北京北关中学数学代数式专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)
1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.
(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:
方法①:________ 方法②:________
请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________
(2)根据(1)中的等式,解决如下问题:
①已知:,求的值;
②己知:,求的值.
【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2
(2)解:①把代入
∴,

②原式可化为:



【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .
方法②:草坪的面积= ;
等式为:
故答案为:,;
【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和
的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.
2.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:
(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;
(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________
①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________
②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.
【答案】(1)3;8或﹣4
(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,
∴点B、C在数轴上表示的数分别为﹣2、3.
;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,
∵OC=2OB,
∴3+2t=2× ,
∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),
解得t=,或t=,
故所求t的值为或
;;5.
【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,
解得m=8或﹣4,
即点Q表示的数是8或﹣4.
故答案为3,8或﹣4。

(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.
故答案为|﹣2﹣x|+|3﹣x|,5.
【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;
(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;
①根据OC=2OB列出方程,解方程即可求解;
②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.
3.某超市在十一长假期间对顾客实行优惠,规定如下:
________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)
(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)
(4)如何能更省钱,请给出一些建议.
【答案】(1)190;280;10
(2)(0.8x+60)
(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。

(4)解:一次性购物能更省钱。

【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.
故答案为:190;280;10
( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.
故答案为:(0.8x+60)
【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;
(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;
(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;
(4)通过计算可知一次性购物能更省钱.
4.电话费与通话时间的关系如下表:
20.4+0.8
30.6+0.8
40.8+0.8
……

(2)计算当a=100时,b的值.
【答案】(1)解:依题可得:
通话1分钟电话费为:0.2×1+0.8,
通话2分钟电话费为:0.2×2+0.8,
通话3分钟电话费为:0.2×3+0.8,
通话4分钟电话费为:0.2×4+0.8,
……
∴通话a分钟电话费为:0.2×a+0.8,
即b=0.8+0.2a.
(2)解:∵a=100,
∴b=0.8+0.2×100=20.8.
【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.
5.在一个m(m≥3,m为整数)位的正整数中,若从左到右第n(n≤m,n为正整数)位上的数字与从右到左第n位上的数字之和都等于同一个常数k(k为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.
(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位
上的数字为s(1≤s≤9,s为整数),百位上的数字为t(0≤t≤9,t为整数),是整数,求这个四位“对称等和数”;
(2)已知数A,数B,数C都是三位“对称等和数”.A= (1≤a≤9,a为整数),设数B 十位上的数字为x(0≤x≤9,x为整数),数C十位上的数字为y(0≤y≤9,y为整数),若A+B+C=1800,求证:y=﹣x+15.
【答案】(1)解:设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b 为整数),
由题意得:s+b=t+a=4,
∴b=4﹣s,a=4﹣t,
∵四位数为能被11整除,
∴ =1000s+100t+10a+b,
=1000s+100t+10(4﹣t)+4﹣s,
=999s+90t+44,
=1001s+88t+44+2t﹣2s,
=11(91s+8t+4)+2(t﹣s),
∵91s+8t+4是整数,
∴2(t﹣s)是11的倍数,即t﹣s是11的倍数,
∵1≤s≤9,
∴﹣9≤﹣s≤﹣1,
∵0≤t≤9,
∴﹣9≤t﹣s≤8,
∴t﹣s只能为0,即t=s,
∵是整数,4﹣s≥0,4﹣t≥0,
∴s=t=2或s=t=4,
当s=t=2时,a=b=2,
当s=t=4时,a=b=0,
综上所述,这个四位“对称等和数”有2个,分别是:2222,4400
(2)解:证法一:
证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),
∴2a=1+5,a=3,
∴A=135,
由题意设:B= ,C= ,则b+c=2x,d+e=2y,
∵A+B+C=1800,
∴B+C=1800﹣135=1665,
∴ =1665,
∴15≤b+d≤16,
①当b+d=15时,x+y=16,c+e=5,
∴b+d+c+e=15+5=20,
即2x+2y=20,
x+y=10≠16,不符合题意;
②当b+d=15时,x+y=15,c+e=15,
∴b+d+c+e=15+15=30,
即2x+2y=30,
x+y=15,符合题意;
∴y=﹣x+15,
③当b+d=16时,x+y=6,c+e=5,
∴b+d+c+e=16+5=21,
即2x+2y=21,
x+y=10.5≠6,不符合题意;
④当b+d=16时,x+y=5,c+e=15,
∴b+d+c+e=16+15=31,
即2x+2y=31,
x+y=15.5≠5,不符合题意;
综上所述,则y=﹣x+15.
证法二:
证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),
∴2a=1+5,a=3,
∴A=135,
由题意设:B= ,C= ,
∵A+B+C=1800,
即135+ + =1800,
+ =1665,
100m+10x+2x﹣m+100n+10y+2y﹣n=1665,
99(m+n)+12(x+y)=1665,
33(m+n)+4(x+y)=555,
x+y= =139﹣8(m+n)+ ,
∵0≤x≤9,0≤y≤9,且x、y是整数,
∴是整数,
∵1≤m≤9,1≤n≤9,
∴2≤m+n≤18,
∴3≤1+m+n≤19,
则1+(m+n)=4,8,12,16,
∴m+n=3,7,11,15,
当m+n=3时,x+y=139﹣8×3+ =114(舍),
当m+n=7时,x+y=139﹣8×7+ =81(舍),
当m+n=11时,x+y=139﹣8×11+ =48(舍),
当m+n=15时,x+y=139﹣8×15+ =15,
∴y=﹣x+15
【解析】【分析】(1)设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b为整数),根据“对称等和数”的意义可得s+b=t+a=4,变形得b=4﹣s,a=4﹣t,再由
这个四位数能被11整除和这个四位数的构成可得=11(91s+8t+4)+2(t﹣s),易得t ﹣s是11的倍数,结合s、t的范围即可求解;
(2)根据“对称等和数”的意义和A=可得2a=1+5,a=3,则数A可求解,由题意可设B=,C=,因为A+B+C=1800,所以将A、B、C代入上式,再根据三位数的构成=100百位上的数字+10十位上的数字+个位上的数字可得100m+10x+2x﹣
m+100n+10y+2y﹣n=1665,整理可得33(m+n)+4(x+y)=555,则x+y可用含m、n的代数式表示,结合x、y的取值范围和x、y、m、n是正整数分析即可求解。

6.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).
(1)用代数式表示(所填式子需化简):
当购买乒乓球的盒数为x盒时,在甲店购买需付款________元;在乙店购买需付款________元.
(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.
(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?
【答案】(1)(5x+60);(4.5x+72)
(2)解:当x=10时,甲店需付费5×10+60=110元;乙店需付费4.5×10+72=117元,
∴到甲商店比较合算
(3)解:可在甲店购买4副乒乓球拍子,在乙店购买(10﹣4)盒乒乓球,所需费用为:4×20+(10﹣4)×5×0.9=80+27=107元
【解析】【解答】解:(1)甲店需付费:4×20+(x﹣4)×5=80+5x﹣20=(5x+60)元;乙店需付费:(4×20+x×5)×0.9=(4.5x+72)元;
故答案为(5x+60);(4.5x+72);
【分析】(1)甲店需付费:4副乒乓球拍子费用+(x﹣4)盒乒乓球费用;乙店需付费:(4副乒乓球拍子费用+x盒乒乓球费用)×0.9,把相关数值代入求解即可;(2)把x=10代入(1)得到的式子计算,比较结果即可;(3)可在甲店购买乒乓球拍子,在乙店购买乒乓球.
7.已知点A、B、C在数轴上对应的实数分别为a、b、c,满足(b+5)2+|a﹣8|=0,点P
位于该数轴上.
(1)求出a,b的值,并求A、B两点间的距离;
(2)设点C与点A的距离为25个单位长度,且|ac|=﹣ac.若PB=2PC,求点P在数轴上对应的实数;
(3)若点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…(以此类推).则点p 能移动到与点A或点B重合的位置吗?若能,请探究需要移动多少次重合?若不能,请说明理由.
【答案】(1)解:依题意,b+5=0,a﹣8=0,
所以,a=8,b=﹣5,
则AB=8﹣(﹣5)=13
(2)解:点C与点A的距离是25个单位长度,所以A点有可能是﹣17,33,
因为|ac|=﹣ac,所以点A点C所表示的数异号,所以点C表示﹣17;
设点P在数轴上对应的实数为x,
∵PB=2PC,
∴|x+5|=2|x+17|,
∴x+5=2(x+17),或x+5=﹣2(x+17),
解得x=﹣29或﹣13,
即点P在数轴上对应的实数为﹣29或﹣13
(3)解:记向右移动为正,则向左为负.
第一次点P对应的实数为﹣1,第二次点P对应的实数为2,第三次点P对应的实数为﹣3,第四次点P对应的实数为4,

则第n次点P对应的实数为(﹣1)n•n,
∵点A在数轴上对应的实数为8,点B在数轴上对应的实数为﹣5,
∴点P移动8次到达点A,移动5次到达B点
【解析】【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b的值,根据两点间的距离,可得答案;(2)根据根据两点间的距离公式,可得答案;(3)根据观察,可发现规律,根据规律,可得答案.
8.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(相同纸片之间不重叠),其中AB=a.
小明发现:通过边长的平移和转化,阴影部分⑤的周长与正方形①的边长有关.
(1)根据小明的发现,用代数式表示阴影部分⑥的周长________.
(2)阴影部分⑥与阴影部分⑤的周长之差与正方形________(填编号)的边长有关,请计算说明.________
【答案】(1)2a
(2)②
;解:设②的边长是m.
∴阴影部分⑤的周长是2(a-m).
∴阴影部分⑥-阴影部分⑤=2a-2(a-m)=2m
【解析】【解答】解(1)设长方形⑥的长为x, 宽为y, 则x+y=a, 周长=2(x+y)=2a.
【分析】(1)设长方形⑥的长为x, 宽为y, 因为这个长方形的长与宽之和为a, 则周长为2a.
(2)设②的边长是m,把⑤的周长用含m和a的代数式表示,再计算阴影部分⑥的周长和阴影部分⑤的周长之差即可,其结果正好等于正方形②的周长.
9.一般情况下,“ ”并不成立,但当,取某些数时,可以使它成立,例
如 .我们称能使“ ”成立的数对,为“优数对”,记为(,).
(1)若(,)是一个“优数对”,求的值;
(2)请你写出一个“优数对”(,),其中,且;
(3)若(,)是一个“优数对”,求代数式的值. 【答案】(1)解:由题意得:,
解得
(2)解:答案不唯一,如取,则,
解得,(2,)
(3)解:由()是一个“优数对”得
去分母,化简得:,
【解析】【分析】(1)利用“优数对”的定义化简,计算即可求出b的值;(2)写出一个“优数对”即可;(3)利用“优数对”定义得到9a+4b=0,原式去括号整理后代入计算即可求出值.
10.如图,将连续的奇数1,3,5,7……排成如下的数表,用十字形框框出5个数.
(1)探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为________,这说明被十字框框中的五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是________;
(2)探究规律二:落在十字框中间且位于第二列的一组奇数是21,39,57,75,…,则这一组数可以用整式表示为18m+3(m为序数),同样,落在十字框中间且位于第三列的一组奇数可以表示为________;(用含m的式子表示)
(3)运用规律一:已知被十字框框中的五个奇数的和为2025,则十字框中间的奇数是________,这个奇数落在从左往右第________列;
(4)运用规律二:被十字框框中的五个奇数的和可能是2020吗?若能,请求出这五个数:;若不能,请说明理由.
【答案】(1)5x;5
(2)(18m+5)
(3)405;五
(4)这五个数为404、402、406、396、422.
【解析】【解答】解:(1)根据题意,得,
设十字框中间的奇数为x,则框中其它五个奇数为:
x﹣2,x+2,x﹣18,x+18.
∴x+x﹣2+x+2+x﹣18+x+18=5x,
五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是5.
故答案为:5x、5.
2)因为第二列的一组奇数是21,39,57,75,…
21=1×18+3
39=2×18+3
57=3×18+3
75=4×18+3
∴这一组数可以用整式表示为18m+3(m为序数).
∴落在十字框中间且位于第三列的一组奇数可以表示为(18m+5).
故答案为:(18m+5).
3)根据题意,得
5x=2025
解得:x=405
∴十字框中间的奇数是405.
∵18m+9=405,解得:m=22,
∴405这个奇数落在从左往右第五列.
故答案为:405、五;
4)十字框框中的五个奇数的和可以是2020.理由如下:
5x=2020
解得:x=404,
∴x﹣2=402,x+2=406,x﹣18=396,x+18=422.
答:这五个数为:404、402、406、396、422.
【分析】(1)根据表中数据规律即可列出代数式进而求解;(2)根据第二列的一组奇数的规律即可写出第三列的一组奇数的规律;(3)根据探究规律一和探究规律二所得代数式即可求解;(4)根据探究规律一所得代数式列方程即可求解.
11.如图:在数轴上A点表示数,B点示数,C点表示数c,b是最小的正整数,
且a、b满足|a+2|+ (c-7)2=0.
(1)a=________,b=________,c=________;
(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合;
(3)点A.B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.
则AB=________,AC=________,BC=________.(用含t的代数式表示)
(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
【答案】(1)-2;1;7
(2)4
(3)3t+3;5t+9;2t+6
(4)解:不变.
3BC-2AB=3(2t+6)-2(3t+3)=12
【解析】【解答】解:(1)∵|a+2|+(c-7)2=0,
∴a+2=0,c-7=0,
解得a=-2,c=7,
∵b是最小的正整数,
∴b=1;
故答案为:-2,1,7.
( 2 )(7+2)÷2=4.5,
对称点为7-4.5=2.5,2.5+(2.5-1)=4;
故答案为:4.
( 3 )AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;
故答案为:3t+3,5t+9,2t+6.
【分析】(1)根据绝对值的非负性,偶次幂的非负性,由几个非负数的和为0,则这几个数都为0,列出方程组a+2=0,c-7=0,求解得出a,c的值,再根据最小的正整数是1,得出b的值;
(2)根据(1)可知A、C两点间的距离为2+7=9,根据折叠的性质得出折迹处到A、C两点的距离是(7+2)÷2=4.5,折叠处表示的数是7-4.5=2.5,B点距离折叠处的距离是 2.5-1=1.5,根据对称的性质即可得出与点B重合的点所表示的数是2.5+1.5=4;
(3)根据路程等于速度乘以时间得出:A点运动的路程为t,B点运动的路程为2t,C点运动的路程为4t,由AB=A点运动的路程加上B点运动的路程再加上一开始AB两点间的距离得出AB=t+2t+3=3t+3,由AC=A点运动的路程加上C点运动的路程再加上一开始AC两点间的距离得出AC=t+4t+9=5t+9,由BC=C点运动的路程减去B点运动的路程再加上一开始BC两点间的距离得出BC=4t-2t+6=2t+6;
(4)将(3)中得出的BC,AB的长度分别代入3BC-2AB ,即可列出一个整式的加减法算式,再去括号合并同类项后发现是一个常数,于是得出 3BC-2AB 的值与字母t无关。

12.
(1)在如图所示的数轴上,把数﹣2,,4,﹣,2.5表示出来,并用“<“将它们连接起来;
(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同时小球乙从表示数4的点处出发,以2个单位长度/秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t(秒).
请从A,B两题中任选一题作答.
A.当t=3时,求甲、乙两小球之间的距离.
B.用含t的代数式表示甲、乙两小球之间的距离.
【答案】(1)解:如图所示:
-2<- < <2.5<4
(2)解:∵甲球运动的路程为:1•t=t,OA=2,∴甲球与原点的距离为:t+2;
乙球到原点的距离分两种情况:
(Ⅰ)当0<t≤2时,乙球从点B处开始向左运动,一直到原点O,
∵OB=4,乙球运动的路程为:2•t=2t,∴乙球到原点的距离为:4-2t;
(Ⅱ)当t>2时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2(t-2)=2t-4;
A、当t=3时,甲、乙两小球之间的距离为:t+2+2t-4=3t-2=7;
B、分两种情况:(Ⅰ)0<t≤2,甲、乙两小球之间的距离为:t+2+4-2t=6-t;
(Ⅱ)t>2,甲、乙两小球之间的距离为:t+2+2t-4=3t-2
【解析】【分析】(1)根据给出的数字,在数轴上进行标注即可,按照数轴上从左往右的顺序用<连接得到答案。

(2)根据两个小球运动的时间以及运动的方式进行计算得到答案即可。

相关文档
最新文档