .16-
C .20
D .16或16-
12.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则4
2
S S =( ) A .76
B .32
C .
2132
D .
14
13.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方
法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有
大吕
=大吕
=
太簇.据此,可得
正项等比数列{}n a 中,k a =( )
A
.n -
B
.n -C
. D
. 14.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152
B .142
C .132
D .122
15.正项等比数列{}n a 满足2
2
37610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .8
16.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8
B .﹣8
C .±8
D .9
8
17.设数列{}n a ,下列判断一定正确的是( )
A .若对任意正整数n ,都有24n
n a =成立,则{}n a 为等比数列
B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列
C .若对任意正整数m ,n ,都有2m n
m n a a +⋅=成立,则{}n a 为等比数列
D .若对任意正整数n ,都有
312
11
n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列
18.正项等比数列{}n a 的公比是1
3
,且241a a =,则其前3项的和3S =( ) A .14
B .13
C .12
D .11
19.在等比数列{}n a 中,首项11,2a =11
,,232
n q a ==则项数n 为( ) A .3
B .4
C .5
D .6
20.已知等比数列{}n a 的前n 项和为n S ,若2
13a a =,且数列{}13n S a -也为等比数列,
则n a 的表达式为( )
A .12n
n a ⎛⎫= ⎪⎝⎭
B .1
12n n a +⎛⎫= ⎪⎝⎭
C .23n
n a ⎛⎫= ⎪⎝⎭
D .1
23n n a +⎛⎫= ⎪⎝⎭
二、多选题
21.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的
2
3
再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤
C .n S 的最小值为
700
3
D .n S 的最大值为400
22.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )
A .{}n a 为单调递增数列
B .6
3
9S S = C .3S ,6S ,9S 成等
比数列
D .12n n S a a =-
23.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .1
13()2
n n a -=⋅-
B .36n
n S a =+
C .若数列{}n a 中存在两项p a ,s a 3a =,则19p s +的最小值为83
D .若1
n n t S m S ≤-
≤恒成立,则m t -的最小值为116
24.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且
1010a b >,则下列结论一定正确的是( )
A .9100a a <
B .910a a >
C .100b >
D .910b b >
25.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正
确的是( )
A .数列{}2n a 是等比数列
B .数列1n a ⎧⎫
⎨
⎬⎩⎭
是递增数列 C .数列{}2log n a 是等差数列 D .数列{}n a 中,10S ,20S ,30S 仍成等比
数列
26.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a ⋅>,
871
01
a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9S
D .n T 的最大值为7T
27.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
28.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516
S =
C .当12
p =
时,()*
,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,671a a >,
671
01
a a -<-,则下列结论正确的是( ) A .01q <<
B .8601a a <<
C .n S 的最大值为7S
D .n T 的最大值为6T
30.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路
B .此人第三天走的路程站全程的
18
C .此人第一天走的路程比后五天走的路程多六里
D .此人后三天共走了42里路
31.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得
64m n a a =,则( )
A .数列{}n a 为等差数列
B .数列{}n a 为等比数列
C .22212
413n n
a a a -+++= D .m n +为定值
32.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列
(){}n
f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在
()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )
A .()2f x x =
B .()2x
f
x =
C .()f x =
D .()ln f x x =
33.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭
的前
n 项和为n T ,*n ∈N ,则下列选项正确的为( )
A .数列{}1n a +是等差数列
B .数列{}1n a +是等比数列
C .数列{}n a 的通项公式为21n
n a =-
D .1n T <
34.关于等差数列和等比数列,下列四个选项中不正确的有( )
A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列
B .若数列{}n a 的前n 项和1
22n n S +=-,则数列{}n a 为等差数列
C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列
D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;
35.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,991001
01
a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的
D .使1n T >成立的最大自然数n 等于198
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.C 【分析】
根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=, 所以
1
2n n
a a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,
所以2
3
5328a a q ===. 故选:C 2.D 【分析】
等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:
等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,
67(1)(1)0a a ∴--<,
11a >,若61a <,则一定有71a <,不符合
由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,
6121231267()1T a a a a a a =⋯=>,故C 正确,
13
1371T a =<,故D 错误,
∴满足1n T >的最大正整数n 的值为12.
故选:D . 3.C 【分析】
根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.
【详解】
设等比数列{}n a 的公比为q ,
则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q
,
所以55
678123()1232a a a a a a q ++=++⋅=⨯=.
故选:C . 4.A 【分析】
由等比数列的通项公式可计算得出()6
456135a a a q
a a a ⋅⋅=⋅⋅,代入数据可计算得出结果.
【详解】
由6
3
2
6
456135135432a a a a q a q a q a a a q ⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅=⨯=.
故选:A. 5.D 【分析】
由2n n S a =-利用11,1,2
n n n S n a S S n -=⎧=⎨
-≥⎩,得到数列{}n a 是以1为首项,1
2为公比的等比
数列,进而得到{}
2
n a 是以1为首项,
1
4
为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0n
n n S T λ-->恒成立,转化为(
)
()
321(1)
2
10n
n
n
λ---+>对
*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.
【详解】
当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-, 两式相减得
11
2
n n a a -=, 所以数列{}n a 是以1为首项,1
2
为公比的等比数列. 因为
11
2
n n a a -=, 所以22114
n n a a -=.
又2
11a =,所以{}
2
n a 是以1为首项,
1
4
为公比的等比数列, 所以1112211212n
n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414
n
n n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,
由2(1)0n n n S T λ-->,得2
14141(1)10234n n
n λ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦
,
所以2
21131(1)1022n n n
λ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣
⎦,
所以2
11131(1)110222n
n n n
λ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪
⎪ ⎪⎝⎭
⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
. 又*n N ∈,所以1102n
⎛⎫-> ⎪⎝⎭
,
所以1131(1)1022n n
n
λ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦
,
即(
)
()
321(1)
2
10n
n
n
λ---+>对*n N ∈恒成立,
当n 为偶数时,()()321210n
n
λ--+>,
所以()()3213216
632121
21
n
n
n n n λ-+-<==-
+++, 令6
321
n n b =-+,则数列{}n b 是递增数列,
所以22
69
3215
λb <=-=+; 当n 为奇数时,(
)()
321210n
n
λ-++>,
所以()()3213216
632121
21
n
n
n n n λ-+--<==-
+++,
所以16
332121
λb -<=-=-=+, 所以1λ>-.
综上,实数λ的取值范围是91,5⎛
⎫- ⎪⎝
⎭.
故选:D. 【点睛】
方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 6.D 【分析】
由题意得每天行走的路程成等比数列{}n a 、且公比为1
2
,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】
由题意可知此人每天走的步数构成
1
2
为公比的等比数列,
由题意和等比数列的求和公式可得
6
1
1
[1()]
2378
1
1
2
a-
=
-
,
解得
1192
a=,∴此人第二天走
1
19296
2
⨯=里,
∴第二天走了96里,
故选:D.
7.B
【分析】
根据题意得该单音构成公比为四、五、八项即可得答案.
【详解】
解:根据题意得该单音构成公比为因为第六个单音的频率为f,
1
4
1
4
2
2
f
f
-
==.
6
6
1
1
2
2
f
f
-
==.
所以第五个单音的频率为112
2f
=.
所以第八个单音的频率为
1
2
6
2
f f
=
故选:B.
8.C
【分析】
根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n项和公式求解出5
S的结果.
【详解】
因为1223
4,12
a a a a
+=+=,所以23
12
3
a a
q
a a
+
==
+,所以11
34
a a
+=,所以
1
1
a=,所以
()55
1
5
113
121
113
a q
S
q
--
===
--
,
故选:C.
9.B
【分析】
根据等差数列的性质,由题中条件,求出72
a=,再由等比数列的性质,即可求出结果.【详解】
因为各项不为0的等差数列{}n a 满足2
6780a a a -+=,
所以2
7720a a -=,解得72a =或70a =(舍);
又数列{}n b 是等比数列,且772b a ==,
所以3
3810371178b b b b b b b ===.
故选:B. 10.C 【分析】
由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】
由10210310a a ->,即1021031a a >,则有2
1021a q ⨯>,即0q >。
所以等比数列{}n a 各项为正数, 由
1021031
01
a a -<-,即102103(1)(1)0a a --<, 可得:1021031,1a a ><, 所以10220412203204102103()1T a a a a a a =⋅⋅
⋅=⋅>,
103205122032042051031T a a a a a a =⋅⋅
⋅⋅=<,
故使得1n T >成立的最大自然数n 的值为204,
故选:C 【点睛】
关键10220412203204102103()1T a a a a a a =⋅⋅
⋅=⋅>点点睛:在分析出1021031a a >,
1021031,1a a ><的前提下,由等比数列的性质可得102204102103()1T a a ==⋅>,
1032051031T a =<,即可求解,属于难题.
11.A 【分析】
根据等比数列的通项公式得出6
18a q =,10
132a q
=且10a >
,再由
819a a q ==.
【详解】
设等比数列{}n a 的公比为q ,则6
18a q =,10
132a q
=且10a >
则81916a q a ====
故选:A 12.B 【分析】
由5312a a a +=,解得q ,然后由4142
422
12(1)111(1)11a q S q q q a q S q q
---===+---求解. 【详解】
在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得2
12
q =
所以4142
42212(1)1311(1)12
1a q S q q q a q S q q
---===+=---, 故选:B 【点睛】
本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题, 13.C 【分析】
根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】
因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为
11n n a a q -=
,所以q =
所以11
1
111k k n n k a a a a a ---⎛⎫ ⎪
⎛== ⎭
⎝
⎝
1111
n k k n n n
a a
----==⋅ 故选:C. 14.A 【分析】
根据29T T =得到7
61a =,再由2121512a a a q ==,求得1,a q 即可.
【详解】
设等比数列{}n a 的公比为q ,
由29T T =得:7
61a =, 故61a =,即5
11a q =.
又2
121512a a a q ==,
所以9
1
512
q =, 故12
q =
, 所以()()21112
2
123411...2n n n n n n n T a a a a a a q
--⎛⎫=== ⎪⎝⎭
,
所以n T 的最大值为15
652T T ==.
故选:A. 15.C 【分析】
利用等比数列的性质运算求解即可. 【详解】
根据题意,等比数列{}n a 满足2
2
37610216a a a a a ++=, 则有22
2
288216a a a a ++=,即()2
2816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 16.A 【分析】
由已知条件求出公差和公比,即可由此求出结果. 【详解】
设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,4
19q ⋅=,
解之可得83
d =
,2
3q =, ()22218
183
b a a q ∴-=⨯⨯=.
故选:A. 17.C 【分析】
根据等比数列的定义和判定方法逐一判断. 【详解】
对于A ,若24n n a =,则2n
n a =±,+1+12n n a =±,则
1
2n n
a a +=±,即后一项与前一项的比不一定是常数,故A 错误;
对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误;
对于C ,由2
m n
m n a a +⋅=可得0n a ≠,则+1
+12
m n m n a a +⋅=,所以1+1
222
n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;
对于D ,由
312
11
n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满
足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】
方法点睛:证明或判断等比数列的方法,
(1)定义法:对于数列{}n a ,若()1
0,0n n n
a q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2
21
0n n n n a a a a ++=≠,则数列{}n a 为等比数列;
(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 18.B 【分析】
根据等比中项的性质求出3a ,从而求出1a ,最后根据公式求出3S ; 【详解】
解:因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以2
31a =. 所以31a =,2
11a q ∴=,因为1
3
q =
,所以19a =. 因此()3131131a q S q
-==-.
故选:B 19.C 【分析】
根据等比数列的通项公式求解即可. 【详解】
由题意可得等比数列通项5
111122n
n n a a q -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭
,则5n = 故选:C 20.D 【分析】
设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为
0,不是等比数列,当1q ≠时,11113311n n a a
S a q a q q
-=-
⋅+---,若是等比数列,则11301a a q -=-,可得2
3
q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】
设等比数列{}n a 的公比为q
当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,(
)1111111n n
n a q a a
q S q
q q
-==-
⋅+---, 所以11113311n n a a
S a q a q q
-=-
⋅+---, 要使数列{}13n S a -为等比数列,则需
11301a a q -=-,解得2
3
q =. 21
3a a =,2
123a ⎛⎫
∴= ⎪⎝⎭
,
故2
1
1
1
1222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭
⎝⎭
⎝⎭
.
故选:D. 【点睛】
关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301a
a q
-=-,即可求得q 的值,通项即可求出.
二、多选题
21.AC 【分析】
由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】
由题可知,第一次着地时,1
100S =;第二次着地时,221002003
S =+⨯;
第三次着地时,2
32210020020033S ⎛⎫
=+⨯+⨯ ⎪⎝⎭;……
第n 次着地后,2
1
222100200200200333n n S -⎛⎫
⎛⎫
=+⨯+⨯+
+⨯ ⎪ ⎪
⎝⎭
⎝⎭
则2
1
1222210020010040013333n n n S --⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭⎝
⎭⎝⎭
,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为400700
10033
+=; 综上所述,AC 正确 故选:AC 22.BD 【分析】
根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,
逐项判断选项可得答案. 【详解】
由638a a =,可得3338q a a =,则2q
,
当首项10a <时,可得{}n a 为单调递减数列,故A 错误;
由6
63
312912S S -=
=-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =⨯, 即6239(12)(12)(12)-=--不成立,
显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11
122121
n n n n a a q a a S a a q --===--- 1
2n n S a a ∴=-,故D 正确;
故选:BD . 【点睛】
关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求
和公式. 23.ABD 【分析】
根据等差中项列式求出1
2
q =-
,进而求出等比数列的通项和前n 项和,可知A ,B 正确;3a =求出15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1
p s =⎧⎨=⎩,可知19p s +的最小值为114
,C 不正确;利用1n
n y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结果. 【详解】
设等比数列{}n a 的公比为q ,
由13a =,21344a a a -=+得2
43343q q -⨯=+⨯,解得1
2
q =-
,所以11
3()2
n n a -=⋅-,
1
3(1())
1221()121()2
n n n S --⎛⎫==-- ⎪⎝⎭--;
1111361()66()63()63222n n n n n S a -⎛
⎫=--=--=+⋅-=+ ⎪⎝
⎭;所以A ,B 正确;
3a =,则23p s a a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,
所以11
4p s q
q
q --=,所以6p s +=,
则15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1p s =⎧⎨=⎩
,此时19145p s +=或114或194或465;C 不正确,
122,2121()2122,2n
n n n
n S n ⎧⎛⎫
+⎪ ⎪⎪⎝⎭⎛
⎫=--=⎨ ⎪⎝⎭⎛⎫
⎪- ⎪⎪⎝⎭⎩
为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3
[,2)2
n S ∈,
又1n n y S S =-
关于n S 单调递增,所以当n 为奇数时,138
(,]23
n
n S S -∈,当n 为偶数时,153
[,)62n n S S -
∈,所以83
m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】
本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题. 24.AD 【分析】
根据等差、等比数列的性质依次判断选项即可. 【详解】
对选项A ,因为0q <,所以2
9109990a a a a q a q =⋅=<,故A 正确; 对选项B ,因为9100a a <,所以91000a a >⎧⎨
<⎩或910
0a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误; 对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数,
又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】
本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 25.AC 【分析】 由已知得1
2
n n
a 可得以21
22
n n a -=,可判断A ;又1
111122n n n a --⎛⎫
== ⎪
⎝⎭
,可判断B ;由
122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.
【详解】
等比数列{}n a 中,满足11a =,2q
,所以12n n a ,所以2122n n a -=,所以数列
{}2n a 是等比数列,故A 正确;
又1
111122n n n a --⎛⎫
== ⎪⎝⎭
,所以数列1n a ⎧⎫
⎨
⎬⎩⎭
是递减数列,故B 不正确; 因为1
22log log 2
1n n a n -==-,所以{}2log n a 是等差数列,故C 正确;
数列{}n a 中,101010111222
S -==--,202021S =-,30
3021S =-,10S ,20S ,30S 不成
等比数列,故D 不正确; 故选:AC . 【点睛】
本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 26.AD 【分析】
根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】
因为11a >,781a a ⋅>,
871
01
a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.
27981a a a =<⋅,故B 错误;
因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】
本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题.
27.AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意.
③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1
*
1n n a a q n N -=∈.
28.AC 【分析】
由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】
由122(2)n n S S p n --=≥,得22
p a =
. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,
又
2112a a =,数列{}n a 为首项为p ,公比为1
2
的等比数列,故A 正确; 由A 可得1p =时,441
11521812
S -
=
=-,故B 错误; 由A 可得m n m n a a a +⋅=等价为212
1122
m n m n p p ++⋅=⋅,可得12p =,故C 正确;
3827
11
33||||22
128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭
, 则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】
本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能
力,属于中档题. 29.ABD 【分析】
先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】
若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则
11a >∴671,1a a >>∴
67101a a ->-与671
01
a a -<-矛盾; 因此01q <<,所以A 正确;
667710101
a a a a -<∴>>>-,因此2
768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;
因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】
本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 30.ACD 【分析】
若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1
2
q =
的等比数列,由6378S =求得首项,然后分析4个选项可得答案.
【详解】
解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1
2
q =
的等比数列, 因为6378S =,所以16
61(1)2=
378112
a S -
=-,解得1
192a =,
对于A ,由于21
192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 31481
19248,
43788
a =⨯=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程
多六里,所以C 正确; 对于D ,由于45611
11924281632a a a ⎛⎫++=⨯++=
⎪⎝⎭
,所以D 正确,
故选:ACD 【点睛】
此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 31.BD 【分析】
由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数列前n 项和公式,求出 12221
2
443n n
a a a +-++
+=,故选项C 错误,由等比数列的通项公式得到62642m n +==,所以选项D 正确. 【详解】
由题意,当1n =时,1122S a =-,解得12a =, 当2n ≥时,1122n n S a --=-,
所以()111222222n n n n n n n a S S a a a a ----=-=---=,
所以1
2n
n a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,
故选项A 错误,选项B 正确; 数列{}2
n
a 是以首项214a
=,公比14q =的等比数列,
所以()
()21
1122
2
121
141444114
3
n n n n a q a a a q +-⨯--+++=
=
=--,故选项C 错误;
6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.
故选:BD 【点睛】
本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 32.AC 【分析】
直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】
设等比数列{}n a 的公比为q .
对于A ,则
2
2
211
12()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭
,故A 是“保等比数列函数”; 对于B ,则
1
11()22()2
n n
n n a a a n a n
f a f a ++-+
==≠ 常数,故B 不是“保等比数列函数”; 对于C ,则
1()
()
n n f a f a +==
=,故C 是“保等比数列函数”;
对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n n
a a q a q q f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”.
故选:AC.
【点睛】
本题考查等比数列的定义,考查推理能力,属于基础题.
33.BCD
【分析】
由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公
式可得n a ,1112211(21)(21)2121
n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】
解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,
可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,
则12n n a +=,即21n n a =-, 又1112211(21)(21)2121
n n n n n n n n a a +++==-----,可得2
2311111111111212121212121n n n n T ++=-+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确.
故选:BCD .
【点睛】
本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题.
34.ABD
【分析】
根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案.
【详解】
根据题意,依次分析选项:
对于A ,若数列{}n a 的前n 项和2n S an bn c =++,
若0c =,由等差数列的性质可得数列{}n a 为等差数列,
若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;
对于B ,若数列{}n a 的前n 项和122n n S +=-,
可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;
对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,
即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,
故C 正确;
对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,
比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确.
故选:ABD .
【点睛】
本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.ABD
【分析】
由已知9910010a a ->,得0q >,再由99100101
a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·
T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.
【详解】
对于A ,9910010a a ->,21971·1a q ∴>,()2
981··1a q q ∴>. 11a >,0q ∴>. 又99100101
a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;
对于B ,299101100100·01a a a a ⎧=⎨<<⎩
,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·
T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·
····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.
∴不正确的是C .
故选:ABD .
【点睛】
本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。