八年级因式分解难题(附答案及解析)之欧阳数创编
八年级因式分解难题(附答案与解析)
2017 年 05 月 21 日数学(因式分解难题) 2一.填空题(共 10 小题)1.已知 x+y=10, xy=16,则 x 2y+xy 2 的值为.2.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成 2(x ﹣1)(x ﹣9);另一位同学因看错了常数项分解成 2(x ﹣2)( x ﹣ 4),请你将原多项式因式分解正确的结果写出来:..若多项式x 2+mx+4 能用完全平方公式分解因式,则 m 的值是 .34.分解因式: 4x 2﹣4x ﹣ 3=.5.利用因式分解计算: 2022+202× 196+982= ..△ 三边 a ,b ,c 满足 a 2+b 2+c 2,则△ ABC 的形状是 .6 ABC =ab+bc+ca 7.计算: 12﹣22+32﹣42+52﹣62+⋯﹣1002+1012=.8.定义运算 a ★b=( 1﹣ a ) b ,下面给出了关于这种运算的四个结论:①2★(﹣ 2)=3②a ★b=b ★a③若 a+b=0,则( a ★ a ) +( b ★ b ) =2ab④若 a ★ b=0,则 a=1 或 b=0.其中正确结论的序号是 (填上你认为正确的所有结论的序号) .9 .如果 1+a+a 2+a 3 ,代数式 2+a 3+a 4+a 5+a 6+a 7+a 8 = .=0 a+a.若多项式2﹣6x ﹣ b 可化为( x+a )2﹣1,则 b 的值是.10x二.解答题(共 20 小题)11.已知 n 为整数,试说明( n+7)2﹣( n ﹣3)2的值一定能被 20 整除. 12.因式分解: 4x 2y ﹣4xy+y .13.因式分解(1)a3﹣ab2(2)( x﹣y)2+4xy.14.先阅读下面的内容,再解决问题,例题:若 m2 +2mn+2n2﹣ 6n+9=0,求 m 和 n 的值.解:∵ m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴( m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若 x2+2y2﹣2xy+4y+4=0,求 x y的值.(2)已知△ ABC的三边长 a,b,c 都是正整数,且满足a2+b2﹣ 6a﹣6b+18+| 3﹣c| =0,请问△ ABC是怎样形状的三角形?15.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如 4=22﹣02,12=42﹣22, 20=62﹣42,因此 4,12,20 这三个数都是和谐数.(1)36 和 2016 这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2 和 2k(其中 k 取非负整数),由这两个连续偶数构造的和谐数是 4 的倍数吗?为什么?(3)介于 1 到 200 之间的所有“和谐数”之和为.16.如图 1,有若干张边长为 a 的小正方形①、长为 b 宽为 a 的长方形②以及边长为 b 的大正方形③的纸片.(1)如果现有小正方形① 1 张,大正方形③ 2 张,长方形② 3 张,请你将它们拼成一个大长方形(在图 2 虚线框中画出图形),并运用面积之间的关系,将多项式 a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8 张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.17.( 1)有若干块长方形和正方形硬纸片如图1 所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图 2 中长方形的面积;②由此,你可以得出的一个等式为:.(2)有若干块长方形和正方形硬纸片如图 3 所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.18.已知 a+b=1,ab=﹣1,设 s1=a+b, s2=a2+b2,s3=a3+b3,⋯,s n=a n+b n(1)计算 s2;(2)请阅读下面计算s3的过程:因为 a+b=1,ab=﹣1,所以 s3=a3+b3=(a+b)(a2+b2)﹣ ab(a+b)=1×s2﹣(﹣ 1)=s2+1=你读懂了吗?请你先填空完成(2)中 s3的计算结果,再用你学到的方法计算s4.(3)试写出 s n﹣2, s n﹣1,s n三者之间的关系式;(4)根据( 3)得出的结论,计算s6.19.(1)利用因式分解简算: 9.82+0.4×9.8+0.04(2)分解因式: 4a(a﹣1)2﹣( 1﹣a)20.阅读材料:若 m 2﹣2mn+2n2﹣8n+16=0,求 m、n 的值.解:∵ m2﹣2mn+2n2﹣ 8n+16=0,∴( m2﹣2mn+n2)+(n2﹣8n+16)=0∴( m﹣ n)2+(n﹣4)2=0,∴( m﹣n)2=0,( n﹣ 4)2=0,∴ n=4,m=4.根据你的观察,探究下面的问题:(1)已知 x2+2xy+2y2+2y+1=0,求 x﹣y 的值.(2)已知△ ABC的三边长 a、b、c 都是正整数,且满足a2+b2﹣ 6a﹣8b+25=0,求△ ABC的最大边 c 的值.(3)已知 a﹣b=4,ab+c2﹣6c+13=0,则 a﹣b+c=.21.仔细阅读下面例题,解答问题:例题:已知二次三项式 x2﹣4x+m 有一个因式是( x+3),求另一个因式以及 m 的值.解:设另一个因式为(x+n),得 x2﹣4x+m=(x+3)(x+n),则 x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n解得: n=﹣7,m=﹣21∴另一个因式为( x﹣7), m 的值为﹣ 21.问题:(1)若二次三项式 x2﹣5x+6 可分解为( x﹣ 2)(x+a),则 a=;(2)若二次三项式 2x2+bx﹣5 可分解为( 2x﹣1)( x+5),则 b=;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣ k 有一个因式是(2x﹣3),求另一个因式以及k 的值.22.分解因式:(1)2x2﹣x;(2)16x2﹣ 1;(3)6xy2﹣ 9x2y﹣y3;(4)4+12(x﹣ y) +9(x﹣y)2.23.已知 a,b,c 是三角形的三边,且满足( a+b+c)2=3(a2+b2+c2),试确定三角形的形状.24.分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.25.图①是一个长为2m、宽为 2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②请你写出三个代数式(m+n)2、(m﹣ n)2、 mn 之间的等量关系是.(3)若 x+y=7,xy=10,则( x﹣y)2=.(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了.(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.26.已知 a、b、c 满足 a﹣b=8,ab+c2+16=0,求 2a+b+c 的值.27 .已知:一个长方体的长、宽、高分别为正整数a、 b 、 c ,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.28.(x2﹣4x)2﹣ 2( x2﹣4x)﹣ 15.29.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x( x+1)2=( 1+x) [ 1+x+x(x+1)]=( 1+x)2( 1+x)=( 1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解 1+x+x(x+1)+x(x+1)2+⋯+x(x+1)2004,则需应用上述方法次,结果是.(3)分解因式: 1+x+x(x+1)+x( x+1)2+⋯+x(x+1)n(n 为正整数).30.对于多项式 x3﹣5x2+x+10,如果我们把 x=2 代入此多项式,发现多项式 x3﹣5x2 +x+10=0,这时可以断定多项式中有因式( x﹣ 2)(注:把 x=a 代入多项式能使多项式的值为0,则多项式含有因式( x﹣a)),于是我们可以把多项式写成: x3﹣5x2+x+10=(x﹣ 2)(x2+mx+n),(1)求式子中 m 、n 的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣ 2x2﹣ 13x ﹣10 的因式.2017 年 05 月 21 日数学(因式分解难题)2参考答案与试题解析一.填空题(共10 小题)1.(2016 秋 ?望谟县期末)已知x+y=10,xy=16,则 x2y+xy2的值为160.【分析】首先提取公因式xy,进而将已知代入求出即可.【解答】解:∵ x+y=10,xy=16,∴x2y+xy2=xy(x+y)=10×16=160.故答案为: 160.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(2016 秋?新宾县期末)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成 2( x﹣1)(x﹣9);另一位同学因看错了常数项分解成 2( x﹣2)(x﹣ 4),请你将原多项式因式分解正确的结果写出来:2(x ﹣3)2.【分析】根据多项式的乘法将2(x﹣1)(x﹣9)展开得到二次项、常数项;将2( x﹣ 2)(x﹣4)展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式 2 后利用完全平方公式分解因式.【解答】解:∵ 2(x﹣ 1)(x﹣9)=2x2﹣20x+18;2( x﹣2)(x﹣4)=2x2﹣ 12x+16;∴原多项式为 2x2﹣12x+18.2x2﹣ 12x+18=2(x2﹣6x+9)=2(x﹣3)2.【点评】根据错误解法得到原多项式是解答本题的关键.二次三项式分解因式,看错了一次项系数,但二次项、常数项正确;看错了常数项,但二次项、一次项正确.3.(2015 春?昌邑市期末)若多项式x2+mx+4 能用完全平方公式分解因式,则m 的值是± 4.【分析】利用完全平方公式( a+b)2=(a﹣b)2+4ab、( a﹣ b)2=( a+b)2﹣ 4ab 计算即可.【解答】解:∵ x2+mx+4=(x±2)2,即x2+mx+4=x2±4x+4,∴m=±4.故答案为:± 4.【点评】此题主要考查了公式法分解因式,熟记有关完全平方的几个变形公式是解题关键.4.(2015 秋 ?利川市期末)分解因式: 4x2﹣ 4x﹣3= (2x﹣ 3)(2x+1).【分析】 ax2+bx+c(a≠0)型的式子的因式分解,这种方法的关键是把二次项系数 a 分解成两个因数 a1, a2的积 a1?a2,把常数项 c 分解成两个因数 c1, c2的积 c1?c2,并使 a1c2+a2c1正好是一次项 b,那么可以直接写成结果: ax2+bx+c=(a1x+c1)(a2x+c2),进而得出答案.【解答】解: 4x2﹣ 4x﹣3=( 2x﹣3)(2x+1).【点评】此题主要考查了十字相乘法分解因式,正确分解各项系数是解题关键.5.(2015 春?东阳市期末)利用因式分解计算: 2022+202×196+982=90000.【分析】通过观察,显然符合完全平方公式.第 9页(共 31页)=( 202+98)2=3002=90000.【点评】运用公式法可以简便计算一些式子的值.6.(2015 秋 ?浮梁县校级期末)△ ABC三边 a,b,c 满足 a2+b2+c2=ab+bc+ca,则△ ABC的形状是等边三角形.【分析】分析题目所给的式子,将等号两边均乘以2,再化简得( a﹣ b)2+(a ﹣c)2+(b﹣c)2=0,得出: a=b=c,即选出答案.【解答】解:等式 a2+b2+c2=ab+bc+ac 等号两边均乘以 2 得:2a2+2b2+2c2=2ab+2bc+2ac,即a2﹣ 2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,即( a﹣b)2+( a﹣ c)2+(b﹣c)2=0,解得: a=b=c,所以,△ ABC是等边三角形.故答案为:等边三角形.【点评】此题考查了因式分解的应用;利用等边三角形的判定,化简式子得a=b=c,由三边相等判定△ ABC是等边三角形.7.(2015 秋?鄂托克旗校级期末)计算:12﹣22+32﹣42+52﹣62+⋯﹣1002+1012= 5151.【分析】通过观察,原式变为 1+(32﹣22)+(52﹣ 42)+(1012﹣ 1002),进一步运用高斯求和公式即可解决.【解答】解: 12﹣22+32﹣42+52﹣62+⋯﹣1002+1012=1+(32﹣22) +( 52﹣42) +( 1012﹣1002)=1+(3+2)+(5+4)+(7+6)+⋯+(101+100)=( 1+101)× 101÷2=5151.故答案为: 5151.【点评】此题考查因式分解的实际运用,分组分解,利用平方差公式解决问题.8.(2015 秋?乐至县期末)定义运算 a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣ 2)=3②a★b=b★a③若 a+b=0,则( a★ a) +( b★ b) =2ab④若 a★ b=0,则 a=1 或 b=0.其中正确结论的序号是③④(填上你认为正确的所有结论的序号).【分析】根据题中的新定义计算得到结果,即可作出判断.【解答】解:① 2★(﹣ 2)=(1﹣2)×(﹣ 2)=2,本选项错误;②a★b=(1﹣a)b,b★a=(1﹣b)a,故 a★ b 不一定等于 b★ a,本选项错误;③若a+b=0,则( a★a)+(b★b)=(1﹣a)a+(1﹣b)b=a﹣ a2+b﹣b2=﹣ a2﹣b2=﹣2a2=2ab,本选项正确;④若 a★ b=0,即( 1﹣a)b=0,则 a=1 或 b=0,本选项正确,其中正确的有③④.故答案为③④.【点评】此题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解本题的关键.9.( 2015 春?张掖校级期末)如果 1+a+a2+a3=0,代数式 a+a2+a3+a4+a5 +a6+a7+a8=0.【分析】 4 项为一组,分成 2 组,再进一步分解因式求得答案即可.【解答】解:∵ 1+a+a2+a3=0,∴a+a2+a3+a4+a5+a6+a7 +a8,=a(1+a+a2+a3)+a5(1+a+a2+a3),=0+0,=0.故答案是: 0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.10.(2015 春?昆山市期末)若多项式 x2﹣ 6x﹣b 可化为( x+a)2﹣ 1,则 b 的值是﹣8.【分析】利用配方法进而将原式变形得出即可.【解答】解:∵ x2﹣6x﹣ b=(x﹣3)2﹣9﹣b=( x+a)2﹣ 1,解得: a=﹣3,b=﹣8.故答案为:﹣ 8.【点评】此题主要考查了配方法的应用,根据题意正确配方是解题关键.二.解答题(共20 小题)11.已知 n 为整数,试说明( n+7)2﹣( n﹣3)2的值一定能被 20 整除.【分析】用平方差公式展开( n+7)2﹣( n﹣3)2,看因式中有没有20 即可.【解答】解:(n+7)2﹣( n﹣ 3)2=(n+7+n﹣ 3)(n+7﹣ n+3)=20(n+2),∴( n+7)2﹣( n﹣ 3)2的值一定能被 20 整除.【点评】主要考查利用平方差公式分解因式.公式:a2﹣b2=(a+b)(a﹣b).12.(2016 秋?农安县校级期末)因式分解:4x2y﹣ 4xy+y.【分析】先提取公因式 y,再对余下的多项式利用完全平方公式继续分解.【解答】解: 4x2y﹣4xy+y=y(4x2﹣4x+1)=y(2x﹣ 1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(2015 秋?成都校级期末)因式分解32(1)a ﹣ab(2)( x﹣y)2+4xy.【分析】( 1)原式提取 a,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可.【解答】解:(1)原式 =a(a2﹣ b2)=a( a+b)( a﹣ b);(2)原式 =x2﹣ 2xy+y2+4xy=x2+2xy+y2=(x+y)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(2015 春?甘肃校级期末)先阅读下面的内容,再解决问题,例题:若 m2 +2mn+2n2﹣ 6n+9=0,求 m 和 n 的值.解:∵ m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴( m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若 x2+2y2﹣2xy+4y+4=0,求 x y的值.(2)已知△ ABC的三边长 a,b,c 都是正整数,且满足a2+b2﹣ 6a﹣6b+18+| 3﹣c| =0,请问△ ABC是怎样形状的三角形?【分析】( 1)首先把x2+2y2﹣2xy+4y+4=0,配方得到( x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把 a2+b2﹣6a﹣ 6b+18+| 3﹣c| =0,配方得到( a﹣ 3)2+(b﹣3)2+| 3﹣c| =0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵ x2 +2y2﹣2xy+4y+4=0∴x2+y2﹣2xy+y2+4y+4=0,∴( x﹣y)2+(y+2)2=0∴x=y=﹣ 2∴;22(2)∵ a +b ﹣6a﹣6b+18+| 3﹣ c| =0,22∴a ﹣6a+9+b ﹣6b+9+| 3﹣c| =0,22∴( a﹣3) +( b﹣ 3) +| 3﹣c| =0∴a=b=c=3∴三角形 ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.15.(2015 秋?太和县期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如 4=22﹣02, 12=42﹣22,20=62﹣42,因此 4,12,20 这三个数都是和谐数.(1)36 和 2016 这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2 和 2k(其中 k 取非负整数),由这两个连续偶数构造的和谐数是 4 的倍数吗?为什么?(3)介于 1 到 200 之间的所有“和谐数”之和为2500.【分析】( 1)利用 36=102﹣82;2016=5052﹣5032说明 36 是“和谐数”,2016不是“和谐数”;(2)设两个连续偶数为 2n,2n+2(n 为自然数),则“和谐数”=(2n+2)2﹣( 2n)2,利用平方差公式展开得到( 2n+2+2n)(2n+2﹣2n)=4( 2n+1),然后利用整除性可说明“和谐数”一定是 4 的倍数;(3)介于 1 到 200 之间的所有“和谐数”中,最小的为: 22﹣02=4,最大的为:2250 ﹣ 48 =196,将它们全部列出不难求出他们的和.【解答】解:(1)36 是“和谐数”,2016 不是“和谐数”.理由如下:36=102﹣ 82;2016=5052﹣5032;(2)设两个连续偶数为2k+2 和 2k(n 为自然数),∵( 2k+2)2﹣( 2k)2=(2k+2+2k)( 2k+2﹣ 2k)=( 4k+2)× 2=4(2k+1),∵4(2k+1)能被 4 整除,∴“和谐数”一定是 4 的倍数;(3)介于 1 到 200 之间的所有“和谐数”之和,S=(22﹣ 02)+(42﹣ 22)+(62﹣42) +⋯+(502﹣482)=502 =2500.故答案是: 2500.【点评】本题考查了因式分解的应用:利用因式分解把所求的代数式进行变形,从而达到使计算简化.16.(2015 春?兴化市校级期末)如图 1,有若干张边长为 a 的小正方形①、长为 b 宽为 a 的长方形②以及边长为 b 的大正方形③的纸片.(1)如果现有小正方形① 1 张,大正方形③ 2 张,长方形② 3 张,请你将它们拼成一个大长方形(在图 2 虚线框中画出图形),并运用面积之间的关系,将多项式 a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为 169,长方形②的周长为 34,求长方形②的面积.(3)现有三种纸片各8 张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.【分析】( 1)根据小正方形① 1 张,大正方形③ 2 张,长方形② 3 张,直接画出图形,利用图形分解因式即可;(2)由长方形②的周长为 34,得出 a+b=17,由题意可知:小正方形①与大正方形③的面积之和为 a2+b2=169,将 a+b=17 两边同时平方,可求得 ab 的值,从而可求得长方形②的面积;(3)设正方形的边长为( na+mb),其中( n、m 为正整数)由完全平方公式可知:(na+mb)2=n2a2+2nmab+m2b2.因为现有三种纸片各8张,n2≤8,m2≤8,2mn≤ 8( n、 m 为正整数)从而可知n≤2,m≤2,从而可得出答案.【解答】解:(1)如图:拼成边为( a+2b)和( a+b)的长方形∴a2+3ab+2b2=(a+2b)( a+b);(2)∵长方形②的周长为34,∴a+b=17.∵小正方形①与大正方形③的面积之和为 169,∴a2+b2=169.将 a+b=17 两边同时平方得:( a+b)2=172,整理得: a2+2ab+b2=289,∴2ab=289﹣169,∴ab=60.∴长方形②的面积为60.(3)设正方形的边长为( na+mb),其中( n、m 为正整数)∴正方形的面积 =( na+mb)2=n2a2+2nmab+m2b2.∵现有三种纸片各8 张,∴n2≤8,m2≤8,2mn≤8(n、m 为正整数)∴n≤2,m≤2.∴共有以下四种情况;①n=1,m=1,正方形的边长为a+b;②n=1,m=2,正方形的边长为a+2b;③n=2,m=1,正方形的边长为2a+b;④n=2,m=2,正方形的边长为2a+2b.【点评】此题考查因式分解的运用,要注意结合图形解决问题,解题的关键是灵活运用完全平方公式.17.(2014 秋 ?莱城区校级期中)(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图 2 中长方形的面积;②由此,你可以得出的一个等式为: a2+2a+1 = (a+1)2.(2)有若干块长方形和正方形硬纸片如图 3 所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.【分析】( 1)要能根据所给拼图运用不同的计算面积的方法,来推导公式;(2)要能根据等式画出合适的拼图.【解答】解:(1)①长方形的面积 =a2+2a+1;长方形的面积 =(a+1)2;②a2+2a+1=(a+1)2;(2)①如图,可推导出( a+b)2=a2+2ab+b2;②2a2+5ab+2b2=( 2a+b)(a+2b).【点评】本题考查运用正方形或长方形的面积计算推导相关的一些等式;运用图形的面积计算的不同方法得到多项式的因式分解.18.(2013 秋?海淀区校级期末)已知a+b=1,ab=﹣1,设 s1=a+b,s2=a2+b2,s3=a3+b3,⋯, s n =a n+b n(1)计算 s2;(2)请阅读下面计算s3的过程:因为 a+b=1,ab=﹣1,所以 s33+b3(a+b )(2+b2)﹣ ab(a+b)=1×s2﹣(﹣ 1)=s2+1= 4=a=a你读懂了吗?请你先填空完成( 2)中 s3的计算结果,再用你学到的方法计算s4.(3)试写出 s n﹣2, s n﹣1,s n三者之间的关系式;(4)根据( 3)得出的结论,计算s6.【分析】(1)(2)利用完全平方公式进行化简,然后代入a+b,ab 的值,即可推出结论;(3)根据( 1)所推出的结论,即可推出 S n﹣2+S n﹣1=S n;(4)根据( 3)的结论,即可推出 a6+b6=S6=S4+S5 =2S4+S3.【解答】解:(1)S2=a2+b2=( a+b)2﹣ 2ab=3;(2)∵( a2+b2)(a+b) =a3+ab2+a2 b+b3=a3+b3+ab( a+b),∴a3+b3=4,即 S3=4;2222∵S4=(a +b )﹣2(ab) =7,(3)∵ S2=3,S3=4, S4=7,∴S2+S3=S4,∴S n﹣2+S n﹣1=S n;(3)∵ S n﹣2+S n﹣1=S n,S2=3,S3=4,S4=7,∴S5=4+7=11,∴S6=7+11=18.【点评】本题主要考查整式的混合运算、完全平方公式的运用,关键在于根据题意推出 S2=3,S3=4, S4=7,分析归纳出规律: S n﹣2+S n﹣1=S n.219.(2013 春?重庆校级期末)( 1)利用因式分解简算:9.8 +0.4×9.8+0.04【分析】( 1)利用完全平方公式因式分解计算即可;(2)先利用提取公因式法,再利用完全平方公式因式分解即可.【解答】解:(1)原式 =9.82+2×0.2×9.8+0.22=( 9.8+0.2)2=100;(2)4a( a﹣1)2﹣( 1﹣a)=( a﹣ 1)(4a2﹣4a+1)=( a﹣ 1)(2a﹣ 1)2.【点评】此题考查因式分解的实际运用,掌握平方差公式和完全平方公式是解决问题的关键.20.( 2013 春?惠山区校级期末)阅读材料:若 m2﹣2mn+2n2﹣ 8n+16=0,求 m、n的值.解:∵ m2﹣2mn+2n2﹣ 8n+16=0,∴( m2﹣2mn+n2)+(n2﹣8n+16)=0 ∴( m﹣ n)2+(n﹣4)2=0,∴( m﹣n)2=0,( n﹣ 4)2=0,∴ n=4,m=4.根据你的观察,探究下面的问题:(1)已知 x2+2xy+2y2+2y+1=0,求 x﹣y 的值.(2)已知△ABC的三边长a、b、c 都是正整数,且满足a2+b2﹣6a﹣8b+25=0,求△ ABC的最大边 c 的值.(3)已知 a﹣b=4,ab+c2﹣6c+13=0,则 a﹣b+c= 7.【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为 0,两非负数分别为 0 求出 x 与 y 的值,即可求出 x﹣y 的值;(2)将已知等式 25 分为 9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为 0,两非负数分别为 0 求出 a 与 b 的值,根据边长为正整数且三角形三边关系即可求出 c 的长;(3)由 a﹣ b=4,得到 a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为 0,两非负数分别为 0 求出 b 与 c 的值,进而求出 a 的值,即可求出 a﹣b+c 的值.【解答】解:(1)∵ x2 +2xy+2y2+2y+1=0 222∴( x +2xy+y ) +( y +2y+1)=0∴( x+y)2+( y+1)2=0∴x+y=0 y+1=0解得 x=1, y=﹣1∴x﹣y=2;(2)∵ a2+b2﹣6a﹣8b+25=0∴( a2﹣ 6a+9) +( b2﹣8b+16)=0∴a﹣3=0,b﹣4=0解得 a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4∴c<7,又 c 是正整数,∴c最大为 6;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且 c﹣3=0,即 b=﹣ 2, c=3,a=2,则a﹣b+c=2﹣(﹣ 2)+3=7.故答案为: 7.【点评】此题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.21.(2012 秋?温岭市校级期末)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m 有一个因式是( x+3),求另一个因式以及m 的值.解:设另一个因式为(x+n),得 x2﹣4x+m=(x+3)(x+n),则 x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n解得: n=﹣7,m=﹣21∴另一个因式为( x﹣7), m 的值为﹣ 21.问题:(1)若二次三项式 x2﹣5x+6 可分解为( x﹣ 2)(x+a),则 a= ﹣ 3 ;(2)若二次三项式 2x2+bx﹣5 可分解为( 2x﹣1)( x+5),则 b= 9 ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣ k 有一个因式是(2x﹣3),求另一个因式以及 k 的值.【分析】( 1)将( x﹣2)(x+a)展开,根据所给出的二次三项式即可求出 a 的值;(2)( 2x﹣1)( x+5)展开,可得出一次项的系数,继而即可求出 b 的值;(3)设另一个因式为( x+n),得 2x2 +5x﹣ k=(2x﹣3)( x+n) =2x2+(2n﹣ 3)x﹣ 3n,可知 2n﹣ 3=5,k=3n,继而求出 n 和 k 的值及另一个因式.【解答】解:(1)∵( x﹣ 2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,∴a﹣2=﹣ 5,解得: a=﹣3;(2)∵( 2x﹣1)( x+5)=2x2+9x﹣5=2x2+bx﹣ 5,(3)设另一个因式为( x+n),得 2x2 +5x﹣ k=(2x﹣3)( x+n) =2x2+(2n ﹣ 3)x﹣ 3n,则2n﹣3=5,k=3n,解得: n=4,k=12,故另一个因式为( x+4),k 的值为 12.故答案为:(1)﹣ 3;( 2 分)(2)9;( 2 分)( 3)另一个因式是 x+4,k=12(6分).【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.22.(2012 春?郯城县期末)分解因式:(1)2x2﹣x;(2)16x2﹣ 1;(3)6xy2﹣ 9x2y﹣y3;(4)4+12(x﹣ y) +9(x﹣y)2.【分析】( 1)直接提取公因式x 即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣ y,再对余下的多项式利用完全平方公式继续分解;(4)把( x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】解:(1)2x2﹣x=x(2x﹣ 1);(2)16x2﹣ 1=(4x+1)( 4x﹣1);223(3)6xy ﹣ 9x y﹣y ,22=﹣ y( 9x ﹣ 6xy+y ),2=﹣ y( 3x﹣y);(4)4+12(x﹣ y) +9(x﹣y)2,=( 3x﹣3y+2)2.【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y 后,需要继续利用完全平方公式进行二次因式分解.23.( 2012 春?碑林区校级期末)已知 a,b,c 是三角形的三边,且满足( a+b+c)2=3( a2 +b2+c2),试确定三角形的形状.【分析】将已知等式利用配方法变形,利用非负数的性质解题.【解答】解:∵( a+b+c)2=3( a2+b2+c2),∴a2+b2+c2 +2ab+2bc+2ac,=3a2+3b2+3c2,a2+b2﹣2ab+b2+c2﹣ 2bc+a2+c2﹣2ac=0,即( a﹣b)2+( b﹣ c)2+(c﹣ a)2=0,∴a=b=c,故△ ABC为等边三角形.【点评】本题考查了配方法的运用,非负数的性质,等边三角形的判断.关键是将已知等式利用配方法变形,利用非负数的性质解题.24.(2011 秋?北辰区校级期末)分解因式4 2 24(1)2x ﹣4x y +2y(2)2a3﹣4a2b+2ab2.【分析】( 1)原式提取公因式后,利用平方差公式分解即可;(2)原式提取公因式,利用完全平方公式分解即可.【解答】解:(1)2x4﹣4x2y2+2y4=2(x2﹣ y2)2=2(x+y)2(x﹣y)2;(2)2a3﹣4a2b+2ab2=2a(a2﹣2ab+b2)=2a(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,提取公因式后利用公式进行二次分解,注意分解要彻底.25.(2011 秋?苏州期末)图①是一个长为2m、宽为 2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m﹣n)2;(2)观察图②请你写出三个代数式( m+n)2、(m﹣ n)2、 mn 之间的等量关系是(m+n)2﹣( m﹣n)2=4mn .(3)若 x+y=7,xy=10,则( x﹣y)2= 9.(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了( m+n)(2m+n)=2m2+3mn+n2.(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.【分析】( 1)可直接用正方形的面积公式得到.(2)掌握完全平方公式,并掌握和与差的区别.(3)此题可参照第( 2)题.(4)可利用各部分面积和 =长方形面积列出恒等式.(5)可参照第( 4)题画图.【解答】解:(1)阴影部分的边长为(m﹣n),阴影部分的面积为(m﹣n)2;(2)( m+n)2﹣( m﹣ n)2=4mn;222(3)( x﹣y) =( x+y)﹣ 4xy=7 ﹣ 40=9;22(4)( m+n)(2m+n)=2m +3mn+n ;(5)答案不唯一:例如:.【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.26.( 2009 秋?海淀区期末)已知 a、b、c 满足 a﹣ b=8,ab+c2 +16=0,求2a+b+c 的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由 a﹣b=8 可得 a=b+8;将其代入 ab+c2+16=0 得:b2+8b+c2+16=0;此时可发现 b2+8b+16 正好符合完全平方公式,因此可用非负数的性质求出 b、 c 的值,进而可求得 a 的值;然后代值运算即可.【解答】解:因为 a﹣b=8,所以 a=b+8.(1 分)又ab+c2+16=0,所以( b+8)b+c2+16=0.( 2 分)又( b+4)2≥0,c2≥ 0,则b=﹣4,c=0.(4 分)所以 a=4,( 5 分)所以 2a+b+c=4.( 6 分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.27.(2010 春?北京期末)已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足 a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.【分析】我们可先将 a+b+c+ab+bc+ac+abc 分解因式可变为( a+1)(b+1)(c+1)﹣1,就得( 1+b)(c+1)(a+1)=2007,由于 a、b、c 均为正整数,所以(a+1)、(b+1)、(c+1)也为正整数,而 2007 只可分解为 3×3×223,可得(a+1)、(b+1)、(c+1)的值分别为 3、3、223,所以 a、b、c 值为 2、 2、222.就可求出长方体体积 abc 了.【解答】解:原式可化为: a+ab+c+ac+ab+abc+b+1﹣ 1=2006,a( 1+b)+c(1+b) +ac(1+b)+(1+b)﹣ 1=2006,(1+b)(a+c+ac)+(1+b)=2007,(1+b)(c+1+a+ac)=2007,(1+b)(c+1)( a+1)=2007,2007 只能分解为 3×3×223∴( a+1)、(b+1)、(c+1)也只能分别为 3、 3、223 ∴a、b、c 也只能分别为 2、2、222 ∴长方体的体积 abc=888.【点评】本题考查了三次的分解因式,做题当中用加减项的方法,使式子满足分解因式.28.(2007 秋?普陀区校级期末)(x2﹣4x)2﹣ 2( x2﹣4x)﹣ 15.【分析】把(x2﹣ 4x)看作一个整体,先把﹣ 15 写成 3×(﹣ 5),利用十字相乘法分解因式,再把 3 写成(﹣ 1)×(﹣ 3),﹣5 写成 1×(﹣ 5),分别利用十字相乘法分解因式即可.【解答】解:(x2﹣4x)2﹣ 2( x2﹣4x)﹣ 15,=( x2﹣4x+3)(x2﹣ 4x﹣5),=( x﹣1)(x﹣3)( x+1)(x﹣5).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.29.(2007 春?镇海区期末)阅读下列因式分解的过程,再回答所提出的问题:2=( 1+x) [ 1+x+x(x+1)]=( 1+x)2( 1+x)=( 1+x)3(1)上述分解因式的方法是提公因式法,共应用了2次.(2)若分解 1+x+x(x+1)+x(x+1)2+⋯+x(x+1)2004,则需应用上述方法2004第 29 页(共 31 页)次,结果是( 1+x)2005.(3)分解因式: 1+x+x(x+1)+x( x+1)2+⋯+x(x+1)n(n 为正整数).【分析】此题由特殊推广到一般,要善于观察思考,注意结果和指数之间的关系.【解答】解:(1)上述分解因式的方法是提公因式法,共应用了 2 次.(2)需应用上述方法2004 次,结果是( 1+x)2005.(3)解:原式 =(1+x)[ 1+x+x(x+1) ]+ x( x+1)3+⋯+x( x+1)n,=( 1+x)2( 1+x) +x(x+1)3+⋯+x(x+1)n,=( 1+x)3+x( x+1)3+⋯+x( x+1)n,=( x+1)n+x( x+1)n,=( x+1)n+1.【点评】本题考查了提公因式法分解因式的推广,要认真观察已知所给的过程,弄清每一步的理由,就可进一步推广.30.(2007 春 ?射洪县校级期末)对于多项式x3﹣5x2+x+10,如果我们把x=2代入此多项式,发现多项式 x3﹣ 5x2+x+10=0,这时可以断定多项式中有因式(x ﹣2)(注:把 x=a 代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣ 2)(x2+mx+n),(1)求式子中 m 、n 的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣ 2x2﹣ 13x ﹣10 的因式.【分析】( 1)根据( x﹣2)(x2+mx+n)=x3+(m﹣ 2)x2+( n﹣ 2m) x﹣ 2n,得出有关 m,n 的方程组求出即可;(2)由把 x=﹣1 代入 x3﹣2x2﹣13x﹣10,得其值为 0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【解答】解:(1)方法一:因( x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣ 2n,=x3﹣ 5x2+x+10,(2 分)所以,解得: m=﹣ 3, n=﹣5(5 分),方法二:在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令 x=0,x=1,即可求出: m=﹣3,n=﹣5(注:不同方法可根据上面标准酌情给分)(2)把 x=﹣1 代入 x3﹣2x2﹣13x﹣ 10,得其值为 0,则多项式可分解为( x+1)(x2+ax+b)的形式,( 7 分)所以 x3﹣2x2﹣13x﹣10=(x+1)(x2﹣ 3x﹣10),(9 分)=( x+1)(x+2)(x﹣5).(10 分)【点评】此题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.。
初中数学因式分解难题汇编附答案
B. x2 y2 x2 y2 ,所以此选项符合题意;
C. ax x ay y a(x y) x y a 1x y ,正确;
D. a2 bc ab ac a(a b) c(a b) a ba c ,正确
故选:B. 【点睛】 此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.
11.已知 a、b、c 是 ABC 的三条边,且满足 a2 bc b2 ac ,则 ABC 是( )
A.锐角三角形
B.钝角三角形
C.等腰三角形
D.等边三角形
【答案】C
【解析】
【分析】 已知等式左边分解因式后,利用两数相乘积为 0 两因式中至少有一个为 0 得到 a=b,即可 确定出三角形形状. 【详解】 已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0, ∵a+b-c≠0, ∴a-b=0,即 a=b, 则△ABC 为等腰三角形. 故选 C. 【点睛】 此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.
6.多项式 x2 y(a b) xy(b a) y(a b) 提公因式后,另一个因式为( )
A. x2 x 1
B. x2 x 1
C. x2 x 1
【答案】B
【解析】
【分析】
各项都有因式 y(a-b),根据因式分解法则提公因式解答.
【详解】
D. x2 x 1
x2 y(a b) xy(b a) y(a b)
D. x2 2x 1 x= x 12 ,故此选项错误.
17.把多项式 3(x-y)-2(y-x)2 分解因式结果正确的是( )
A. x y3 2x 2y
B.x y3 2x 2y
因式分解难题汇编附答案
因式分解难题汇编附答案一、选择题1.将多项式x2+2xy+y2—2x —2y+1分解因式,正确的是(A.( x+y) 2B.( x+y —1)C.( x+y+1) 2D.( x—y—1) 2【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】(x+y) +1= (x+y—1) 解:x2+2xy+y2—2x—2y+1= (x2+2xy+y2) — ( 2x+2y) +1= (x+y)2故选:B下列各式从左到右的变形中,是因式分解的为(A. x a b ax bxB. ).1 y2c. x21 x 1 x 1 D. ax bx c【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式, 式分解,也叫做把这个多项式分解因式.【详解】解:A、是整式的乘法运算,故选项错误;叫做把这个多项式因B、右边不是积的形式,故选项错误;C、x2-1= (x+1)( x-1),正确;D、等式不成立,故选项错误.故选:C.【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.A. 下列各式中,由等式的左边到右边的变形是因式分解的是( )(X+ 3)(x—3) = x2—9B. X2+ x—5= (x—2)(x + 3) 1C. a2b + ab2= ab(a + b)1 D. x + 1 = x(x 一)x【答案】C 【解析】【分析】0,根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】故选: C .【点睛】 本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.【分析】 直接利用因式分解的定义分析得出答案. 【详解】解:A 、a 2- 2a+1 =( a - 1) 2,从左到右的变形属于因式分解,符合题意;B 、 a (a+1)( a - 1) = a 3- a ,从左到右的变形是整式乘法,不合题意; C 、 6x 2y 3= 2x 2?3y 3,不符合因式分解的定义,不合题意; D 、 mx - my+1= m (x - y )+1 不符合因式分解的定义,不合题意;故选: A .【点睛】 本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式 乘积的形式,注意因式分解与整式的乘法的区别.解析】 分析】A 、B 、C 、D 、 是整式的乘法,故 A 错误;没有把一个多项式转化成几个整式积的形式,故 把一个多项式转化成了几个整式积的形式,故 没有把一个多项式转化成几个整式积的形式,故B 错误;C 正确;D 错误;4.下列等式从左到右的变形属于因式分解的是( A . a 2- 2a+1 =( a - 1) 2C. 6x 2y 3= 2x 2?3y 3【答案】 A 【解析】B . D . a ( a+1 )( a - 1 )= a 3- a mx - my+1= m (x — y ) +15.若三角形的三边长分别为a 、b 、c , 满足 a 2 b a 2c b 2cb 3 0 ,则这个三角形是A .直角三角形【答案】 D B .等边三角形 C 锐角三角形D .等腰三角形首先将原式变形为 b c a b a0,可以得到 b c 0或 a b 0 或a b 0,进而得到 b【详解】c 或a b .从而得出AABC 的形状.••• a 2b a 2c b 2c b 3••• a 2 b c b 2 c b0,•b•△ ABC 是等腰三角形. 故选: D . 【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分 解的步骤,分解要彻底.6.下列各式中,从左到右的变形是因式分解的是( )A . 2a 2— 2a+1=2a (a - 1) +1 B .( x+y )( x - y ) =x 2 - y 2C. x 2- 6x+5= (x - 5)( x - 1)D . x 2+y 2= (x - y ) 2+2x【答案】 C 【解析】 故选 C . 【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形 式.7.若实数a 、b 满足a+b=5, a 2b+ab 2=-10,则ab 的值是() A . -2 B . 2 C . -50 D . 50【答案】 A 【解析】试题分析:先提取公因式 ab ,整理后再把a+b 的值代入计算即可.当 a+b=5 时,a2b+ab 2=ab ( a+b )=5ab=-10,解得:ab=-2. 考点:因式分解的应用.2 8.多项式 x 2y(a b) xy(b A . x 2 x 1B . x 2【答案】 Ba) y(a b)提公因式后,另一个因式为(C .x 2x 1x1 D .x1a 2b 20,aba0或 a b 0或 a b 0(舍去 ),【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可. 【详解】2a 2-2a+1=2a (a-1) +1,等号的右边不是整式的积的形式,故此选项不符合题意; (x+y )( x-y ) =x 2-y 2,这是整式的乘法,故此选项不符合题意; x 2-6x+5= (x-5)( x-1),是因式分解,故此选项符合题意;x 2+y 2= (x-y ) 2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意;A 、B 、C 、D 、【解析】【分析】各项都有因式y( a-b),【详解】2x y(a b) xy(b a)2=x y(a b) xy(a b) = y(a b)(x2x 1) ,根据因式分解法则提公因式解答y(ay(a故提公因式后,另一个因式为:b)b)x2x 1,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键9.若AABC三边分别是a、b、c,且满足( ()A.等边三角形【答案】D【解析】试题解析:•••( b - c)( a2+b2) =bc2- c3, /.( b- c)( a2+b2) - c2(b - c) =0,■'■( b- c)( a2+b2- c2) =0,/. b - c=0, a2+b2- c^n,••• b=c 或a2+b2=c2,•••△ ABC是等腰三角形或直角三角形.故选D. b - c)( a2+ b2) =be2- c3,则△ABC是B.等腰三角形C.直角三角形D.等腰或直角三角形10. 下面的多项式中,能因式分解的是(2 A. m n【答案】B B. m22m 1 C. 2mnD. m2m1解析】分析】完全平方公式的考察,ab a22ab b2 详解】A、C、 D 都无法进行因式分解B 中,22m 2m 1 m 2 m 1 12,可进行因式分解故选:【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:b 2ababC. 2x 2【答案】 【解析】 【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论. 【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解; 选项B , A 中的等式不成立;选项 C 中,2x 2-2=2 (x 2-1) =2 (x+1)( x-1),正确. 故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.12. 下列各式中,能用完全平方公式分解因式的是(【答案】D 【解析】 【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形 式,另一项是这两个数的积的 2倍,对各选项分析判断后利用排除法求解 .【详解】A. 16x 21只有两项,不符合完全平方公式;B. x 2故选:I 【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键13.下列各式从左到右的变形中,属于因式分解的是()2A. m (a+b ) = ma+mbB. a +4a - 21 = a (a+4)- 212完全平方公式: a b a 2 2ab b 211.下列因式分解正确的是 21A . x 2B . x 2 2x 1D .A . 16x 21 B . x 22x 12 2C. a 2ab 4bD . x 22x 1其中x 2 、-1不能写成平方和的形式,不符合完全平方公式;2ab 4b 2,其中a 2与4b 2不能写成平方和的形式,不符合完全平方公式; C. a 2D. x 21x -符合完全平方公式定义, 4 D.C. x 2- 1 =( x+1)( x - 1)D. x 2+16 - y 2=( x+y )( x - y ) +16 【答案】C【解析】 【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】故选C. 【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形 式.14. 下列由左到右边的变形中,是因式分解的是(A .【答案】 【解析】A 、B 、C 、D 、 是整式的乘法,故 A 不符合题意;没把一个多项式转化成几个整式积的形式,故 把一个多项式转化成几个整式积的形式,故 没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 符合题意;D 不符合题意;B . C. 1 x 2- 1 = x(x -)xX 2- 4+3x =( x+2)( x - 2) +3x x24 x+2x 2D .【答案】D【解析】 【分析】直接利用因式分解的意义分别判断得出答案. 【详解】(x+2)( x-2) =x2-4,是多项式乘法,故此选项错误; x 2-1=( x+1)( x-1),故此选项错误;X 2-4+3X = (x+4)( x-1),故此选项错误; x 2-4= (x+2)( x-2),正确.A 、B 、C 、D 、 故选D . 【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.15. 下列等式从左到右的变形,属于因式分解的是(2A . xB .2x 1 x x 21C. x 2ccx 2x 3D .c ab ac(x+2)( x - 2)= x 2- 4【分析】根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案. 【详解】解:A 、把一个多项式转化成几个整式积的形式,符合题意;B 、 右边不是整式积的形式,不符合题意;C 、 是整式的乘法,不是因式分解,不符合题意;D 、 是整式的乘法,不是因式分解,不符合题意;故选:A . 【点睛】本题考查了因式分解的意义,掌握因式分解的意义是解题关键.【答案】 【解析】 【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式 分解的定义,即可得到本题的答案. 【详解】A. 属于整式的乘法运算,不合题意;B. 符合因式分解的定义,符合题意;C. 右边不是乘积的形式,不合题意;D •右边不是几个整式的积的形式,不合题意; 故选:B .【点睛】本题考查了因式分解的定义, 关键.解:••• 6x33x 23x = 3x(2x 2x 1) 3x(2x16.下列从左到右的变形中,属于因式分解的是( x 2 4 A . x 2x2 B . a 22ab b 2 (a b)2C ambm 1D . (X 1)21 x 1 x 1即将多项式写成几个因式的乘积的形式,掌握定义是解题的17.下列不是多项式 6x 3 3x 2 3x 的因式的是(A . x 1【答案】A 【解析】 【分析】 B . 2x 1C.D . 3x+3将多项式6x 33x 2【详解】3x 分解因式,即可得出答案1)(x 1)又••• 3x+3=3 (x+1)••• 2x 1, x, 3x+3都是 6x 3 3x 2 3x 的因式,x 1 不是 6x 3 3x 2 3x 的因式. 故选: A【点睛】 此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解 题关键.18.多项式mx 2m 与多项式x 22x 1的公因式是(答案】 A 解析】答案】 D解析】分析】 因式分解,常用的方法有: ( 1 )提取公因式;( 2 )利用乘法公式进行因式分解 【详解】故选:【点睛】 在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩 下部分是否还可进行因式分解 .A . x 1B . x 1C . x 2D . x试题分析:把多项式分别进行因式分解,多项式mx2m =m,多项式22x 2 2x 1= x 1 ,因此可以求得它们的公因式为(x-1)故选 A 考点:因式分解19. 下列各式从左到右因式分解正确的是( A . 2x-6y 2 2 x- 3yB . x 2-2xx x- 2 1 22C . x 2- 4 x- 2D .x 1 x- 1A 中,需要提取公因式: 2x- 6 y 22x-3y+1 ,A 错误;B 中, 利用乘法公式: 2x 2- 2x 1x-1 22 , B 错误;C 中, 利用乘法公式:x 2 - 4 ( x 2)(x D 中, 先提取公因式, 再利用乘法公式: 2) , C 错误;x 3 x x x 1 x 1 ,正确20.三角形的三边 a 、b 、c 满足a (b - c ) +2( b - c )= 0,则这个三角形的形状是 () A .等腰三角形 C. 直角三角形【答案】 A 【解析】 【分析】首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】 解:••• a (b-c ) +2 (b-c ) =0,.・.(a+2)( b-c ) =0, •/ a 、b 、c 为三角形的三边,••• b-c=0,则b=c , .这个三角形的形状是等腰三角形.故选: A .【点睛】 本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键B .等边三角形 D .等腰直角三角形。
完整word版八年级因式分解难题附答案及解析
2017年05月21日数学(因式分解难题)2一.填空题(共10小题)22的值为xy,则x.y+1.已知x+y=10,xy=162.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:.2+mx+4能用完全平方公式分解因式,则m的值是3.若多项式x.2﹣4x﹣3=4x.4.分解因式:22=196+985.利用因式分解计算:202.+202×222=ab+bc+ca,则△+cABC的形状是6.△ABC三边a,b,c满足a+b.22222222=101 +…﹣+3100﹣4+5.﹣6+7.计算:12﹣8.定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是(填上你认为正确的所有结论的序号).232345678=a+a.+a++a+aa+aa19.如果+a+++a=0,代数式a22﹣1,则b的值是﹣b可化为(x+a)..若多项式10x6x﹣二.解答题(共20小题)22的值一定能被20整除.n﹣3)为整数,试说明(11.已知nn+7)﹣(2y﹣4xy+12.因式分解:4xy.13.因式分解第1页(共31页)32ab﹣(1)a2+4xy.x﹣y)(2)(14.先阅读下面的内容,再解决问题,22﹣6n+9=0,求m+2mn+2n和n的值.例题:若m22﹣6n++2n解:∵m9=0+2mn222﹣6nn++2mn+n9=0+∴m22=0)n﹣+n)3+(∴(m∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:22y的值.x4=0,求2xy+)若(1x4y+2y+﹣22﹣6a﹣6b+18c都是正整数,且满足a+|+b3b(2)已知△ABC的三边长a,,﹣c|=0,请问△ABC是怎样形状的三角形?15.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和222222,因此4,124,012=4,20﹣2这三个数都是和,20=6﹣”谐数.如4=2﹣谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.16.如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.第2页(共31页)张,请你将它们张,长方形②3)如果现有小正方形①1张,大正方形③2(1将,并运用面积之间的关系,(在图2虚线框中画出图形)拼成一个大长方形22分解因式.+3ab+多项式a2b,34已知小正方形①与大正方形③的面积之和为169,长方形②的周长为(2)求长方形②的面积.张,从其中取出若干张纸片,每种纸片至少取一张,8(3)现有三种纸片各,求把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接)可以拼成多少种边长不同的正方形.用若干块这样的硬纸片有若干块长方形和正方形硬纸片如图1所示,17.(1).拼成一个新的长方形,如图2中长方形的面积;①用两种不同的方法,计算图2.②由此,你可以得出的一个等式为:所示.32)有若干块长方形和正方形硬纸片如图(①请你用拼图等方法推出一个完全平方公式,画出你的拼图;22因式分解的结果,画出你的拼图.2b+5ab+②请你用拼图等方法推出2ann3223b,…s=a+b=ab=a,+=a,设﹣,+.已知18ab=1ab=1sbs+,s+,n213313第页(共页);1)计算s(2的过程:)请阅读下面计算s(23,﹣1a+b=1,ab=因为23231=1)=s+(a+b)=1=a×+b=(a+b)(as+b﹣(﹣)﹣ab所以s232的计算结果,再用你学到的方法计算)中s你读懂了吗?请你先填空完成(23.s4三者之间的关系式;,s)试写出s,s(3nn2n1﹣﹣.)得出的结论,计算s(4)根据(3 620.049.8++0.419.(1)利用因式分解简算:9.8×2)a﹣﹣(14a(a﹣1)(2)分解因式:22的值.n,求m2n、﹣8n+20.阅读材料:若m16=0﹣2mn+22222=0)+(n16,∴(m﹣﹣2mn+n8n)m解:∵+﹣2mn+2n8n﹣+16=0 2222.,m=4=0,∴4=0,(n﹣)m∴(﹣n)﹣+(n4)n=0,∴(m﹣)n=4根据你的观察,探究下面的问题:22的值.y,求x2y﹣+2y+1=0(1)已知x+2xy+22,+25=0﹣6a﹣、a、bc都是正整数,且满足a8b+b的三边长(2)已知△ABC的值.的最大边c求△ABC2. +a﹣bc=,则aba(3)已知﹣b=4,+c﹣6c+13=021.仔细阅读下面例题,解答问题:2﹣4x+m有一个因式是(x+3),求另一个因式以及例题:已知二次三项式xm的值.第4页(共31页)222+(n++m=x3)x+n),则x﹣4x解:设另一个因式为(x+n),得x4x﹣+m=(x+3)(x+3n∴n+3=﹣4m=3n 解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:2﹣5x+6可分解为(x﹣2)(x+a)(1)若二次三项式x,则a=;2+bx﹣5可分解为(2x﹣1)(x+(2)若二次三项式2x5),则b=;2+5x﹣k有一个因式是(3)仿照以上方法解答下面问题:已知二次三项式2x(2x ﹣3),求另一个因式以及k的值.22.分解因式:2﹣x2x;(1)2﹣116x;(2)223;yy﹣9x﹣(3)6xy2.y)9(x﹣+12(x﹣y)+(4)42222),试确定+=3(ac+ba23.已知,b,c是三角形的三边,且满足(a++c)b三角形的形状.24.分解因式42242yy﹣4x+)(12x322.+4a2abb(2)2a﹣25.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;22、mn)之间的等量关)nm、(﹣n+)观察图②请你写出三个代数式((2m系是.第5页(共31页)2.yy=7,xy=10,则(x﹣)=(3)若x+)实际上有许多代数恒等式可以用图形的面积来表示.(4.如图③,它表示了22.3n4mn(n)m+3n)=m++(5)试画出一个几何图形,使它的面积能表示(m+2的值.cb+ab+c16=0+,求2a+.已知26a、b、c满足a﹣b=8,且满足,、c分别为正整数a、b高27.已知:一个长方体的长、宽、,+abc=2006c++ab+bc+aca+b求:这个长方体的体积.222.)﹣2(x15x28.(﹣﹣4x)4x﹣.阅读下列因式分解的过程,再回答所提出的问题:292)+x(x+11+x+x(x+1)]1)x(xx=(1+x)[1+++2)+)x(1x=(1+3)x=(1+次.,共应用了(1)上述分解因式的方法是20042若分解1+x+x(x+1)+x(x+1)(x+1)则需应用上述方法x+…+2,()次,结果是.2n(n)为正整数).(…+xx+1++xx3()分解因式:1++x(+1)x(x1)+323xx=2代入此多项式,发现多项式x+10.对于多项式30x5x﹣,如果我们把+2+x+10=0,这时可以断定多项式中有因式(x﹣2)5x﹣(注:把x=a代入多项第6页(共31页)式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式322+mx+n(2)x),x写成:x﹣5xx++10=(﹣(1)求式子中m、n的值;32﹣2x﹣)以上这种因式分解的方法叫试根法,用试根法分解多项式(2x13x﹣10的因式.第7页(共31页)2017年05月21日数学(因式分解难题)2参考答案与试题解析一.填空题(共10小题)22的值为160xy,xy=16,则x.y+.1(2016秋?望谟县期末)已知x+y=10【分析】首先提取公因式xy,进而将已知代入求出即可.【解答】解:∵x+y=10,xy=16,22=xy(x+yxy)=10×16=160∴x.y+故答案为:160.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(2016秋?新宾县期末)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:2(x2).﹣3【分析】根据多项式的乘法将2(x﹣1)(x﹣9)展开得到二次项、常数项;将2(x﹣2)(x﹣4)展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式2后利用完全平方公式分解因式.2﹣20x+189)=2x;﹣2【解答】解:∵(x﹣1)(x2﹣12x+=2x16;)﹣2(x﹣4)(2x2﹣12x+18.∴原多项式为2x222.3)﹣)6x+9=2(xx18=212x2x﹣+(﹣【点评】根据错误解法得到原多项式是解答本题的关键.二次三项式分解因式,看错了一次项系数,但二次项、常数项正确;看错了常数项,但二次项、一次第8页(共31页)项正确.2+mx+4?昌邑市期末)若多项式x能用完全平方公式分解因式,则20153.(春m 的值是±4.2222﹣)4ab(a+、(a﹣b)b【分析】利用完全平方公式(a+b))=(a﹣b=+4ab计算即可.22,2)4=(x【解答】解:∵x±+mx+22±4x+4=x4即x,+mx+∴m=±4.故答案为:±4.【点评】此题主要考查了公式法分解因式,熟记有关完全平方的几个变形公式是解题关键.2﹣4x﹣3=(2x﹣3)((2015秋?利川市期末)分解因式:4x2x+1).4.2+bx+c(a≠0)型的式子的因式分解,这种方法的关键是把二次项【分析】ax系数a分解成两个因数a,a的积a?a,把常数项c分解成两个因数c,c2211122+bx+那么可以直接写成结果:axc=cac+a正好是一次项b,并使的积c?c,112221(ax+c)(ax+c),进而得出答案.21122﹣4x﹣3=(2x﹣3)4x【解答】解:(2x+1).故答案为:(2x﹣3)(2x+1).【点评】此题主要考查了十字相乘法分解因式,正确分解各项系数是解题关键.22=90000+98.利用因式分解计算:20155.(春?东阳市期末)202202+×196【分析】通过观察,显然符合完全平方公式.2298+解:原式=202+2x202x98【解答】第9页(共31页)2)98202+=(2=300=90000.【点评】运用公式法可以简便计算一些式子的值.222=ab+bc++cb,c满足aca+b,,6.(2015秋?浮梁县校级期末)△ABC三边a则△ABC的形状是等边三角形.2+(aa,再化简得(﹣b)【分析】分析题目所给的式子,将等号两边均乘以222=0,得出:a=b=c﹣c)﹣c),即选出答案.+(b222=ab+bc+ac等号两边均乘以+bc+2得:【解答】解:等式a222=2ab+2bc+2a2ac+2b,+2c222222=0,2bcc++bab﹣2ab+c+a﹣﹣2ac+即222=0,c)+(b﹣即(a﹣b))+(a﹣c解得:a=b=c,所以,△ABC是等边三角形.故答案为:等边三角形.【点评】此题考查了因式分解的应用;利用等边三角形的判定,化简式子得a=b=c,由三边相等判定△ABC是等边三角形.22222222=101100﹣6++(2015秋?鄂托克旗校级期末)计算:1﹣2…+3﹣﹣4+5.75151.222222),进一﹣+(101﹣2)+(5100﹣4)1【分析】通过观察,原式变为+(3步运用高斯求和公式即可解决.22222222101100+﹣6…+【解答】解:1﹣23+﹣﹣4+5222222)100+(101﹣4(2(=1+3﹣)+5﹣)第10页(共31页)=1+(3+2)+(5+4)+(7+6)+…+(101+100)=(1+101)×101÷2=5151.故答案为:5151.【点评】此题考查因式分解的实际运用,分组分解,利用平方差公式解决问题.8.(2015秋?乐至县期末)定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是③④(填上你认为正确的所有结论的序号).【分析】根据题中的新定义计算得到结果,即可作出判断.【解答】解:①2★(﹣2)=(1﹣2)×(﹣2)=2,本选项错误;②a★b=(1﹣a)b,b★a=(1﹣b)a,故a★b不一定等于b★a,本选项错误;222ab﹣=b=a﹣ab+﹣﹣1b★b)=(﹣a)a+(1b)+aa③若+b=0,则(★a)(22=2ab,本选项正确;=﹣﹣b2a④若a★b=0,即(1﹣a)b=0,则a=1或b=0,本选项正确,其中正确的有③④.故答案为③④.【点评】此题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解本题的关键.232345678=a+aaaaa,aa1张掖校级期末)春(9.2015?如果+++a=0代数式++a++a++第11页(共31页)0.【分析】4项为一组,分成2组,再进一步分解因式求得答案即可.23=0,++a+aa【解答】解:∵12345678,aaa++a++aa∴a+a++23523)a+a,)+a+(1a=a(1+a+++aa=0+0,=0.故答案是:0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.22﹣1,则)b的﹣b可化为(x+a10.(2015春?昆山市期末)若多项式x﹣6x值是﹣8.【分析】利用配方法进而将原式变形得出即可.222﹣1a),﹣b=(x﹣﹣6xb=(x﹣3)+﹣【解答】解:∵x9∴a=﹣3,﹣9﹣b=﹣1,解得:a=﹣3,b=﹣8.故答案为:﹣8.【点评】此题主要考查了配方法的应用,根据题意正确配方是解题关键.二.解答题(共20小题)22的值一定能被20整除.﹣3)为整数,试说明(n+7)﹣(n11.已知n22,看因式中有没有203)7+)即可.﹣(n﹣【分析】用平方差公式展开(n 22=(n+7+n﹣3)(n+7﹣n+3n【解答】解:(+7)﹣(n﹣)3)=20(n+2),22的值一定能被20整除.)﹣(n﹣3+∴(n7)22=(a+b)(a﹣ba【点评】主要考查利用平方差公式分解因式.公式:﹣b).第12页(共31页)2y﹣4xy4x+y.12.(2016秋?农安县校级期末)因式分解:【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.2y﹣4xy4x+y【解答】解:2﹣4x+4x1)=y(2.)2x(﹣1=y【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(2015秋?成都校级期末)因式分解32ab)a﹣(12+4xy).)(x﹣y(2【分析】(1)原式提取a,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可.22)=a(a+b)﹣b(a﹣b);【解答】解:(1)原式=a(a22222.)x+2xy++yy(2)原式=x2xy﹣+y=+4xy=x(【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(2015春?甘肃校级期末)先阅读下面的内容,再解决问题,22﹣6n+9=0,求m和例题:若m2mn++2nn的值.22﹣6n2n+9=0解:∵m+2mn+222﹣6n++n9=0m∴++2mnn22=0)﹣+(n3nm∴(+)第13页(共31页)∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:22y的值.x4=0,求2xy+(1)若x4y+2y+﹣22﹣6a﹣6b+18,bc都是正整数,且满足a+|+b3(2)已知△ABC的三边长a,﹣c|=0,请问△ABC是怎样形状的三角形?2222=0),y+x﹣y)2+(1)首先把x(+2y﹣2xy+4y+4=0,配方得到(【分析】再根据非负数的性质得到x=y=﹣2,代入求得数值即可;2222+|33)﹣+(b﹣,配方得到(18+|3﹣c|=0a﹣3)(2)先把a+b+﹣6a﹣6bc|=0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.22﹣2xy+4y+2y+4=0【解答】解:(1)∵x222+4y++2xyy∴x4=0+y,﹣22=02)+(y∴(x﹣y)+∴x=y=﹣2∴;22﹣6a﹣6b+18+|3﹣c(2)∵a|+b=0,22﹣6b+9+|3﹣c﹣6a+9+b|=0a∴,22+|3﹣c)b﹣3|=03∴(a﹣)(+∴a=b=c=3∴三角形ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.15.(2015秋?太和县期末)如果一个正整数能表示为两个连续偶数的平方差,第14页(共31页)222222,因此4﹣24”.如4=2,﹣020=6,12=4,﹣那么称这个正整数为“和谐数12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为2500.2222说明36是“和谐数”﹣8,;2016=5052016﹣)利用【分析】(136=10503不是“和谐数”;2﹣(2)设两个连续偶数为2n,2n+2(n为自然数),则“和谐数”=(2n+2)(2n)2,利用平方差公式展开得到(2n+2+2n)(2n+2﹣2n)=4(2n+1),然后利用整除性可说明“和谐数”一定是4的倍数;22=4,最大的为:﹣0之间的所有“和谐数”中,最小的为:2(3)介于1到20022=196,将它们全部列出不难求出他们的和.﹣4850【解答】解:(1)36是“和谐数”,2016不是“和谐数”.理由如下:2222;5038﹣;2016=50536=10﹣(2)设两个连续偶数为2k+2和2k(n为自然数),22=(2k+2+2k)(2k+2﹣∵(2k+2)﹣(2k)2k)=(4k+2)×2=4(2k+1),∵4(2k+1)能被4整除,∴“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”之和,222222222=2500.﹣48)=50(…4(2(0(S=2﹣)+4﹣)+6﹣)++50第15页(共31页)故答案是:2500.【点评】本题考查了因式分解的应用:利用因式分解把所求的代数式进行变形,从而达到使计算简化.16.(2015春?兴化市校级期末)如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.(1)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形(在图2虚线框中画出图形),并运用面积之间的关系,将22分解因式.2b+3ab多项式a+(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.【分析】(1)根据小正方形①1张,大正方形③2张,长方形②3张,直接画出图形,利用图形分解因式即可;(2)由长方形②的周长为34,得出a+b=17,由题意可知:小正方形①与大正22=169,将a+b=17两边同时平方,可求得aba方形③的面积之和为的值,从+b而可求得长方形②的面积;(3)设正方形的边长为(na+mb),其中(n、m为正整数)由完全平方公式第16页(共31页)22222.因为现有三种纸片各8+m=n张,ab+2nmab可知:(na+mb)22≤8,2mn≤8(n、m为正整数)从而可知nn≤≤8,m2,m≤2,从而可得出答案.【解答】解:(1)如图:拼成边为(a+2b)和(a+b)的长方形22=(a+2b)(a+∴ab+3ab+2b);(2)∵长方形②的周长为34,∴a+b=17.∵小正方形①与大正方形③的面积之和为169,22=169.+∴ab2222=289b,+b)2ab=17,整理得:a+两边同时平方得:将a+b=17(a+∴2ab=289﹣169,∴ab=60.∴长方形②的面积为60.(3)设正方形的边长为(na+mb),其中(n、m为正整数)22222.b+2nmab(na+mb)+=nam=∴正方形的面积∵现有三种纸片各8张,22≤8,2mn≤8(n、m∴n8≤,m为正整数)∴n≤2,m≤2.∴共有以下四种情况;①n=1,m=1,正方形的边长为a+b;第17页(共31页);2b,正方形的边长为a+②n=1,m=2;b,正方形的边长为2a+③n=2,m=1.2b,正方形的边长为2a+④n=2,m=2解题的关键是要注意结合图形解决问题,【点评】此题考查因式分解的运用,灵活运用完全平方公式.1)有若干块长方形和正方形硬纸片如图(1(2014秋?莱城区校级期中)17..2所示,用若干块这样的硬纸片拼成一个新的长方形,如图中长方形的面积;2①用两种不同的方法,计算图22.a+1)+1=a②由此,你可以得出的一个等式为:(+2a(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;22因式分解的结果,画出你的拼图.2b+5ab+②请你用拼图等方法推出2a【分析】(1)要能根据所给拼图运用不同的计算面积的方法,来推导公式;(2)要能根据等式画出合适的拼图.22;1+);长方形的面积=(a【解答】解:(1)①长方形的面积=a2a++122;1)(a+②a+2a+1=222;+)2ab=ab++(2)①如图,可推导出(ab22=(2a+b)(a+2b+2a②+5ab2b).第18页(共31页)运用本题考查运用正方形或长方形的面积计算推导相关的一些等式;【点评】图形的面积计算的不同方法得到多项式的因式分解.22,+b=a+b,s=a+(2013秋?海淀区校级期末)已知ab=1,ab=﹣1,设s18.21n33n b+,…,ss=a=a+b n3;1)计算s(2的过程:2)请阅读下面计算s(3,﹣1a+b=1,ab=因为23234+1=﹣(﹣)=1×s1)ab=(a+b)(=s+ba)﹣ab(+=a所以sb+232的计算结果,再用你学到的方法计算)中s你读懂了吗?请你先填空完成(23.s4三者之间的关系式;s,s,(3)试写出s n2n1n﹣﹣.s3)得出的结论,计算(4)根据(6的值,即可,ab)利用完全平方公式进行化简,然后代入a+b【分析】(1)(2推出结论;;=SS+S3()根据(1)所推出的结论,即可推出nnn21﹣﹣66.S+S+b=S=S+=2Sa34()根据()的结论,即可推出364453119第页(共页)222﹣2ab=3);=(a解:(1)S=a++bb【解答】222322333+ab(a+bb+b)a=a+b,)(a+b)=a+ab++ab(2)∵(33﹣11=a,+b∴3×33=4,即S+b=4∴a;32222=7),2+b()ab﹣∵S=(a4∴S=7;4(3)∵S=3,S=4,S=7,423∴S+S=S,423∴S+S=S;nn2n1﹣﹣(3)∵S+S=S,S=3,S=4,S=7,41n3nn22﹣﹣∴S=4+7=11,5∴S=7+11=18.6【点评】本题主要考查整式的混合运算、完全平方公式的运用,关键在于根据题意推出S=3,S=4,S=7,分析归纳出规律:S+S=S.nn32n241﹣﹣2+0.4×9.8)利用因式分解简算:9.8+0.04重庆校级期末)19.(2013春?(12﹣(1﹣)a)4a(2)分解因式:(a﹣1【分析】(1)利用完全平方公式因式分解计算即可;(2)先利用提取公因式法,再利用完全平方公式因式分解即可.220.2+0.2××9.8(【解答】解:1)原式=9.8+22)+0.2(=9.8=100;第20页(共31页)2﹣(1﹣a)(a﹣1)(2)4a2﹣4a+11)(4a)a=(﹣2.)﹣1﹣1)(2a=(a【点评】此题考查因式分解的实际运用,掌握平方差公式和完全平方公式是解决问题的关键.22﹣8n+16=0,求m惠山区校级期末)阅读材料:若m、﹣2mn+2n20.(2013春?n 的值.22222﹣8n+n16)﹣2mn+n=0)解:∵m﹣2mn+2n+﹣8n+16=0,∴(m(2222=0,∴n=4,m=4.,(n﹣4+(n﹣4))=0,∴(m﹣n)n∴(m﹣)=0根据你的观察,探究下面的问题:22+2y+1=0,求+2yx﹣y(1)已知x的值.+2xy22﹣6a﹣8b+b+25=0都是正整数,且满足2)已知△ABC的三边长a、b、ca,(求△ABC的最大边c的值.2﹣6c+13=0,则a﹣b+c+c=7.b=4(3)已知a﹣,ab【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x与y的值,即可求出x﹣y的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a与b的值,根据边长为正整数且三角形三边关系即可求出c的长;(3)由a﹣b=4,得到a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b与c的值,进而求出a的值,即可求出a﹣b+c的值.22+2y+1=0+2xy+2y1【解答】解:()∵x222+2y+y1)=0(y2xy∴(x++)+第21页(共31页)22=0)+)1+(y∴(x+y∴x+y=0 y+1=0解得x=1,y=﹣1∴x﹣y=2;22﹣6a﹣8b+b+(2)∵a25=022﹣8b+b16)=0﹣6a+9)+(∴(a22=04)+(b∴(a﹣3)﹣∴a﹣3=0,b﹣4=0解得a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4∴c<7,又c是正整数,∴c最大为6;2﹣6c+13=0)b+c,4a﹣b=4,即a=b+4,代入得:(b+(3)∵2222=0),(c﹣b)=(+2)3+整理得:(b+4b+4)+(c﹣6c+9∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a﹣b+c=2﹣(﹣2)+3=7.故答案为:7.【点评】此题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.21.(2012秋?温岭市校级期末)仔细阅读下面例题,解答问题:2﹣4x+m有一个因式是(x+例题:已知二次三项式x3),求另一个因式以及m的值.222+(n+3)m=x4x则)+(3xm=4x得)+(解:设另一个因式为xn,x﹣+(+)xn,x﹣+第22页(共31页)x+3n∴n+3=﹣4m=3n 解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:2﹣5x+6可分解为(x﹣2)(x+a),则a=(1)若二次三项式x﹣3;2+bx﹣5可分解为(2x﹣1)(x+5),则b=(2)若二次三项式2x9;2+5x﹣)仿照以上方法解答下面问题:已知二次三项式2xk有一个因式是(3(2x ﹣3),求另一个因式以及k的值.【分析】(1)将(x﹣2)(x+a)展开,根据所给出的二次三项式即可求出a的值;(2)(2x﹣1)(x+5)展开,可得出一次项的系数,继而即可求出b的值;22+(2n﹣n)=2x3)++5x﹣k=(2x﹣3)(n(3)设另一个因式为(x+),得2xxx ﹣3n,可知2n﹣3=5,k=3n,继而求出n和k的值及另一个因式.22﹣5x+2a=x6,x+(a﹣2)=x﹣【解答】解:(1)∵(x2)(x+a)﹣∴a﹣2=﹣5,解得:a=﹣3;22+bx﹣5+9x﹣5=2x()∵(2x﹣1)x+5)=2x,(2∴b=9;22+(2n﹣)=2x3)+3k=),得2x+5x﹣(2x﹣)(xnnx3()设另一个因式为(+x ﹣3n,则2n﹣3=5,k=3n,解得:n=4,k=12,第23页(共31页)故另一个因式为(x+4),k的值为12.故答案为:(1)﹣3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分).【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.22.(2012春?郯城县期末)分解因式:2﹣x)2x;(12﹣1)16x;(2223;yy)6xy﹣9x﹣(32.)﹣y+9(x(4)4+12x﹣y)(【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.2﹣x=x(2x﹣1(1)2x);【解答】解:2﹣1=(4x+1)(4x﹣(2)16x1);223,﹣﹣9xy6xy(3)y22),6xy+y=﹣y(9x﹣2;)﹣y=﹣y(3x2,)﹣9(xy+yx1244()+(﹣)第24页(共31页)2,]y)3(x﹣=[2+2.2)3x﹣3y+=(【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y后,需要继续利用完全平方公式进行二次因式分解.23.(2012春?碑林区校级期末)已知a,b,c是三角形的三边,且满足(a+b+c)2222)cb,试确定三角形的形状.=3(a++【分析】将已知等式利用配方法变形,利用非负数的性质解题.2222),+=3(ac+【解答】解:∵(a+b+c)b222222,3c,=3a++b3b+c+2ab+2bc+a∴2ac+222222﹣2ac=0a,+2ab+bc+c+a﹣+b2bc﹣222=0),c﹣b﹣c)a+(即(a﹣b)+(∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故△ABC为等边三角形.【点评】本题考查了配方法的运用,非负数的性质,等边三角形的判断.关键是将已知等式利用配方法变形,利用非负数的性质解题.24.(2011秋?北辰区校级期末)分解因式42242y4x+2x(1)y﹣322.2abb)2a﹣4a+2(【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式提取公因式,利用完全平方公式分解即可.42242y﹣4xy+)(【解答】解:12x第25页(共31页)4224)y+=2(xy﹣2x222)y﹣=2(x22;﹣y(=2x+y))(x2322ab2()2ab﹣4a+22)b=2a(a﹣2ab+2.)=2a(a﹣b提取公因式后利用公式此题考查了提公因式法与公式法的综合运用,【点评】进行二次分解,注意分解要彻底.的长方形,沿图中虚2n25.(2011秋?苏州期末)图①是一个长为2m、宽为线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.2);(m)图②中的阴影部分的面积为﹣n(122、mn之间的等量关﹣n)m+n)、(m(2)观察图②请你写出三个代数式(22=4mn n)n).﹣(m﹣+系是(m2=9x﹣y).)若(3x+y=7,xy=10,则((4)实际上有许多代数恒等式可以用图形的面积来表示.22.3mn+n2m+)=2mn+)(如图③,它表示了m+n(22.3n4mn++)(m3n)=m+nm使它的面积能表示)(5试画出一个几何图形,(+【分析】(1)可直接用正方形的面积公式得到.第26页(共31页)(2)掌握完全平方公式,并掌握和与差的区别.(3)此题可参照第(2)题.(4)可利用各部分面积和=长方形面积列出恒等式.(5)可参照第(4)题画图.2;)m﹣n)阴影部分的边长为(m﹣n),阴影部分的面积为(【解答】解:(1 22=4mn;n))﹣(m﹣+(2)(mn222﹣40=94xy=7y);x﹣y)﹣=(x+((3)22;+n+3mn)n)(2m+n=2mm(4)(+(5)答案不唯一:例如:.【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.2+16=0,求2a+b+﹣c满足ab=8,ab+cc、已知200926.(秋?海淀区期末)a、b 的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由a﹣b=8可得a=b+8;将其2222+8b+16正好符合完全平方c+8b+;+16=0此时可发现b得:cab代入++16=0b 公式,因此可用非负数的性质求出b、c的值,进而可求得a的值;然后代值运算即可.第27页(共31页)【解答】解:因为a﹣b=8,所以a=b+8.(1分)2+16=0+c,又ab2+16=0.(2)b+c分)所以(b+822=0.+c即(b+4)22≥0c),≥0,又(b+4则b=﹣4,c=0.(4分)所以a=4,(5分)所以2a+b+c=4.(6分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.27.(2010春?北京期末)已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.【分析】我们可先将a+b+c+ab+bc+ac+abc分解因式可变为(a+1)(b+1)(c+1)﹣1,就得(1+b)(c+1)(a+1)=2007,由于a、b、c均为正整数,所以(a+1)、(b+1)、(c+1)也为正整数,而2007只可分解为3×3×223,可得(a+1)、(b+1)、(c+1)的值分别为3、3、223,所以a、b、c值为2、2、222.就可求出长方体体积abc了.【解答】解:原式可化为:a+ab+c+ac+ab+abc+b+1﹣1=2006,a(1+b)+c(1+b)+ac(1+b)+(1+b)﹣1=2006,(1+b)(a+c+ac)+(1+b)=2007,(1+b)(c+1+a+ac)=2007,(1+b)(c+1)(a+1)=2007,第28页(共31页)2007只能分解为3×3×223∴(a+1)、(b+1)、(c+1)也只能分别为3、3、223∴a、b、c也只能分别为2、2、222∴长方体的体积abc=888.【点评】本题考查了三次的分解因式,做题当中用加减项的方法,使式子满足分解因式.222﹣4x)﹣(xx15﹣4x).﹣228.(2007秋?普陀区校级期末)(2﹣4x)看作一个整体,先把﹣15写成3×(﹣【分析】把(x5),利用十字相乘法分解因式,再把3写成(﹣1)×(﹣3),﹣5写成1×(﹣5),分别利用十字相乘法分解因式即可.222﹣4x)﹣15)4x,﹣2(【解答】解:(xx﹣22﹣4x﹣5)3)(x,=(x﹣4x+=(x﹣1)(x﹣3)(x+1)(x﹣5).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.29.(2007春?镇海区期末)阅读下列因式分解的过程,再回答所提出的问题:2)+1x(x(+xx+1)+1+x=(1+x)[1+x+x(x+1)]2(1+x1+x))=(3)+x1=((1)上述分解因式的方法是提公因式法,共应用了2次.22004,(2)若分解1+x+x(x+1)+x(xx…+++1)(x+1)则需应用上述方法2004第29页(共31页)2005.+x)次,结果是(12n(n为正整数).(x+1)x(x+1)++…xx(3)分解因式:1+x+(x+1)+【分析】此题由特殊推广到一般,要善于观察思考,注意结果和指数之间的关系.【解答】解:(1)上述分解因式的方法是提公因式法,共应用了2次.2005.)+x2)需应用上述方法2004次,结果是(1(3n,1)x(xx(+1)++…+x(1+)[1+x+x(x+1)]+x(3)解:原式=23n,1)(x1)++…+x(1+x)x(1+x)+x(+=33n,)x+1)+…+x=(1+x)(+x(x+1nn,)x+)1+x(1=(x+.)+=(x1+1n【点评】本题考查了提公因式法分解因式的推广,要认真观察已知所给的过程,弄清每一步的理由,就可进一步推广.32+x+10﹣5x,如果我们把.30(2007春?射洪县校级期末)对于多项式xx=232+x+10=0,这时可以断定多项式中有因式代入此多项式,发现多项式x(﹣5xx﹣2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),322+mx+n(2)x)于是我们可以把多项式写成:x,﹣5xx++10=(x﹣(1)求式子中m、n的值;32﹣2x)以上这种因式分解的方法叫试根法,用试根法分解多项式x13x﹣(2﹣10的因式.232+(n﹣2mx))x﹣2n,得2m=xnmx(2x1【分析】()根据(﹣)x++)+(﹣出有关m,n的方程组求出即可;第30页(共31页)32﹣13x﹣10,得其值为02x,则多项式可分解为(x+1由把(2)x=﹣1代入x)﹣2+ax+(xb)的形式,进而将多项式分解得出答案.232+(n﹣2m)(m﹣2)x﹣2)(xn+mx+)=xx+【解答】解:(1)方法一:因(x ﹣2n,32+x+10,﹣5x(2分)=x所以,解得:m=﹣3,n=﹣5(5分),322+mx+n)(x)中,5x(+x+10=x﹣2方法二:在等式x﹣分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(注:不同方法可根据上面标准酌情给分)32﹣13x﹣10,得其值为1代入x0﹣2x,2()把x=﹣2+ax+b)的形式,)(x(7分)则多项式可分解为(x+1用上述方法可求得:a=﹣3,b=﹣10,(8分)322﹣3x﹣10)()x,(9分)x所以x﹣2x13x﹣﹣10=(+1=(x+1)(x+2)(x﹣5).(10分)【点评】此题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.第31页(共31页)。
八年级因式分解难题(附答案与解析)
2017 年 05 月 21 日数学(因式分解难题) 2一.填空题(共10 小题)1.已知 x+y=10, xy=16,则 x2y+xy2的值为.2.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成 2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)( x﹣ 4),请你将原多项式因式分解正确的结果写出来:.3.若多项式 x2+mx+4能用完全平方公式分解因式,则m的值是.24.分解因式: 4x ﹣4x﹣ 3=.5.利用因式分解计算: 2022+202× 196+982= .6.△ ABC三边 a,b,c 满足 a2+b2 +c2=ab+bc+ca,则△ ABC的形状是.7.计算: 12﹣22+32﹣ 42 +52﹣ 62 +⋯﹣ 1002+1012 = .8.定义运算 a★b=( 1﹣ a) b,下面给出了关于这种运算的四个结论:①2★(﹣ 2)=3②a★b=b★a③若 a+b=0,则( a★ a) +( b★ b) =2ab④若 a★ b=0,则 a=1 或 b=0.其中正确结论的序号是(填上你认为正确的所有结论的序号).9.如果 1+a+a2+a3 =0,代数式 a+a2+a3 +a4+a5+a6+a7+a8= .10.若多项式 x2﹣6x﹣ b 可化为( x+a)2﹣1,则 b 的值是.二.解答题(共20 小题)11.已知 n 为整数,试说明( n+7)2﹣( n﹣3)2的值一定能被 20 整除.12.因式分解: 4x2y﹣4xy+y.13.因式分解...(1)a3﹣ab2(2)( x﹣ y)2 +4xy.14.先阅读下面的内容,再解决问题,2 2例题:若 m+2mn+2n﹣6n+9=0,求 m和 n 的值.2 2解:∵ m+2mn+2n﹣ 6n+9=02 2 2∴m+2mn+n+n﹣6n+9=0∴( m+n)2+(n﹣ 3)2=0∴m+n=0, n﹣3=0∴m=﹣ 3, n=3问题:(1)若 x2+2y2﹣2xy+4y+4=0,求 x y的值.(2)已知△ ABC的三边长 a, b, c 都是正整数,且满足a2 +b2﹣ 6a﹣6b+18+|3 ﹣c|=0 ,请问△ ABC是怎样形状的三角形?15.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如 4=22﹣ 02,12=42﹣22,20=62﹣ 42,因此 4,12, 20 这三个数都是和谐数.(1)36 和 2016 这两个数是和谐数吗?为什么?(2)设两个连续偶数为 2k+2 和 2k(其中 k 取非负整数),由这两个连续偶数构造的和谐数是 4 的倍数吗?为什么?(3)介于 1 到 200 之间的所有“和谐数”之和为.16.如图 1,有若干张边长为 a 的小正方形①、长为 b 宽为 a 的长方形②以及边长为 b 的大正方形③的纸片....(1)如果现有小正方形① 1 张,大正方形③ 2 张,长方形② 3 张,请你将它们拼成一个大长方形(在图 2 虚线框中画出图形),并运用面积之间的关系,将多项式 a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8 张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.17.( 1)有若干块长方形和正方形硬纸片如图 1 所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图 2 中长方形的面积;②由此,你可以得出的一个等式为:.(2)有若干块长方形和正方形硬纸片如图 3 所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.18.已知 a+b=1, ab=﹣1,设 s1=a+b, s2 =a2+b2,s3=a3 +b3,⋯,sn=a n +b n...(1)计算 s2;(2)请阅读下面计算s3 的过程:因为 a+b=1,ab=﹣1,所以 s3=a3+b3=( a+b)( a2+b2)﹣ ab( a+b)=1× s2﹣(﹣ 1)=s2+1=你读懂了吗?请你先填空完成( 2)中 s3 的计算结果,再用你学到的方法计算 s4 .(3)试写出 sn﹣ 2,sn﹣ 1, sn 三者之间的关系式;(4)根据( 3)得出的结论,计算s6 .219.(1)利用因式分解简算:9.8 +0.4 ×9.8+0.0420.阅读材料:若2 2m﹣ 2mn+2n﹣8n+16=0,求 m、n 的值.2 2 2 2 2解:∵ m﹣2mn+2n﹣8n+16=0,∴( m﹣2mn+n)+(n ﹣8n+16)=0∴( m﹣n)2 +(n﹣4)2 =0,∴( m﹣n)2=0,( n﹣4)2 =0,∴ n=4,m=4.根据你的观察,探究下面的问题:(1)已知 x2+2xy+2y2+2y+1=0,求 x﹣y 的值.(2)已知△ ABC的三边长 a、 b、 c 都是正整数,且满足a2+b2﹣ 6a﹣8b+25=0,求△ ABC的最大边 c 的值.(3)已知 a﹣b=4,ab+c2﹣6c+13=0,则 a﹣b+c= .21.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣ 4x+m 有一个因式是( x+3),求另一个因式以及m 的值.2 2 2解:设另一个因式为(x+n),得 x ﹣ 4x+m=(x+3)( x+n),则 x ﹣4x+m=x+(n+3)...x+3n∴n+3=﹣4m=3n 解得: n=﹣7,m=﹣21∴另一个因式为( x ﹣7), m的值为﹣ 21.问题:(1)若二次三项式 x2﹣5x+6 可分解为( x﹣2)(x+a),则 a= ;(2)若二次三项式2可分解为( 2x﹣1)( x+5),则 b=;2x +bx﹣5(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣ k 有一个因式是(2x﹣ 3),求另一个因式以及k 的值.22.分解因式:(1)2x2﹣x;(2)16x2﹣ 1;(3)6xy2﹣ 9x2y﹣y 3;(4)4+12(x﹣ y) +9(x﹣y)2.23.已知 a,b,c 是三角形的三边,且满足(a+b+c)2 =3(a2+b2+c2),试确定三角形的形状.24.分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.25.图①是一个长为2m、宽为 2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②请你写出三个代数式(m+n)2、(m﹣ n)2、mn 之间的等量关系是.(3)若 x+y=7,xy=10,则( x﹣y)2 = .(4)实际上有许多代数恒等式可以用图形的面积来表示....如图③,它表示了.(5)试画出一个几何图形,使它的面积能表示(26.已知 a、b、c 满足 a﹣b=8,ab+c2+16=0,求27.已知:一个长方体的长、宽、高分别为正整数a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.28.(x2﹣4x)2﹣2( x2﹣ 4x)﹣ 15.2 2 m+n)( m+3n) =m+4mn+3n.2a+b+c 的值.a 、b 、c ,且满足29.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=( 1+x)[1+x+x (x+1)]=( 1+x)2( 1+x)=( 1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解 1+x+x(x+1)+x(x+1)2+⋯+x(x+1)2004,则需应用上述方法次,结果是.(3)分解因式: 1+x+x(x+1)+x(x+1)2+⋯+x( x+1)n( n 为正整数).30.对于多项式 x3﹣5x2+x+10,如果我们把 x=2 代入此多项式,发现多项式x3﹣5x2 +x+10=0,这时可以断定多项式中有因式( x﹣ 2)(注:把 x=a 代入多项式能使多项式的值为 0,则多项式含有因式( x﹣a)),于是我们可以把多项式写成: x3﹣5x2+x+10=( x﹣ 2)(x2+mx+n),...(1)求式子中 m、n 的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣ 2x2﹣ 13x ﹣10 的因式....2017 年 05 月 21 日数学(因式分解难题) 2参考答案与试题解析一.填空题(共10 小题)1.(2016 秋 ?望谟县期末)已知x+y=10,xy=16,则 x2y+xy2的值为160 .【分析】首先提取公因式xy ,进而将已知代入求出即可.【解答】解:∵ x+y=10,xy=16,2 2∴x y+xy =xy(x+y) =10× 16=160.故答案为: 160.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(2016 秋?新宾县期末)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成 2( x﹣ 1)(x﹣9);另一位同学因看错了常数项分解成 2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:2(x ﹣3)2.【分析】根据多项式的乘法将2(x﹣1)(x﹣9)展开得到二次项、常数项;将2( x﹣ 2)(x﹣ 4)展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式 2 后利用完全平方公式分解因式.【解答】解:∵ 2( x﹣ 1)(x﹣9)=2x2﹣20x+18;2( x﹣ 2)(x﹣4)=2x2﹣ 12x+16;∴原多项式为 2x2﹣ 12x+18.2x2﹣ 12x+18=2(x2﹣ 6x+9)=2(x﹣3)2.【点评】根据错误解法得到原多项式是解答本题的关键.二次三项式分解因式,看错了一次项系数,但二次项、常数项正确;看错了常数项,但二次项、一次...项正确.3.(2015 春 ?昌邑市期末)若多项式x2 +mx+4能用完全平方公式分解因式,则m的值是±4 .【分析】利用完全平方公式( a+b)2=(a﹣b)2+4ab、( a﹣ b)2=(a+b)2﹣ 4ab计算即可.【解答】解:∵ x2 +mx+4=(x±2)2,2 2即 x +mx+4=x±4x+4,∴m=± 4.故答案为:± 4.【点评】此题主要考查了公式法分解因式,熟记有关完全平方的几个变形公式是解题关键.4.(2015 秋 ?利川市期末)分解因式: 4x2﹣ 4x﹣3= (2x﹣ 3)(2x+1).【分析】ax2+bx+c(a≠0)型的式子的因式分解,这种方法的关键是把二次项系数 a 分解成两个因数 a1, a2 的积 a1?a2,把常数项 c 分解成两个因数 c1, c2 的积c1?c2,并使 a1c2+a2c1 正好是一次项 b,那么可以直接写成结果: ax2 +bx+c= (a1x+c1)(a2x+c2),进而得出答案.2【解答】解: 4x ﹣4x﹣3=( 2x﹣3)(2x+1).【点评】此题主要考查了十字相乘法分解因式,正确分解各项系数是解题关键.5.(2015 春?东阳市期末)利用因式分解计算: 2022+202×196+982= 90000 .【分析】通过观察,显然符合完全平方公式.【解答】解:原式 =2022+2x202x98+982 =( 202+98)2...=3002=90000.【点评】运用公式法可以简便计算一些式子的值.6.(2015 秋 ?浮梁县校级期末)△ ABC三边 a,b,c 满足 a2+b2+c2=ab+bc+ca,则△ ABC的形状是等边三角形.【分析】分析题目所给的式子,将等号两边均乘以 2,再化简得( a﹣b)2+(a﹣c)2+(b﹣c)2=0,得出: a=b=c,即选出答案.【解答】解:等式 a2+b2+c2 =ab+bc+ac等号两边均乘以 2 得:2a2+2b2+2c2=2ab+2bc+2ac,即a2﹣ 2ab+b2+a2﹣2ac+c2+b2﹣ 2bc+c2=0,即( a﹣b)2 +(a﹣c)2 +( b﹣ c)2=0,解得: a=b=c,所以,△ ABC是等边三角形.故答案为:等边三角形.【点评】此题考查了因式分解的应用;利用等边三角形的判定,化简式子得a=b=c,由三边相等判定△ ABC是等边三角形.7.(2015 秋 ?鄂托克旗校级期末)计算:12﹣22+32﹣42 +52﹣62 +⋯﹣ 1002+1012= 5151 .【分析】通过观察,原式变为 1+(32﹣22) +( 52﹣ 42)+(1012﹣ 1002),进一步运用高斯求和公式即可解决.【解答】解: 12﹣ 22 +32﹣ 42 +52﹣ 62 +⋯﹣1002+1012 =1+(32﹣22)+(52﹣ 42)+(1012﹣ 1002)=1+(3+2)+(5+4) +(7+6) +⋯+(101+100)=( 1+101)× 101÷ 2...=5151.故答案为: 5151.【点评】此题考查因式分解的实际运用,分组分解,利用平方差公式解决问题.8.(2015 秋?乐至县期末)定义运算 a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣ 2)=3②a★b=b★a③若 a+b=0,则( a★ a) +( b★ b) =2ab④若 a★ b=0,则 a=1 或 b=0.其中正确结论的序号是③④(填上你认为正确的所有结论的序号).【分析】根据题中的新定义计算得到结果,即可作出判断.【解答】解:① 2★(﹣ 2)=(1﹣2)×(﹣ 2)=2,本选项错误;②a★b=(1﹣a)b,b★a=(1﹣b)a,故 a★ b 不一定等于 b★ a,本选项错误;③若a+b=0,则( a★a)+(b★b)=(1﹣a)a+( 1﹣ b) b=a﹣a2+b﹣ b2 =﹣ a22 2﹣b =﹣2a =2ab,本选项正确;④若 a★ b=0,即( 1﹣a)b=0,则 a=1 或 b=0,本选项正确,其中正确的有③④.故答案为③④.【点评】此题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解本题的关键.9.(2015 春?张掖校级期末)如果 1+a+a2 +a3=0,代数式 a+a2+a3+a4+a5+a6 +a7+a8= 0.【分析】 4 项为一组,分成 2 组,再进一步分解因式求得答案即可.【解答】解:∵ 1+a+a2+a3=0,...∴a+a2+a3+a4 +a5+a6 +a7+a8,=a(1+a+a2+a3) +a5( 1+a+a2+a3),=0+0,=0.故答案是: 0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.10.(2015 春?昆山市期末)若多项式 x2﹣ 6x﹣b 可化为( x+a)2﹣ 1,则 b 的值是﹣8.【分析】利用配方法进而将原式变形得出即可.222【解答】解:∵ x ﹣6x﹣ b=(x﹣3)﹣9﹣b=( x+a)﹣1,解得: a=﹣3,b=﹣ 8.故答案为:﹣ 8.【点评】此题主要考查了配方法的应用,根据题意正确配方是解题关键.二.解答题(共20 小题)11.已知 n 为整数,试说明( n+7)2﹣( n﹣3)2的值一定能被 20 整除.【分析】用平方差公式展开( n+7)2﹣( n﹣3)2,看因式中有没有20 即可.【解答】解:(n+7)2﹣( n﹣3)2 =( n+7+n﹣3)(n+7﹣n+3)=20( n+2),∴( n+7)2﹣( n﹣3)2的值一定能被 20 整除.【点评】主要考查利用平方差公式分解因式.公式:a2﹣b2=(a+b)(a﹣b).12.(2016 秋?农安县校级期末)因式分解:4x2 y﹣ 4xy+y.【分析】先提取公因式 y,再对余下的多项式利用完全平方公式继续分解.【解答】解: 4x2y﹣4xy+y...=y(4x2﹣4x+1)=y(2x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(2015 秋?成都校级期末)因式分解32(1)a ﹣ab(2)( x﹣ y)2 +4xy.【分析】( 1)原式提取 a,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可.22【解答】解:(1)原式 =a(a ﹣ b )=a( a+b)( a﹣ b);22222(2)原式 =x ﹣2xy+y +4xy=x +2xy+y =( x+y).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(2015 春?甘肃校级期末)先阅读下面的内容,再解决问题,2 2例题:若 m+2mn+2n﹣6n+9=0,求 m和 n 的值.2 2解:∵ m+2mn+2n﹣ 6n+9=02 2 2∴m+2mn+n+n﹣6n+9=0∴( m+n)2+(n﹣ 3)2=0∴m+n=0, n﹣3=0∴m=﹣ 3, n=3问题:(1)若 x2+2y2﹣2xy+4y+4=0,求 x y的值.(2)已知△ ABC的三边长 a, b, c 都是正整数,且满足a2 +b2﹣ 6a﹣6b+18+|3 ...﹣c|=0 ,请问△ ABC是怎样形状的三角形?【分析】( 1)首先把x2+2y2﹣ 2xy+4y+4=0,配方得到( x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把 a2+b2﹣6a﹣ 6b+18+|3﹣c|=0 ,配方得到( a﹣ 3)2+(b﹣3)2+|3 ﹣c|=0 ,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵ x2+2y2﹣2xy+4y+4=02 2 2∴x +y ﹣2xy+y +4y+4=0,∴( x﹣y)2 +(y+2)2=0∴x=y=﹣2∴;22(2)∵ a +b ﹣6a﹣ 6b+18+|3﹣c|=0 ,22∴a ﹣6a+9+b﹣ 6b+9+|3 ﹣ c|=0 ,22∴( a﹣3) +(b﹣3) +|3 ﹣c|=0∴a=b=c=3∴三角形 ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.15.(2015 秋?太和县期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如 4=22﹣02,12=42﹣ 22,20=62﹣42,因此 4,12,20 这三个数都是和谐数.(1)36 和 2016 这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2 和 2k(其中 k 取非负整数),由这两个连续偶数构造的和谐数是 4 的倍数吗?为什么?...(3)介于 1 到 200 之间的所有“和谐数”之和为2500 .【分析】( 1)利用 36=102﹣82; 2016=5052﹣ 5032说明 36 是“和谐数”,2016 不是“和谐数”;(2)设两个连续偶数为 2n,2n+2(n 为自然数),则“和谐数”=(2n+2)2﹣( 2n)2,利用平方差公式展开得到( 2n+2+2n)(2n+2﹣2n)=4( 2n+1),然后利用整除性可说明“和谐数”一定是 4 的倍数;2 2(3)介于 1 到 200 之间的所有“和谐数”中,最小的为: 2 ﹣0 =4,最大的为:22【解答】解:(1)36 是“和谐数”,2016 不是“和谐数”.理由如下:2222(2)设两个连续偶数为2k+2 和 2k(n 为自然数),∵( 2k+2)2﹣( 2k)2=(2k+2+2k)( 2k+2﹣ 2k)=( 4k+2)× 2=4(2k+1),∵4(2k+1)能被 4 整除,∴“和谐数”一定是 4 的倍数;(3)介于 1 到 200 之间的所有“和谐数”之和,S=(22﹣ 02)+( 42﹣22)+(62﹣ 42)+⋯+(502﹣482)=502=2500.故答案是: 2500.【点评】本题考查了因式分解的应用:利用因式分解把所求的代数式进行变形,从而达到使计算简化.16.(2015 春?兴化市校级期末)如图 1,有若干张边长为 a 的小正方形①、长为 b 宽为 a 的长方形②以及边长为 b 的大正方形③的纸片....(1)如果现有小正方形① 1 张,大正方形③ 2 张,长方形② 3 张,请你将它们拼成一个大长方形(在图 2 虚线框中画出图形),并运用面积之间的关系,将多项式 a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为 169,长方形②的周长为 34,求长方形②的面积.(3)现有三种纸片各8 张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.【分析】( 1)根据小正方形① 1 张,大正方形③ 2 张,长方形② 3 张,直接画出图形,利用图形分解因式即可;(2)由长方形②的周长为34,得出 a+b=17,由题意可知:小正方形①与大正方形③的面积之和为 a2+b2=169,将 a+b=17 两边同时平方,可求得 ab 的值,从而可求得长方形②的面积;(3)设正方形的边长为( na+mb),其中( n、 m为正整数)由完全平方公式可2 2 2 2 2知:(na+mb)=n a +2nmab+m.因为现有三种纸片各 8张,2 2n ≤8,m≤8,2mn≤8(n、m为正整数)从而可知 n≤2,m≤2,从而可得出答案.【解答】解:(1)如图:...拼成边为( a+2b)和( a+b)的长方形∴a2+3ab+2b2=( a+2b)(a+b);(2)∵长方形②的周长为34,∴a+b=17.∵小正方形①与大正方形③的面积之和为169,∴a2+b2=169.将a+b=17 两边同时平方得:( a+b)2=172,整理得: a2+2ab+b2=289,∴2ab=289﹣169,∴ab=60.∴长方形②的面积为60.(3)设正方形的边长为(na+mb),其中( n、m为正整数)2 2 2 2 2∴正方形的面积 =( na+mb) =n a +2nmab+m .∵现有三种纸片各8 张,2 2∴n ≤8,m≤8,2mn≤ 8( n、 m为正整数)∴n≤2,m≤2.∴共有以下四种情况;①n=1,m=1,正方形的边长为a+b;②n=1,m=2,正方形的边长为a+2b;③n=2,m=1,正方形的边长为2a+b;④n=2,m=2,正方形的边长为2a+2b.【点评】此题考查因式分解的运用,要注意结合图形解决问题,解题的关键是...灵活运用完全平方公式.17.(2014 秋?莱城区校级期中)(1)有若干块长方形和正方形硬纸片如图 1 所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图 2 中长方形的面积;②由此,你可以得出的一个等式为:a2+2a+1 = (a+1)2.(2)有若干块长方形和正方形硬纸片如图 3 所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出 2a2+5ab+2b2因式分解的结果,画出你的拼图.【分析】( 1)要能根据所给拼图运用不同的计算面积的方法,来推导公式;(2)要能根据等式画出合适的拼图.2 2【解答】解:(1)①长方形的面积 =a +2a+1;长方形的面积 =(a+1);②a2+2a+1=(a+1)2;222(2)①如图,可推导出(a+b) =a +2ab+b;22②2a +5ab+2b=(2a+b)(a+2b).【点评】本题考查运用正方形或长方形的面积计算推导相关的一些等式;运用图形的面积计算的不同方法得到多项式的因式分解....18.(2013 秋?海淀区校级期末)已知 a+b=1,ab=﹣1,设 s1=a+b,s2=a2+b2, s3 =a3+b3,⋯,sn=a n+b n(1)计算 s2;(2)请阅读下面计算s3 的过程:因为 a+b=1,ab=﹣1,所以 s3=a3+b3=( a+b)( a2+b2)﹣ ab( a+b)=1× s2﹣(﹣ 1)=s2+1= 4你读懂了吗?请你先填空完成( 2)中 s3 的计算结果,再用你学到的方法计算 s4 .(3)试写出 sn﹣ 2,sn﹣ 1, sn 三者之间的关系式;(4)根据( 3)得出的结论,计算s6 .【分析】(1)(2)利用完全平方公式进行化简,然后代入 a+b,ab 的值,即可推出结论;(3)根据( 1)所推出的结论,即可推出 Sn ﹣2+Sn﹣ 1=Sn ;(4)根据( 3)的结论,即可推出 a6 +b6=S6=S4+S5=2S4+S3.【解答】解:(1)S2=a2 +b2=(a+b)2﹣2ab=3;22322333(2)∵( a +b )(a+b)=a +ab +a b+b =a +b +ab(a+b),∴a3+b3=4,即 S3=4;2222∵S4=(a +b )﹣2( ab) =7,...(3)∵S2=3,S3=4,S4=7,∴S2+S3=S4,∴Sn﹣ 2+Sn ﹣1=Sn;(3)∵ Sn﹣ 2+Sn ﹣1=Sn, S2 =3,S3=4,S4=7,∴S5=4+7=11,∴S6=7+11=18.【点评】本题主要考查整式的混合运算、完全平方公式的运用,关键在于根据题意推出S2=3, S3 =4,S4=7,分析归纳出规律: Sn﹣ 2 +Sn﹣ 1=Sn.219.(2013 春?重庆校级期末)( 1)利用因式分解简算: 9.8 +0.4 × 9.8+0.04【分析】( 1)利用完全平方公式因式分解计算即可;(2)先利用提取公因式法,再利用完全平方公式因式分解即可.【解答】解:(1)原式 =9.8 2+2×0.2 × 9.8+0.2 2=( 9.8+0.2 )2=100;(2)4a( a﹣1)2﹣( 1﹣a)=( a﹣ 1)(4a2﹣4a+1)=( a﹣ 1)(2a﹣ 1)2.【点评】此题考查因式分解的实际运用,掌握平方差公式和完全平方公式是解决问题的关键.20.(2013 春?惠山区校级期末)阅读材料:若2 2m﹣ 2mn+2n﹣8n+16=0,求 m、n的值.2 2 2 2 2 解:∵ m﹣2mn+2n﹣ 8n+16=0,∴( m﹣2mn+n)+(n ﹣8n+16)=0...∴( m﹣n)2 +(n﹣4)2 =0,∴( m﹣n)2=0,( n﹣4)2 =0,∴ n=4,m=4.根据你的观察,探究下面的问题:(1)已知 x2+2xy+2y2+2y+1=0,求 x﹣y 的值.(2)已知△ ABC的三边长 a、 b、 c 都是正整数,且满足 a2+b2﹣ 6a﹣8b+25=0,求△ ABC 的最大边 c 的值.(3)已知 a﹣b=4,ab+c2﹣6c+13=0,则 a﹣b+c= 7 .【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0 求出 x 与 y 的值,即可求出 x﹣y 的值;(2)将已知等式 25 分为 9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为 0,两非负数分别为 0 求出 a 与 b 的值,根据边长为正整数且三角形三边关系即可求出 c 的长;(3)由 a﹣ b=4,得到 a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0 求出 b 与 c 的值,进而求出 a 的值,即可求出a﹣b+c 的值.【解答】解:(1)∵ x2+2xy+2y2+2y+1=02 2 2∴( x +2xy+y ) +( y +2y+1)=0∴( x+y)2+(y+1)2=0∴x+y=0 y+1=0解得 x=1,y=﹣1∴x﹣y=2;(2)∵ a2+b2﹣6a﹣ 8b+25=0∴( a2﹣ 6a+9)+(b2﹣ 8b+16)=0∴( a﹣3)2 +(b﹣4)2 =0∴a﹣3=0,b﹣4=0解得 a=3,b=4∵三角形两边之和>第三边...∴c<a+b,c<3+4∴c<7,又 c 是正整数,∴c 最大为 6;(3)∵ a﹣b=4,即 a=b+4,代入得:( b+4)b+c2﹣ 6c+13=0,整理得:( b2 +4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣ 3)2=0,∴b+2=0,且 c﹣3=0,即 b=﹣ 2, c=3,a=2,则a﹣b+c=2﹣(﹣ 2)+3=7.故答案为: 7.【点评】此题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.21.(2012 秋?温岭市校级期末)仔细阅读下面例题,解答问题:例题:已知二次三项式 x2﹣ 4x+m 有一个因式是( x+3),求另一个因式以及 m 的值.2 2 2解:设另一个因式为(x+n),得 x ﹣ 4x+m=(x+3)( x+n),则 x ﹣4x+m=x+(n+3)x+3n∴n+3=﹣4m=3n 解得: n=﹣7,m=﹣21∴另一个因式为( x ﹣7), m的值为﹣ 21.问题:(1)若二次三项式x2﹣5x+6 可分解为( x﹣2)(x+a),则 a= ﹣3 ;(2)若二次三项式2x2 +bx﹣5 可分解为( 2x﹣1)( x+5),则 b= 9 ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣ k 有一个因式是(2x﹣ 3),求另一个因式以及k 的值.【分析】( 1)将( x ﹣2)( x+a)展开,根据所给出的二次三项式即可求出 a 的值;...(2)( 2x﹣1)( x+5)展开,可得出一次项的系数,继而即可求出 b 的值;(3)设另一个因式为( x+n),得 2x2 +5x﹣k=( 2x﹣3)( x+n)=2x2+(2n﹣3)x﹣ 3n,可知 2n﹣ 3=5,k=3n,继而求出 n 和 k 的值及另一个因式.2 2 【解答】解:(1)∵( x﹣ 2)(x+a) =x +(a﹣2)x﹣2a=x ﹣5x+6,∴a﹣2=﹣ 5,22(2)∵( 2x﹣1)( x+5)=2x +9x﹣ 5=2x +bx﹣5,(3)设另一个因式为( x+n),得 2x2 +5x﹣k=( 2x﹣3)( x+n)=2x2+(2n﹣3)x﹣ 3n,则2n﹣3=5,k=3n,解得: n=4,k=12,故另一个因式为( x+4),k 的值为 12.故答案为:(1)﹣ 3;( 2 分)(2)9;(2 分)( 3)另一个因式是 x+4,k=12(6分).【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.22.(2012 春?郯城县期末)分解因式:2(1)2x ﹣x;(2)16x2﹣ 1;(3)6xy2﹣ 9x2y﹣y 3;(4)4+12(x﹣ y) +9(x﹣y)2....【分析】( 1)直接提取公因式x 即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣ y,再对余下的多项式利用完全平方公式继续分解;(4)把( x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】解:(1)2x2﹣x=x(2x﹣1);2(2)16x ﹣ 1=(4x+1)( 4x﹣1);223(3)6xy ﹣ 9x y﹣y ,22=﹣ y( 9x ﹣ 6xy+y ),=﹣ y( 3x﹣y)2;2(4)4+12(x﹣ y) +9(x﹣y),=( 3x﹣3y+2)2.【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在( 3),提取公因式﹣ y 后,需要继续利用完全平方公式进行二次因式分解.23.( 2012 春?碑林区校级期末)已知 a,b,c 是三角形的三边,且满足( a+b+c)2222【分析】将已知等式利用配方法变形,利用非负数的性质解题.【解答】解:∵( a+b+c)2=3( a2 +b2+c2),∴a2+b2+c2+2ab+2bc+2ac,=3a2+3b2+3c2, a2 +b2﹣ 2ab+b2+c2﹣2bc+a2+c2﹣ 2ac=0,即( a﹣b)2 +(b﹣c)2 +( c﹣ a)2=0,...∴a﹣b=0,b﹣c=0, c﹣a=0,∴a=b=c,故△ ABC为等边三角形.【点评】本题考查了配方法的运用,非负数的性质,等边三角形的判断.关键是将已知等式利用配方法变形,利用非负数的性质解题.24.(2011 秋?北辰区校级期末)分解因式4224(1)2x ﹣4x y +2y(2)2a3﹣4a2b+2ab2.【分析】( 1)原式提取公因式后,利用平方差公式分解即可;(2)原式提取公因式,利用完全平方公式分解即可.4224【解答】解:(1)2x ﹣4x y +2y=2(x2﹣ y2)2=2(x+y)2(x﹣y)2;(2)2a3﹣4a2b+2ab2=2a(a2﹣2ab+b2)=2a(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,提取公因式后利用公式进行二次分解,注意分解要彻底.25.(2011 秋?苏州期末)图①是一个长为2m、宽为 2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m﹣n)2;(2)观察图②请你写出三个代数式(m+n)2、(m﹣ n)2、mn 之间的等量关系...是( m+n)2﹣( m﹣ n)2=4mn .(3)若 x+y=7,xy=10,则( x﹣y)2 = 9 .(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了2 2.( m+n)( 2m+n) =2m+3mn+n(5)试画出一个几何图形,使它的面积能表示(2 2 m+n)( m+3n) =m+4mn+3n.【分析】( 1)可直接用正方形的面积公式得到.(2)掌握完全平方公式,并掌握和与差的区别.(3)此题可参照第( 2)题.(4)可利用各部分面积和=长方形面积列出恒等式.(5)可参照第( 4)题画图.【解答】解:(1)阴影部分的边长为( m﹣n),阴影部分的面积为( m﹣n)2;(2)( m+n)2﹣( m﹣ n)2=4mn;(3)( x﹣ y)2 =( x+y)2﹣ 4xy=72﹣ 40=9;2 2(4)( m+n)(2m+n) =2m+3mn+n;(5)答案不唯一:例如:....【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.226.( 2009 秋?海淀区期末)已知 a、b、c 满足 a﹣ b=8,ab+c +16=0,求 2a+b+c 的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由 a﹣b=8 可得 a=b+8;将其代入 ab+c2+16=0得: b2 +8b+c2+16=0;此时可发现 b2+8b+16正好符合完全平方公式,因此可用非负数的性质求出 b、 c 的值,进而可求得 a 的值;然后代值运算即可.【解答】解:因为 a﹣b=8,所以 a=b+8.(1 分)又ab+c2+16=0,2所以( b+8)b+c +16=0.(2 分)22即( b+4) +c =0.又( b+4)2≥0,c2≥ 0,则b=﹣4,c=0.( 4 分)所以 a=4,( 5 分)所以 2a+b+c=4.( 6 分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代...数式求值的方法.27.(2010 春?北京期末)已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足 a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.【分析】我们可先将 a+b+c+ab+bc+ac+abc分解因式可变为( a+1)(b+1)(c+1)﹣1,就得(1+b)(c+1)(a+1)=2007,由于 a、b、c 均为正整数,所以(a+1)、(b+1)、(c+1)也为正整数,而 2007 只可分解为 3×3×223,可得(a+1)、(b+1)、(c+1)的值分别为 3、3、223,所以 a、b、c 值为 2、2、222.就可求出长方体体积abc 了.【解答】解:原式可化为: a+ab+c+ac+ab+abc+b+1﹣1=2006,a( 1+b)+c(1+b) +ac(1+b)+(1+b)﹣ 1=2006,(1+b)(a+c+ac)+(1+b)=2007,(1+b)(c+1+a+ac) =2007,(1+b)(c+1)( a+1)=2007,2007 只能分解为 3× 3×223∴( a+1)、(b+1)、( c+1)也只能分别为 3、3、223∴a、b、c 也只能分别为 2、2、222 ∴长方体的体积abc=888.【点评】本题考查了三次的分解因式,做题当中用加减项的方法,使式子满足分解因式.28.(2007 秋?普陀区校级期末)(x2﹣4x)2﹣ 2(x2﹣4x)﹣ 15.【分析】把(x2﹣ 4x)看作一个整体,先把﹣ 15 写成 3×(﹣ 5),利用十字相乘法分解因式,再把 3 写成(﹣ 1)×(﹣ 3),﹣5 写成 1×(﹣ 5),分别利用十字相乘法分解因式即可....【解答】解:(x2﹣4x)2﹣ 2( x2﹣4x)﹣ 15,=( x2﹣4x+3)(x2﹣ 4x﹣5),=( x﹣ 1)(x﹣3)( x+1)( x﹣ 5).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.29.(2007 春?镇海区期末)阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=( 1+x)[1+x+x (x+1)]=( 1+x)2( 1+x)=( 1+x)3(1)上述分解因式的方法是提公因式法,共应用了 2 次.(2)若分解 1+x+x(x+1)+x( x+1)2+⋯+x(x+1)2004,则需应用上述方法2004 次,结果是( 1+x)2005.(3)分解因式: 1+x+x(x+1)+x(x+1)2+⋯+x( x+1)n( n 为正整数).【分析】此题由特殊推广到一般,要善于观察思考,注意结果和指数之间的关系.【解答】解:(1)上述分解因式的方法是提公因式法,共应用了 2 次.(2)需应用上述方法2004 次,结果是( 1+x)2005.(3)解:原式 =(1+x)[1+x+x ( x+1)]+x (x+1)3+⋯+x( x+1)n,=( 1+x)2( 1+x) +x(x+1)3+⋯+x(x+1)n,=( 1+x)3+x(x+1)3+⋯+x( x+1)n,=( x+1)n+x(x+1)n,...=( x+1)n+1.【点评】本题考查了提公因式法分解因式的推广,要认真观察已知所给的过程,弄清每一步的理由,就可进一步推广.30.(2007 春?射洪县校级期末)对于多项式x3﹣5x2+x+10,如果我们把x=2 代入此多项式,发现多项式 x3﹣ 5x2+x+10=0,这时可以断定多项式中有因式(x﹣2)(注:把 x=a 代入多项式能使多项式的值为 0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成: x3﹣5x2 +x+10=(x﹣2)(x2+mx+n),(1)求式子中 m、n 的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式 x3﹣ 2x2﹣ 13x ﹣10 的因式.【分析】( 1)根据( x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣2n,得出有关 m,n 的方程组求出即可;(2)由把 x=﹣1 代入 x3﹣2x2﹣13x﹣ 10,得其值为 0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.2 3 2【解答】解:(1)方法一:因( x﹣2)(x +mx+n)=x +( m﹣ 2) x +(n﹣2m)x﹣2n,=x3﹣ 5x2+x+10,(2 分)所以,解得: m=﹣3,n=﹣ 5( 5 分),方法二:在等式 x3﹣ 5x2+x+10=(x﹣2)(x2+mx+n)中,分别令x=0,x=1,即可求出: m=﹣ 3, n=﹣5(注:不同方法可根据上面标准酌情给分)(2)把 x=﹣1 代入 x3﹣2x2﹣13x﹣ 10,得其值为 0,...WORD 格式专业资料整理则多项式可分解为( x+1)(x 2+ax+b )的形式,(7 分)用上述方法可求得: a=﹣3,b=﹣ 10,(8 分)所以 x 3﹣2x 2 ﹣13x ﹣10=(x+1)(x 2﹣ 3x ﹣10),(9 分)=( x+1)( x+2)(x ﹣ 5).( 10 分)【点评】此题主要考查了因式分解的应用,根据已知获取正确的信息, 是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
八年级上册因式分解难题
八年级上册因式分解难题一、题目。
1. 分解因式:x^4 - 81解析:x^4-81=(x^2)^2 - 9^2 =(x^2 + 9)(x^2-9) =(x^2+9)(x + 3)(x - 3)2. 分解因式:9x^2 - 16y^2解析:根据平方差公式a^2 - b^2=(a + b)(a - b),这里a = 3x,b=4y所以9x^2-16y^2=(3x + 4y)(3x - 4y)3. 分解因式:(a + b)^2 - 4(a + b)+4解析:将(a + b)看成一个整体,设m=a + b,则原式变为m^2-4m + 4,根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a=m,b = 2所以m^2-4m + 4=(m - 2)^2,即(a + b-2)^24. 分解因式:x^3 - 2x^2+x解析:x^3-2x^2+x=x(x^2-2x + 1) =x(x - 1)^25. 分解因式:25m^2 - 80m+64解析:根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 5m,b=8所以25m^2-80m + 64=(5m - 8)^26. 分解因式:x^2y - 4y^3解析:x^2y-4y^3=y(x^2-4y^2) =y(x + 2y)(x - 2y)7. 分解因式:a^2 - 2ab + b^2 - c^2解析:a^2-2ab + b^2-c^2=(a - b)^2-c^2 =(a - b + c)(a - b - c)8. 分解因式:x^3+27解析:根据立方和公式a^3+b^3=(a + b)(a^2 - ab + b^2),这里a=x,b = 3所以x^3+27=(x + 3)(x^2-3x + 9)9. 分解因式:16x^4 - 1解析:16x^4-1=(4x^2)^2-1^2 =(4x^2 + 1)(4x^2-1) =(4x^2+1)(2x + 1)(2x - 1) 10. 分解因式:3ax^2+6axy+3ay^2解析:3ax^2+6axy + 3ay^2=3a(x^2+2xy + y^2) =3a(x + y)^211. 分解因式:m^2(m - 1)-4(1 - m)^2解析:m^2(m - 1)-4(1 - m)^2=m^2(m - 1)-4(m - 1)^2 =(m - 1)[m^2-4(m - 1)] =(m - 1)(m^2-4m + 4) =(m - 1)(m - 2)^212. 分解因式:(x + y)^2 - 10(x + y)+25解析:设m=x + y,则原式为m^2-10m + 25=(m - 5)^2=(x + y - 5)^213. 分解因式:x^2 - y^2 - z^2+2yz解析:x^2-y^2 - z^2+2yz=x^2-(y^2 - 2yz+z^2) =x^2-(y - z)^2 =(x + y - z)(x - y + z)14. 分解因式:8x^3 - 27y^3解析:根据立方差公式a^3 - b^3=(a - b)(a^2+ab + b^2),这里a = 2x,b=3y所以8x^3-27y^3=(2x - 3y)(4x^2+6xy + 9y^2)15. 分解因式:a^4 - b^4解析:a^4 - b^4=(a^2)^2-(b^2)^2 =(a^2 + b^2)(a^2 - b^2) =(a^2 + b^2)(a + b)(a - b)16. 分解因式:x^2 - 4xy+4y^2 - 9解析:x^2-4xy + 4y^2-9=(x - 2y)^2-3^2 =(x - 2y + 3)(x - 2y - 3)17. 分解因式:2x^2 - 12x+18解析:2x^2-12x + 18=2(x^2-6x + 9) =2(x - 3)^218. 分解因式:x^3 - 6x^2+9x解析:x^3-6x^2+9x=x(x^2-6x + 9) =x(x - 3)^219. 分解因式:m^2 - 5m - 14解析:对于二次三项式ax^2+bx + c,这里a = 1,b=-5,c=-14 m^2-5m - 14=(m - 7)(m+ 2)20. 分解因式:a^2 - 4a - 21解析:对于二次三项式ax^2+bx + c,这里a = 1,b=-4,c = - 21 a^2-4a - 21=(a - 7)(a + 3)。
初中数学因式分解难题汇编含答案解析
故选A.
【点睛】本题考查了因式分解的应用,解题的关键是要明确要判断一个算式是正数时总是将其整理成一个完全平方公式加正数的形式.
12.下列各因式分解的结果正确的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.
故选B.
【点睛】
本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
11.不论 , 为任何实数, 的值总是()
A.正数B.负数C.非负数D.非正数
【答案】A
【解析】
x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,
【详解】
∵a+b=3,
∴a2-a+b2-b+2ab-5
=(a2+2ab+b2)-(a+b)-5
=(a+b)2-(a+b)-5
=32-3-5
=9-3-5
=1,
故选:A.
【点睛】
本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式解答.
8.已知 可以被在60~70之间的两个整数整除,则这两个数是()
A.2B.﹣6C.5D.﹣3
【答案】B
【解析】
【分析】
先题提公因式xy,再用公式法因式分解,最后代入计算即可.
八年级因式分解难题(附答案及解析)[1]
(完整word)八年级因式分解难题(附答案及解析)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)八年级因式分解难题(附答案及解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)八年级因式分解难题(附答案及解析)(word版可编辑修改)的全部内容。
2017年05月21日数学(因式分解难题)2一.填空题(共10小题)1.已知x+y=10,xy=16,则x2y+xy2的值为.2.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:.3.若多项式x2+mx+4能用完全平方公式分解因式,则m的值是.4.分解因式:4x2﹣4x﹣3= .5.利用因式分解计算:2022+202×196+982= .6.△ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,则△ABC的形状是.7.计算:12﹣22+32﹣42+52﹣62+…﹣1002+1012= .8.定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是(填上你认为正确的所有结论的序号).9.如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8= .10.若多项式x2﹣6x﹣b可化为(x+a)2﹣1,则b的值是.二.解答题(共20小题)11.已知n为整数,试说明(n+7)2﹣(n﹣3)2的值一定能被20整除.12.因式分解:4x2y﹣4xy+y.13.因式分解(1)a3﹣ab2(2)(x﹣y)2+4xy.14.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?15.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数".如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.16.如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.(1)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形 (在图2虚线框中画出图形),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.17.(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为: .(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.18.已知a+b=1,ab=﹣1,设s1=a+b,s2=a2+b2,s3=a3+b3,…,s n=a n+b n(1)计算s2;(2)请阅读下面计算s3的过程:因为a+b=1,ab=﹣1,所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1=你读懂了吗?请你先填空完成(2)中s3的计算结果,再用你学到的方法计算s4.(3)试写出s n﹣2,s n﹣1,s n三者之间的关系式;(4)根据(3)得出的结论,计算s6.19.(1)利用因式分解简算:9.82+0.4×9.8+0。
初二数学 经典的因式分解难题含解析
一、选择题(共5 小题)1、已知a,b,c 为△ABC 三边,且满足a2c2-b2c2=a4-b4,则它的形状为()考点:勾股定理的逆定理;因式分解的应用.分析:把式子a2c2-b2c2=a4-b4变形化简后判定则可.如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果没有这种关系,这个就不是直角三角形.解答:解:∵a2c2-b2c2=a4-b4,∴(a2c2-b2c2)-(a4-b4)=0,∴c2(a+b)(a-b)-(a+b)(a-b)(a2+b2)=0,∴(a+b)(a-b)(c2-a2-b2)=0,∵a+b≠0,∴a-b=0 或c2-a2-b2=0,所以a=b 或c2=a2+b2即它是等腰三角形或直角三角形.故选D.点评:本题考查了因式分解和勾股定理的逆定理,难度较大.☆☆☆☆☆隐藏解析在线训练收藏试题试题纠错下载试题2、如果多项式x2+px+12 可以分解成两个一次因式的积,那么整数p 的值可取多少个()考点:因式分解-十字相乘法等.专题:计算题.分析:先把12 分成 2 个因数的积的形式,共有 6 总情况,所以对应的p 值也有6 中情况.解答:解:设12 可分成m•n,则p=m+n(m,n 同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6 个值.故选C.点评:主要考查了分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+m n= (x+m)(x+n),即常数项与一次项系数之间的等量关系.☆☆☆☆☆3、分解因式b2(x-3)+b(x-3)的正确结果是()考点:因式分解-提公因式法.分析:确定公因式是b(x-3),然后提取公因式即可.解答:解:b2(x-3)+b(x-3),=b(x-3)(b+1).故选B.点评:需要注意提取公因式后,第二项还剩因式1.☆☆☆☆☆4、小明在抄分解因式的题目时,不小心漏抄了x 的指数,他只知道该数为不大于10 的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□-4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()考点:因式分解-运用公式法.分析:能利用平方差公式分解因式,说明漏掉的是平方项的指数,只能是偶数,又只知道该数为不大于10 的正整数,则该指数可能是2、4、6、8、10 五个数.解答:解:该指数可能是2、4、6、8、10 五个数.故选D.点评:能熟练掌握平方差公式的特点,是解答这道题的关键,还要知道不大于就是小于或等于.★☆☆☆☆隐藏解析在线训练收藏试题试题纠错下载试题5、已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a2+b2+c2-ab-bc-ca 的值为()考点:因式分解的应用.分析:先求出(a-b)、(b-c)、(a-c)的值,再把所给式子整理为含(a-b)2,(b-c)2和(a-c)2的形式,代入求值即可.解答:解:∵a=2002x+2003,b=2002x+2004,c=2002x+2005,∴a-b=-1,b-c=-1,a-c=-2,∴a2+b2+c2-ab-bc-ca=12(2a2+2b2+2c2-2ab-2bc-2ca),=12[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)],=12[(a-b)2+(b-c)2+(a-c)2],=12×(1+1+4),=3.故选D.点评:本题主要考查公式法分解因式,达到简化计算的目的,对多项式扩大 2 倍是利用完全平方公式的关键.★★☆☆☆二、填空题(共3 小题)(除非特别说明,请填准确值)6、若{a=1b=-2 是关于字母a,b 的二元一次方程ax+ay-b=7 的一个解,代数式x2+2xy+y2-1 的值是24.考点:因式分解-运用公式法;代数式求值;二元一次方程的解.专题:整体思想.分析:把a=1,b=-2 代入原方程可得x+y 的值,把代数式x2+2xy+y2-1 变形为(x+y)2-1,然后计算.解答:解:把a=1,b=-2 代入ax+ay-b=7,得x+y=5,∴x2+2xy+y2-1,=(x+y)2-1,=52-1,=24.故答案为:24.点评:本题考查了公式法分解因式,把(x+y)作为一个整体是解题的关键,而x2+2xy+y2-1 也需要运用公式变形,以便计算.☆☆☆☆☆7、(2005•遂宁)分解因式:2m2-2=2(m-1)(m+1).考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再对剩余的多项式利用平方差公式继续分解因式.解答:解:2m2-2,=2(m2-1),=2(m+1)(m-1).点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行二次因式分解.★☆☆☆☆8、因式分解:x3-x2+14x= x(x-12)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再根据完全平方公式继续分解.解答:解:x3-x2+14x=x(x2-x+14)(提取公因式)=x(x-12)2(完全平方公式).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.★☆☆☆☆三、解答填空题(共2 小题)(除非特别说明,请填准确值)9、对于任意的正整数n,所有形如n3+3n2+2n 的数的最大公约数是6.考点:因式分解的应用.分析:把所给的等式利用因式分解写成乘积的形式:n3+3n2+2n=n(n+1)(n+2).因为n、n+1、n+2 是连续的三个正整数,所以其中必有一个是2 的倍数、一个是3 的倍数,可知n3+3n2+2n=n(n+1)(n+2)一定是6 的倍数,所以最大公约数为6.解答:解:n3+3n2+2n=n(n+1)(n+2),∵n、n+1、n+2 是连续的三个正整数,(2 分)∴其中必有一个是 2 的倍数、一个是 3 的倍数,(3 分)∴n3+3n2+2n=n(n+1)(n+2)一定是6 的倍数,(4 分)又∵n3+3n2+2n 的最小值是6,(5 分)(如果不说明6 是最小值,则需要说明n、n+1、n+2 中除了一个是2 的倍数、一个是3 的倍数,第三个不正好符合完全平方公式,因此可用非负数的性质求出 b 、c 的值,进而可求得 a 的值;然后代值运算即可 解答:解:因为 a-b=8,所以 a=b+8.(1 分)又 (b+4)2≥0,c 2≥0,则 b=-4,c=0.(4 分)所以 a=4,(5 分)所以 2a+b+c=4.(6 分) 点评:本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法. 分析:本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找 可能有公因数.否则从此步以下不给分)∴最大公约数为 6.(6 分)点评:主要考查了利用因式分解的方法解决实际问题.要先分解因式并根据其实际意义来求解. 隐藏解析在线训练收藏试题试题纠错下载试题10、已知 a 、b 、c 满足a-b=8,ab+c 2+16=0,则 2a+b+c= 4.考点:因式分解的应用;非负数的性质:算术平方根.到本题的突破口.由 a-b=8 可得 a=b+8;将其代入 ab+c 2+16=0 得:b 2+8b+c 2+16=0;此时可发现 b 2+8b+16.又 ab+c 2+16=0,所以(b+8)b+c 2+16=0.(2 分)即(b+4)2+c 2=0.。
因式分解练习题加答案_200道-分解因解题目之欧阳与创编
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2) abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
八年级因式分解难题(附答案 及解析)
2017年05月21日数学(因式分解难题)2一.填空题(共10小题)1.已知x+y=10,xy=16,则x2y+xy2的值为 .2.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来: .3.若多项式x2+mx+4能用完全平方公式分解因式,则m的值是 .4.分解因式:4x2﹣4x﹣3= .5.利用因式分解计算:2022+202×196+982= .6.△ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,则△ABC的形状是 .7.计算:12﹣22+32﹣42+52﹣62+…﹣1002+1012= .8.定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是 (填上你认为正确的所有结论的序号).9.如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8= .10.若多项式x2﹣6x﹣b可化为(x+a)2﹣1,则b的值是 .二.解答题(共20小题)11.已知n为整数,试说明(n+7)2﹣(n﹣3)2的值一定能被20整除.12.因式分解:4x2y﹣4xy+y.13.因式分解(1)a3﹣ab2(2)(x﹣y)2+4xy.14.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?15.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为 .16.如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.(1)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形(在图2虚线框中画出图形),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.17.(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为: .(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.18.已知a+b=1,ab=﹣1,设s1=a+b,s2=a2+b2,s3=a3+b3,…,s n=a n+b n (1)计算s2;(2)请阅读下面计算s3的过程:因为a+b=1,ab=﹣1,所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1= 你读懂了吗?请你先填空完成(2)中s3的计算结果,再用你学到的方法计算s4.(3)试写出s n﹣2,s n﹣1,s n三者之间的关系式;(4)根据(3)得出的结论,计算s6.19.(1)利用因式分解简算:9.82+0.4×9.8+0.04(2)分解因式:4a(a﹣1)2﹣(1﹣a)20.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x﹣y的值.(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣8b+25=0,求△ABC的最大边c的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a﹣b+c= .21.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n 解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a= ;(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b= ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣k有一个因式是(2x﹣3),求另一个因式以及k的值.22.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.23.已知a,b,c是三角形的三边,且满足(a+b+c)2=3(a2+b2+c2),试确定三角形的形状.24.分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.25.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为 ;(2)观察图②请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系是 .(3)若x+y=7,xy=10,则(x﹣y)2= .(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了 .(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.26.已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.27.已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.28.(x2﹣4x)2﹣2(x2﹣4x)﹣15.29.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需应用上述方法 次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).30.对于多项式x3﹣5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3﹣5x2+x+10=0,这时可以断定多项式中有因式(x﹣2)(注:把x=a 代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),(1)求式子中m、n的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣2x2﹣13x﹣10的因式.2017年05月21日数学(因式分解难题)2参考答案与试题解析一.填空题(共10小题)1.(2016秋•望谟县期末)已知x+y=10,xy=16,则x2y+xy2的值为 160 .【分析】首先提取公因式xy,进而将已知代入求出即可.【解答】解:∵x+y=10,xy=16,∴x2y+xy2=xy(x+y)=10×16=160.故答案为:160.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(2016秋•新宾县期末)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来: 2(x﹣3)2 .【分析】根据多项式的乘法将2(x﹣1)(x﹣9)展开得到二次项、常数项;将2(x﹣2)(x﹣4)展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式2后利用完全平方公式分解因式.【解答】解:∵2(x﹣1)(x﹣9)=2x2﹣20x+18;2(x﹣2)(x﹣4)=2x2﹣12x+16;∴原多项式为2x2﹣12x+18.2x2﹣12x+18=2(x2﹣6x+9)=2(x﹣3)2.【点评】根据错误解法得到原多项式是解答本题的关键.二次三项式分解因式,看错了一次项系数,但二次项、常数项正确;看错了常数项,但二次项、一次项正确.3.(2015春•昌邑市期末)若多项式x2+mx+4能用完全平方公式分解因式,则m的值是 ±4 .【分析】利用完全平方公式(a+b)2=(a﹣b)2+4ab、(a﹣b)2=(a+b)2﹣4ab计算即可.【解答】解:∵x2+mx+4=(x±2)2,即x2+mx+4=x2±4x+4,∴m=±4.故答案为:±4.【点评】此题主要考查了公式法分解因式,熟记有关完全平方的几个变形公式是解题关键.4.(2015秋•利川市期末)分解因式:4x2﹣4x﹣3= (2x﹣3)(2x+1) .【分析】ax2+bx+c(a≠0)型的式子的因式分解,这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),进而得出答案.【解答】解:4x2﹣4x﹣3=(2x﹣3)(2x+1).故答案为:(2x﹣3)(2x+1).【点评】此题主要考查了十字相乘法分解因式,正确分解各项系数是解题关键.5.(2015春•东阳市期末)利用因式分解计算:2022+202×196+982= 90000 .【分析】通过观察,显然符合完全平方公式.【解答】解:原式=2022+2x202x98+982=(202+98)2=3002【点评】运用公式法可以简便计算一些式子的值.6.(2015秋•浮梁县校级期末)△ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,则△ABC的形状是 等边三角形 .【分析】分析题目所给的式子,将等号两边均乘以2,再化简得(a﹣b)2+(a﹣c)2+(b﹣c)2=0,得出:a=b=c,即选出答案.【解答】解:等式a2+b2+c2=ab+bc+ac等号两边均乘以2得:2a2+2b2+2c2=2ab+2bc+2ac,即a2﹣2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,即(a﹣b)2+(a﹣c)2+(b﹣c)2=0,解得:a=b=c,所以,△ABC是等边三角形.故答案为:等边三角形.【点评】此题考查了因式分解的应用;利用等边三角形的判定,化简式子得a=b=c,由三边相等判定△ABC是等边三角形.7.(2015秋•鄂托克旗校级期末)计算:12﹣22+32﹣42+52﹣62+…﹣1002+1012= 5151 .【分析】通过观察,原式变为1+(32﹣22)+(52﹣42)+(1012﹣1002),进一步运用高斯求和公式即可解决.【解答】解:12﹣22+32﹣42+52﹣62+…﹣1002+1012=1+(32﹣22)+(52﹣42)+(1012﹣1002)=1+(3+2)+(5+4)+(7+6)+…+(101+100)=(1+101)×101÷2=5151.故答案为:5151.【点评】此题考查因式分解的实际运用,分组分解,利用平方差公式解8.(2015秋•乐至县期末)定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是 ③④ (填上你认为正确的所有结论的序号).【分析】根据题中的新定义计算得到结果,即可作出判断.【解答】解:①2★(﹣2)=(1﹣2)×(﹣2)=2,本选项错误;②a★b=(1﹣a)b,b★a=(1﹣b)a,故a★b不一定等于b★a,本选项错误;③若a+b=0,则(a★a)+(b★b)=(1﹣a)a+(1﹣b)b=a﹣a2+b﹣b2=﹣a2﹣b2=﹣2a2=2ab,本选项正确;④若a★b=0,即(1﹣a)b=0,则a=1或b=0,本选项正确,其中正确的有③④.故答案为③④.【点评】此题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解本题的关键.9.(2015春•张掖校级期末)如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8= 0 .【分析】4项为一组,分成2组,再进一步分解因式求得答案即可.【解答】解:∵1+a+a2+a3=0,∴a+a2+a3+a4+a5+a6+a7+a8,=a(1+a+a2+a3)+a5(1+a+a2+a3),=0.故答案是:0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.10.(2015春•昆山市期末)若多项式x2﹣6x﹣b可化为(x+a)2﹣1,则b的值是 ﹣8 .【分析】利用配方法进而将原式变形得出即可.【解答】解:∵x2﹣6x﹣b=(x﹣3)2﹣9﹣b=(x+a)2﹣1,∴a=﹣3,﹣9﹣b=﹣1,解得:a=﹣3,b=﹣8.故答案为:﹣8.【点评】此题主要考查了配方法的应用,根据题意正确配方是解题关键.二.解答题(共20小题)11.已知n为整数,试说明(n+7)2﹣(n﹣3)2的值一定能被20整除.【分析】用平方差公式展开(n+7)2﹣(n﹣3)2,看因式中有没有20即可.【解答】解:(n+7)2﹣(n﹣3)2=(n+7+n﹣3)(n+7﹣n+3)=20(n+2),∴(n+7)2﹣(n﹣3)2的值一定能被20整除.【点评】主要考查利用平方差公式分解因式.公式:a2﹣b2=(a+b)(a﹣b).12.(2016秋•农安县校级期末)因式分解:4x2y﹣4xy+y.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分【解答】解:4x2y﹣4xy+y=y(4x2﹣4x+1)=y(2x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(2015秋•成都校级期末)因式分解(1)a3﹣ab2(2)(x﹣y)2+4xy.【分析】(1)原式提取a,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可.【解答】解:(1)原式=a(a2﹣b2)=a(a+b)(a﹣b);(2)原式=x2﹣2xy+y2+4xy=x2+2xy+y2=(x+y)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(2015春•甘肃校级期末)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?【分析】(1)首先把x2+2y2﹣2xy+4y+4=0,配方得到(x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把a2+b2﹣6a﹣6b+18+|3﹣c|=0,配方得到(a﹣3)2+(b﹣3)2+|3﹣c|=0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵x2+2y2﹣2xy+4y+4=0∴x2+y2﹣2xy+y2+4y+4=0,∴(x﹣y)2+(y+2)2=0∴x=y=﹣2∴;(2)∵a2+b2﹣6a﹣6b+18+|3﹣c|=0,∴a2﹣6a+9+b2﹣6b+9+|3﹣c|=0,∴(a﹣3)2+(b﹣3)2+|3﹣c|=0∴a=b=c=3∴三角形ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.15.(2015秋•太和县期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为 2500 .【分析】(1)利用36=102﹣82;2016=5052﹣5032说明36是“和谐数”,2016不是“和谐数”;(2)设两个连续偶数为2n,2n+2(n为自然数),则“和谐数”=(2n+2)2﹣(2n)2,利用平方差公式展开得到(2n+2+2n)(2n+2﹣2n)=4(2n+1),然后利用整除性可说明“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”中,最小的为:22﹣02=4,最大的为:502﹣482=196,将它们全部列出不难求出他们的和.【解答】解:(1)36是“和谐数”,2016不是“和谐数”.理由如下:36=102﹣82;2016=5052﹣5032;(2)设两个连续偶数为2k+2和2k(n为自然数),∵(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=(4k+2)×2=4(2k+1),∵4(2k+1)能被4整除,∴“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”之和,S=(22﹣02)+(42﹣22)+(62﹣42)+…+(502﹣482)=502=2500.故答案是:2500.【点评】本题考查了因式分解的应用:利用因式分解把所求的代数式进行变形,从而达到使计算简化.16.(2015春•兴化市校级期末)如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.(1)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形(在图2虚线框中画出图形),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.【分析】(1)根据小正方形①1张,大正方形③2张,长方形②3张,直接画出图形,利用图形分解因式即可;(2)由长方形②的周长为34,得出a+b=17,由题意可知:小正方形①与大正方形③的面积之和为a2+b2=169,将a+b=17两边同时平方,可求得ab的值,从而可求得长方形②的面积;(3)设正方形的边长为(na+mb),其中(n、m为正整数)由完全平方公式可知:(na+mb)2=n2a2+2nmab+m2b2.因为现有三种纸片各8张,n2≤8,m2≤8,2mn≤8(n、m为正整数)从而可知n≤2,m≤2,从而可得出答案.【解答】解:(1)如图:拼成边为(a+2b)和(a+b)的长方形∴a2+3ab+2b2=(a+2b)(a+b);(2)∵长方形②的周长为34,∴a+b=17.∵小正方形①与大正方形③的面积之和为169,∴a2+b2=169.将a+b=17两边同时平方得:(a+b)2=172,整理得:a2+2ab+b2=289,∴2ab=289﹣169,∴ab=60.∴长方形②的面积为60.(3)设正方形的边长为(na+mb),其中(n、m为正整数)∴正方形的面积=(na+mb)2=n2a2+2nmab+m2b2.∵现有三种纸片各8张,∴n2≤8,m2≤8,2mn≤8(n、m为正整数)∴n≤2,m≤2.∴共有以下四种情况;①n=1,m=1,正方形的边长为a+b;②n=1,m=2,正方形的边长为a+2b;③n=2,m=1,正方形的边长为2a+b;④n=2,m=2,正方形的边长为2a+2b.【点评】此题考查因式分解的运用,要注意结合图形解决问题,解题的关键是灵活运用完全平方公式.17.(2014秋•莱城区校级期中)(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为: a2+2a+1 = (a+1)2 .(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.【分析】(1)要能根据所给拼图运用不同的计算面积的方法,来推导公式;(2)要能根据等式画出合适的拼图.【解答】解:(1)①长方形的面积=a2+2a+1;长方形的面积=(a+1)2;②a2+2a+1=(a+1)2;(2)①如图,可推导出(a+b)2=a2+2ab+b2;②2a2+5ab+2b2=(2a+b)(a+2b).【点评】本题考查运用正方形或长方形的面积计算推导相关的一些等式;运用图形的面积计算的不同方法得到多项式的因式分解.18.(2013秋•海淀区校级期末)已知a+b=1,ab=﹣1,设s1=a+b,s2=a2+b2,s3=a3+b3,…,s n=a n+b n(1)计算s2;(2)请阅读下面计算s3的过程:因为a+b=1,ab=﹣1,所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1= 4 你读懂了吗?请你先填空完成(2)中s3的计算结果,再用你学到的方法计算s4.(3)试写出s n﹣2,s n﹣1,s n三者之间的关系式;(4)根据(3)得出的结论,计算s6.【分析】(1)(2)利用完全平方公式进行化简,然后代入a+b,ab的值,即可推出结论;(3)根据(1)所推出的结论,即可推出S n﹣2+S n﹣1=S n;(4)根据(3)的结论,即可推出a6+b6=S6=S4+S5=2S4+S3.【解答】解:(1)S2=a2+b2=(a+b)2﹣2ab=3;(2)∵(a2+b2)(a+b)=a3+ab2+a2b+b3=a3+b3+ab(a+b),∴3×1=a3+b3﹣1,∴a3+b3=4,即S3=4;∵S4=(a2+b2)2﹣2(ab)2=7,∴S4=7;(3)∵S2=3,S3=4,S4=7,∴S2+S3=S4,∴S n﹣2+S n﹣1=S n;(3)∵S n﹣2+S n﹣1=S n,S2=3,S3=4,S4=7,∴S5=4+7=11,∴S6=7+11=18.【点评】本题主要考查整式的混合运算、完全平方公式的运用,关键在于根据题意推出S2=3,S3=4,S4=7,分析归纳出规律:S n﹣2+S n﹣1=S n. 19.(2013春•重庆校级期末)(1)利用因式分解简算:9.82+0.4×9.8+0.04(2)分解因式:4a(a﹣1)2﹣(1﹣a)【分析】(1)利用完全平方公式因式分解计算即可;(2)先利用提取公因式法,再利用完全平方公式因式分解即可.【解答】解:(1)原式=9.82+2×0.2×9.8+0.22=(9.8+0.2)2=100;(2)4a(a﹣1)2﹣(1﹣a)=(a﹣1)(4a2﹣4a+1)=(a﹣1)(2a﹣1)2.【点评】此题考查因式分解的实际运用,掌握平方差公式和完全平方公式是解决问题的关键.20.(2013春•惠山区校级期末)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x﹣y的值.(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣8b+25=0,求△ABC的最大边c的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a﹣b+c= 7 .【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x与y的值,即可求出x﹣y的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a与b的值,根据边长为正整数且三角形三边关系即可求出c的长;(3)由a﹣b=4,得到a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b与c的值,进而求出a的值,即可求出a﹣b+c的值.【解答】解:(1)∵x2+2xy+2y2+2y+1=0∴(x2+2xy+y2)+(y2+2y+1)=0∴(x+y)2+(y+1)2=0∴x+y=0 y+1=0解得x=1,y=﹣1∴x﹣y=2;(2)∵a2+b2﹣6a﹣8b+25=0∴(a2﹣6a+9)+(b2﹣8b+16)=0∴(a﹣3)2+(b﹣4)2=0∴a﹣3=0,b﹣4=0解得a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4∴c<7,又c是正整数,∴c最大为6;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a﹣b+c=2﹣(﹣2)+3=7.故答案为:7.【点评】此题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.21.(2012秋•温岭市校级期末)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n 解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a= ﹣3 ;(2)若二次三项式2x2+bx﹣5可分解为(2x﹣1)(x+5),则b= 9 ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣k有一个因式是(2x﹣3),求另一个因式以及k的值.【分析】(1)将(x﹣2)(x+a)展开,根据所给出的二次三项式即可求出a的值;(2)(2x﹣1)(x+5)展开,可得出一次项的系数,继而即可求出b的值;(3)设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,可知2n﹣3=5,k=3n,继而求出n和k的值及另一个因式.【解答】解:(1)∵(x﹣2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,∴a﹣2=﹣5,解得:a=﹣3;(2)∵(2x﹣1)(x+5)=2x2+9x﹣5=2x2+bx﹣5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,则2n﹣3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k的值为12.故答案为:(1)﹣3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分).【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.22.(2012春•郯城县期末)分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y后,需要继续利用完全平方公式进行二次因式分解.23.(2012春•碑林区校级期末)已知a,b,c是三角形的三边,且满足(a+b+c)2=3(a2+b2+c2),试确定三角形的形状.【分析】将已知等式利用配方法变形,利用非负数的性质解题.【解答】解:∵(a+b+c)2=3(a2+b2+c2),∴a2+b2+c2+2ab+2bc+2ac,=3a2+3b2+3c2,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故△ABC为等边三角形.【点评】本题考查了配方法的运用,非负数的性质,等边三角形的判断.关键是将已知等式利用配方法变形,利用非负数的性质解题.24.(2011秋•北辰区校级期末)分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式提取公因式,利用完全平方公式分解即可.【解答】解:(1)2x4﹣4x2y2+2y4=2(x4﹣2x2y2+y4)=2(x2﹣y2)2=2(x+y)2(x﹣y)2;(2)2a3﹣4a2b+2ab2=2a(a2﹣2ab+b2)=2a(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,提取公因式后利用公式进行二次分解,注意分解要彻底.25.(2011秋•苏州期末)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为 (m﹣n)2 ;(2)观察图②请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系是 (m+n)2﹣(m﹣n)2=4mn .(3)若x+y=7,xy=10,则(x﹣y)2= 9 .(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了 (m+n)(2m+n)=2m2+3mn+n2 .(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.【分析】(1)可直接用正方形的面积公式得到.(2)掌握完全平方公式,并掌握和与差的区别.(3)此题可参照第(2)题.(4)可利用各部分面积和=长方形面积列出恒等式.(5)可参照第(4)题画图.【解答】解:(1)阴影部分的边长为(m﹣n),阴影部分的面积为(m﹣n)2;(2)(m+n)2﹣(m﹣n)2=4mn;(3)(x﹣y)2=(x+y)2﹣4xy=72﹣40=9;(4)(m+n)(2m+n)=2m2+3mn+n2;(5)答案不唯一:例如:.【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.26.(2009秋•海淀区期末)已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由a﹣b=8可得a=b+8;将其代入ab+c2+16=0得:b2+8b+c2+16=0;此时可发现b2+8b+16正好符合完全平方公式,因此可用非负数的性质求出b、c的值,进而可求得a的值;然后代值运算即可.【解答】解:因为a﹣b=8,所以a=b+8.(1分)又ab+c2+16=0,所以(b+8)b+c2+16=0.(2分)即(b+4)2+c2=0.又(b+4)2≥0,c2≥0,则b=﹣4,c=0.(4分)所以a=4,(5分)所以2a+b+c=4.(6分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.27.(2010春•北京期末)已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=2006,求:这个长方体的体积.【分析】我们可先将a+b+c+ab+bc+ac+abc分解因式可变为(a+1)(b+1)(c+1)﹣1,就得(1+b)(c+1)(a+1)=2007,由于a、b、c 均为正整数,所以(a+1)、(b+1)、(c+1)也为正整数,而2007只可分解为3×3×223,可得(a+1)、(b+1)、(c+1)的值分别为3、3、223,所以a、b、c值为2、2、222.就可求出长方体体积abc了.【解答】解:原式可化为:a+ab+c+ac+ab+abc+b+1﹣1=2006,a(1+b)+c(1+b)+ac(1+b)+(1+b)﹣1=2006,(1+b)(a+c+ac)+(1+b)=2007,(1+b)(c+1+a+ac)=2007,(1+b)(c+1)(a+1)=2007,2007只能分解为3×3×223∴(a+1)、(b+1)、(c+1)也只能分别为3、3、223∴a、b、c也只能分别为2、2、222∴长方体的体积abc=888.【点评】本题考查了三次的分解因式,做题当中用加减项的方法,使式子满足分解因式.28.(2007秋•普陀区校级期末)(x2﹣4x)2﹣2(x2﹣4x)﹣15.【分析】把(x2﹣4x)看作一个整体,先把﹣15写成3×(﹣5),利用十字相乘法分解因式,再把3写成(﹣1)×(﹣3),﹣5写成1×(﹣5),分别利用十字相乘法分解因式即可.【解答】解:(x2﹣4x)2﹣2(x2﹣4x)﹣15,=(x2﹣4x+3)(x2﹣4x﹣5),=(x﹣1)(x﹣3)(x+1)(x﹣5).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.29.(2007春•镇海区期末)阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 提公因式法 ,共应用了 2 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需应用上述方法 2004 次,结果是 (1+x)2005 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【分析】此题由特殊推广到一般,要善于观察思考,注意结果和指数之间的关系.【解答】解:(1)上述分解因式的方法是提公因式法,共应用了2次.(2)需应用上述方法2004次,结果是(1+x)2005.(3)解:原式=(1+x)[1+x+x(x+1)]+x(x+1)3+…+x(x+1)n,=(1+x)2(1+x)+x(x+1)3+…+x(x+1)n,=(1+x)3+x(x+1)3+…+x(x+1)n,=(x+1)n+x(x+1)n,=(x+1)n+1.【点评】本题考查了提公因式法分解因式的推广,要认真观察已知所给的过程,弄清每一步的理由,就可进一步推广.30.(2007春•射洪县校级期末)对于多项式x3﹣5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3﹣5x2+x+10=0,这时可以断定多项式中有因式(x﹣2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x ﹣2)(x2+mx+n),(1)求式子中m、n的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣2x2﹣13x﹣10的因式.【分析】(1)根据(x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x ﹣2n,得出有关m,n的方程组求出即可;(2)由把x=﹣1代入x3﹣2x2﹣13x﹣10,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【解答】解:(1)方法一:因(x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣2n,=x3﹣5x2+x+10,(2分)所以,解得:m=﹣3,n=﹣5(5分),方法二:在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(注:不同方法可根据上面标准酌情给分)(2)把x=﹣1代入x3﹣2x2﹣13x﹣10,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,(7分)用上述方法可求得:a=﹣3,b=﹣10,(8分)所以x3﹣2x2﹣13x﹣10=(x+1)(x2﹣3x﹣10),(9分)=(x+1)(x+2)(x﹣5).(10分)【点评】此题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.。
初中数学因式分解难题汇编附答案
初中数学因式分解难题汇编附答案初中数学因式分解难题汇编附答案⼀、选择题1.若a 2-b 2=14,a-b=12,则a+b 的值为() A .-12 B .1 C .12 D .2【答案】C【解析】【分析】已知第⼆个等式左边利⽤平⽅差公式分解后,将第⼀个等式变形后代⼊计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平⽅差公式,熟练掌握平⽅差公式是解本题的关键.2.将多项式4x 2+1再加上⼀项,使它能分解因式成(a+b )2的形式,以下是四位学⽣所加的项,其中错误的是()A .2xB .﹣4xC .4x 4D .4x【答案】A【解析】【分析】分别将四个选项中的式⼦与多项式4x 2+1结合,然后判断是否为完全平⽅式即可得答案.【详解】A 、4x 2+1+2x ,不是完全平⽅式,不能利⽤完全平⽅公式进⾏因式分解,故符合题意;B 、4x 2+1-4x=(2x-1)2,能利⽤完全平⽅公式进⾏因式分解,故不符合题意;C 、4x 2+1+4x 4=(2x 2+1)2,能利⽤完全平⽅公式进⾏因式分解,故不符合题意;D 、4x 2+1+4x=(2x+1)2,能利⽤完全平⽅公式进⾏因式分解,故不符合题意,故选A.【点睛】本题考查了完全平⽅式,熟记完全平⽅式的结构特征是解题的关键.3.下列多项式不能使⽤平⽅差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】原式各项利⽤平⽅差公式的结构特征即可做出判断.【详解】下列多项式不能运⽤平⽅差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运⽤公式法,熟练掌握平⽅差公式是解本题的关键.4.把32a 4ab -因式分解,结果正确的是()A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b - 【答案】C【解析】【分析】当⼀个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b ).故选C .【点睛】本题考查⽤提公因式法和公式法进⾏因式分解的能⼒,⼀个多项式有公因式⾸先提取公因式,然后再⽤其他⽅法进⾏因式分解,同时因式分解要彻底,直到不能分解为⽌.5.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+【答案】D【解析】【分析】根据因式分解的定义,把⼀个多项式变形为⼏个整式的积的形式是分解因式进⾏分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键. 6.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另⼀个因式为()A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另⼀个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的⽅法是解题的关键.7.把代数式2x 2﹣18分解因式,结果正确的是()A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】试题分析:⾸先提取公因式2,进⽽利⽤平⽅差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运⽤.8.下列从左边到右边的变形,属于因式分解的是()A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x?2y),解答错误;D. 是分解因式。
十字相乘法进行因式分解(详案)之欧阳与创编
十字相乘法进行因式分解【基础知识精讲】(1)理解二次三项式的意义;(2)理解十字相乘法的根据;(3)能用十字相乘法分解二次三项式;(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法.【重点难点解析】1.二次三项式多项式c bx ax++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x和652++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式.十字相乘法是适用于二次三项式的因式分解的方法.2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221, 那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:)45)(2(86522-+=-+x x y xy x3.因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.【典型热点考题】例1 把下列各式分解因式:(1)1522--x x ;(2)2265y xy x +-.点悟:(1)常数项-15可分为3×(-5),且3+(-5)=-2恰为一次项系数;(2)将y 看作常数,转化为关于x 的二次三项式,常数项26y 可分为(-2y )(-3y ),而(-2y )+(-3y )=(-5y )恰为一次项系数.解:(1))5)(3(1522-+=--x x x x ;(2))3)(2(6522y x y x y xy x --=+-. 例2 把下列各式分解因式:(1)3522--x x ;(2)3832-+x x .点悟:我们要把多项式c bx ax ++2分解成形如))((2211c ax c ax ++的形式,这里a a a =21,c c c =21而b c a c a =+1221.解:(1))3)(12(3522-+=--x x x x ;(2))x )(x (x x 3133832+-=-+.点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.例3 把下列各式分解因式:(1)91024+-x x ;(2))(2)(5)(723y x y x y x +-+-+; (3)120)8(22)8(222++++a a a a . 点悟:(1)把2x 看作一整体,从而转化为关于2x 的二次三项式; (2)提取公因式(x +y )后,原式可转化为关于(x +y )的二次三项式;(3)以)8(2a a +为整体,转化为关于)8(2a a +的二次三项式.解:(1))9)(1(9102224--=+-x x x x =(x +1)(x -1)(x +3)(x -3).(2))(2)(5)(723y x y x y x +-+-+ =(x +y )[(x +y )-1][7(x +y )+2]=(x +y )(x +y -1)(7x +7y +2).(3)120)8(22)8(222++++a a a a 点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解.同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止.例4分解因式:90)242)(32(22+-+-+x x x x . 点悟:把x x 22+看作一个变量,利用换元法解之.解:设y x x =+22,则原式=(y -3)(y -24)+90=(y -18)(y -9))92)(182(22-+-+=x x x x .点拨:本题中将x x 22+视为一个整体大大简化了解题过程,体现了换元法化简求解的良好效果.此外,)9)(18(162272--=+-y y y y 一步,我们用了“十字相乘法”进行分解.例5分解因式653856234++-+x x x x .点悟:可考虑换元法及变形降次来解之.解:原式]38)1(5)1(6[222-+++=x x x x x]50)1(5)1(6[22-+++=x x x x x , 令y x x =+1,则 原式)5056(22-+=y y x )13)(3)(12)(2(++--=x x x x .点拨:本题连续应用了“十字相乘法”分解因式的同时,还应用了换元法,方法巧妙,令人眼花瞭乱.但是,品味之余应想到对换元后得出的结论一定要“还原”,这是一个重要环节.例6分解因式655222-+-+-y x y xy x . 点悟:方法1:依次按三项,两项,一项分为三组,转化为关于(x -y )的二次三项式.方法2:把字母y 看作是常数,转化为关于x 的二次三项式.解法1:655222-+-+-y x y xy x )6)(1(--+-=y x y x .解法2:655222-+-+-y x y xy x =(x -y -6)(x -y +1).例7分解因式:ca (c -a )+bc (b -c )+ab (a -b ). 点悟:先将前面的两个括号展开,再将展开的部分重新分组.解:ca (c -a )+bc (b -c )+ab (a -b )=(a -b )(c -a )(c -b ).点拨:因式分解,有时需要把多项式去括号、展开、整理、重新分组,有时仅需要把某几项展开再分组.此题展开四项后,根据字母c 的次数分组,出现了含a -b 的因式,从而能提公因式.随后又出现了关于c 的二次三项式能再次分解.例8已知12624+++x x x 有一个因式是42++ax x ,求a 值和这个多项式的其他因式.点悟:因为12624+++x x x 是四次多项式,有一个因式是42++ax x ,根据多项式的乘法原则可知道另一个因式是32++bx x (a 、b 是待定常数),故有=+++12624x x x +2(x )3()42+++⋅bx x ax .根据此恒等关系式,可求出a ,b 的值.解:设另一个多项式为32++bx x ,则12)43()43()(234++++++++=x b a x ab x b a x ,∵12624+++x x x 与12)43()43()(234++++++++x b a x ab x b a x 是同一个多项式,所以其对应项系数分别相等.即有由①、③解得,a =-1,b =1,代入②,等式成立.∴a =-1,另一个因式为32++x x .点拨:这种方法称为待定系数法,是很有用的方法.待定系数法、配方法、换元法是因式分解较为常用的方法,在其他数学知识的学习中也经常运用.希望读者不可轻视.【易错例题分析】例9分解因式:22210235y aby b a -+.错解:∵ -10=5×(-2),5=1×5,5×5+1×(-2)=23,∴ 原式=(5ab +5y )(-2ab +5y ).警示:错在没有掌握十字相乘法的含义和步骤. 正解:∵5=1×5,-10=5×(-2),5×5+1×(-2)=23.∴ 原式=(ab +5y )(5ab -2y ).【同步练习】一、选择题1.如果))((2b x a x q px x ++=+-,那么p 等于 ( )A .abB .a +bC .-abD .-(a +b )2.如果305)(22--=+++⋅x x b x b a x ,则b 为 ( )A .5B .-6C .-5D .63.多项式a x x +-32可分解为(x -5)(x -b ),则a ,b 的值分别为( )A .10和-2B .-10和2C .10和2D .-10和-24.不能用十字相乘法分解的是 ( )A .22-+x xB .x x x 310322+-C .242++x xD .22865y xy x --5.分解结果等于(x +y -4)(2x +2y -5)的多项式是( )A .20)(13)(22++-+y x y x B .20)(13)22(2++-+y x y x C .20)(13)(22++++y x y x D .20)(9)(22++-+y x y x 6.将下述多项式分解后,有相同因式x -1的多项式有 ( )①672+-x x ;②1232-+x x ;③652-+x x ;④9542--x x ;⑤823152+-x x ;⑥121124-+x xA .2个B .3个C .4个D .5个二、填空题7.=-+1032x x __________.8.=--652m m (m +a )(m +b ). a =__________,b =__________.9.=--3522x x (x -3)(__________).10.+2x ____=-22y (x -y )(__________). 11.22____)(____(_____)+=++a m n a .12.当k =______时,多项式k x x-+732有一个因式为(__________).13.若x -y =6,3617=xy ,则代数式32232xyy x y x +-的值为__________.三、解答题14.把下列各式分解因式:(1)6724+-x x ;(2)36524--x x ;(3)422416654y y x x +-; (4)633687b b a a --;(5)234456a a a --; (6)422469374b a b a a +-.15.把下列各式分解因式:(1)2224)3(x x --;(2)9)2(22--x x ; (3)2222)332()123(++-++x x x x ;(4)60)(17)(222++-+x x x x ; (5)8)2(7)2(222-+-+x x x x ; (6)48)2(14)2(2++-+b a b a . 16.把下列各式分解因式:(1)b a ax x b a +++-2)(2; (2)))(()(222q p q p pq x q p x -+++-; (3)81023222-++--y x y xy x ; (4)310434422-+---y x y xy x ; (5)120)127)(23(22-++++x x x x ; (6)4222212)2)((y y xy x y xy x -++++.17.已知60197223+--x x x 有因式2x -5,把它分解因式.18.已知x +y =2,xy =a +4,2633=+y x ,求a 的值.参考答案【同步练习】1.D 2.B 3.D 4.C 5.A 6.C7.(x +5)(x -2) 8.1或-6,-6或19.2x +110.xy ,x +2y 11.224m n ,a ,m n212.-2,3x +1或x +213.1714.(1) 原式)6)(1(22--=x x(2)原式)4)(9(22+-=x x(3)原式)16)(4(2222y x y x --=(4) 原式))(8(3333b a b a +-=(5) 原式)456(22--=a a a(6) 原式)9374(42242b b a a a +-=15.(1) 原式)23)(23(22x x x x +---=(2)原式]3)2(][3)2([+---=x x x x(3) 原式)332123()332123(2222---+++++++=⋅x x x x x x x x(4) 原式)5)(12(22-+-+=x x x x(5) 原式)12)(82(22++-+=x x x x(6)原式)82)(62(-+-+=b a b a16.(1) 原式)1]()[(+++-=x b a x b a(2) 原式)]()][([q p q x q p p x +---=(3)原式)8103()22(22+----=y y x y x (4) 原式3103)1(4422-+-+-=y y x y x (5) 原式120)4)(3)(2)(1(-++++=x x x x(6) 原式422222212)()(y y xy x y y xy x -+++++=17.提示:)52()601972(23-+--÷x x x x 18.∵))((2233y xy x y x y x +-+=+ ]3))[((2xy y x y x -++=,又∵2=+y x ,xy =a +4,2633=+y x ,∴26)]4(32[22=+-a ,解之得,a =-7.。
因式分解练习题加答案_200道-分解因解题目之欧阳引擎创编
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)欧阳引擎(2021.01.01)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。
因式分解(概念和四种基本方法)-函数与因式分解之欧阳家百创编
何为因式分解呀?因式分解:。
【例1】下列各式从左边到右边的变形中,是因式分解的是()A .223()33ab a b a b ab +=+B .2222421x x x x ⎛⎫+=+ ⎪⎝⎭ C .224(2)(2)a b a b a b -=+-D .23633(2)x xy x x x y -+=-因式分解基本方法1.提公因式法2.公式法3.分组分解法4.十字相乘法【例1】分解因式(提公因式法):⑴33x y xy -⑵()211x x --+ ⑶()()2342x y y x --- ⑷3231827x x x -+心得第一式:①因式分解时,无论有几项,首先考虑提取公因式。
提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为“1”【例2】因式分解(公式法):⑴249a -⑵22()()x m x n +-+⑶24129x x ++⑷2244a ab b -+- 【例3】因式分解()2222214a b a b +--在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.将式子33312xy xy -因式分解() A .()2232xy x y -B .()3334x y y x -C .()()322xy x y x y +-D .()2232xy x y +2.将式子3223636a a b a c abc +--因式分解()A .()()32a a b a c +-B .()()32a a b a c ++C .()()32a a b a c --D .()2322a a ab ac bc +--3.将式子2222x a ab b -+-因式分解()A .()()x a b x a b ++-+B .()()x a b x a b +---C .()()x a b x a b --++D .()()x a b x a b +--+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
05月21日数学(因式分解难题)2一.填空题(共10小题)1.已知x+y=10,xy=16,则x2y+xy2的值为.2.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:.3.若多项式x2+mx+4能用完全平方公式分解因式,则m的值是.4.分解因式:4x2﹣4x﹣3=.5.利用因式分解计算:2022+202×196+982=.6.△ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,则△ABC的形状是.7.计算:12﹣22+32﹣42+52﹣62+…﹣1002+1012=.8.定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是(填上你认为正确的所有结论的序号).9.如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8=.10.若多项式x2﹣6x﹣b可化为(x+a)2﹣1,则b的值是.二.解答题(共20小题)11.已知n为整数,试说明(n+7)2﹣(n﹣3)2的值一定能被20整除.12.因式分解:4x2y﹣4xy+y.13.因式分解(1)a3﹣ab2(2)(x﹣y)2+4xy.14.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?15.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.16.如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.(1)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形(在图2虚线框中画出图形),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.17.(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为:.(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.18.已知a+b=1,ab=﹣1,设s1=a+b,s2=a2+b2,s3=a3+b3,…,sn=an+bn(1)计算s2;(2)请阅读下面计算s3的过程:因为a+b=1,ab=﹣1,所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1=你读懂了吗?请你先填空完成(2)中s3的计算结果,再用你学到的方法计算s4.(3)试写出sn﹣2,sn﹣1,sn三者之间的关系式;(4)根据(3)得出的结论,计算s6.19.(1)利用因式分解简算:9.82+0.4×9.8+0.04(2)分解因式:4a(a﹣1)2﹣(1﹣a)20.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x﹣y的值.(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣8b+25=0,求△ABC的最大边c的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a﹣b+c=.21.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n 解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a=;(2)若二次三项式2x2+bx﹣5可分解为(2x ﹣1)(x+5),则b=;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣k有一个因式是(2x﹣3),求另一个因式以及k的值.22.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.23.已知a,b,c是三角形的三边,且满足(a+b+c)2=3(a2+b2+c2),试确定三角形的形状.24.分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.25.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系是.(3)若x+y=7,xy=10,则(x﹣y)2=.(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了.(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.26.已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.27.已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=,求:这个长方体的体积.28.(x2﹣4x)2﹣2(x2﹣4x)﹣15.29.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x (x+1),则需应用上述方法次,结果是.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).30.对于多项式x3﹣5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3﹣5x2+x+10=0,这时可以断定多项式中有因式(x﹣2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x ﹣2)(x2+mx+n),(1)求式子中m、n的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣2x2﹣13x﹣10的因式.05月21日数学(因式分解难题)2参考答案与试题解析一.填空题(共10小题)1.(秋•望谟县期末)已知x+y=10,xy=16,则x2y+xy2的值为160 .【分析】首先提取公因式xy,进而将已知代入求出即可.【解答】解:∵x+y=10,xy=16,∴x2y+xy2=xy(x+y)=10×16=160.故答案为:160.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2.(秋•新宾县期末)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:2(x﹣3)2.【分析】根据多项式的乘法将2(x﹣1)(x﹣9)展开得到二次项、常数项;将2(x﹣2)(x﹣4)展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式2后利用完全平方公式分解因式.【解答】解:∵2(x﹣1)(x﹣9)=2x2﹣20x+18;2(x﹣2)(x﹣4)=2x2﹣12x+16;∴原多项式为2x2﹣12x+18.2x2﹣12x+18=2(x2﹣6x+9)=2(x﹣3)2.【点评】根据错误解法得到原多项式是解答本题的关键.二次三项式分解因式,看错了一次项系数,但二次项、常数项正确;看错了常数项,但二次项、一次项正确.3.(春•昌邑市期末)若多项式x2+mx+4能用完全平方公式分解因式,则m的值是±4.【分析】利用完全平方公式(a+b)2=(a﹣b)2+4ab、(a﹣b)2=(a+b)2﹣4ab计算即可.【解答】解:∵x2+mx+4=(x±2)2,即x2+mx+4=x2±4x+4,∴m=±4.故答案为:±4.【点评】此题主要考查了公式法分解因式,熟记有关完全平方的几个变形公式是解题关键.4.(秋•利川市期末)分解因式:4x2﹣4x﹣3= (2x﹣3)(2x+1).【分析】ax2+bx+c(a≠0)型的式子的因式分解,这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),进而得出答案.【解答】解:4x2﹣4x﹣3=(2x﹣3)(2x+1).故答案为:(2x﹣3)(2x+1).【点评】此题主要考查了十字相乘法分解因式,正确分解各项系数是解题关键.5.(春•东阳市期末)利用因式分解计算:2022+202×196+982=90000 .【分析】通过观察,显然符合完全平方公式.【解答】解:原式=2022+2x202x98+982=(202+98)2=3002=90000.【点评】运用公式法可以简便计算一些式子的值.6.(秋•浮梁县校级期末)△ABC三边a,b,c满足a2+b2+c2=ab+bc+ca,则△ABC的形状是等边三角形.【分析】分析题目所给的式子,将等号两边均乘以2,再化简得(a﹣b)2+(a﹣c)2+(b﹣c)2=0,得出:a=b=c,即选出答案.【解答】解:等式a2+b2+c2=ab+bc+ac等号两边均乘以2得:2a2+2b2+2c2=2ab+2bc+2ac,即a2﹣2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,即(a﹣b)2+(a﹣c)2+(b﹣c)2=0,解得:a=b=c,所以,△ABC是等边三角形.故答案为:等边三角形.【点评】此题考查了因式分解的应用;利用等边三角形的判定,化简式子得a=b=c,由三边相等判定△ABC是等边三角形.7.(秋•鄂托克旗校级期末)计算:12﹣22+32﹣42+52﹣62+…﹣1002+1012= 5151 .【分析】通过观察,原式变为1+(32﹣22)+(52﹣42)+(1012﹣1002),进一步运用高斯求和公式即可解决.【解答】解:12﹣22+32﹣42+52﹣62+…﹣1002+1012=1+(32﹣22)+(52﹣42)+(1012﹣1002)=1+(3+2)+(5+4)+(7+6)+…+(101+100)=(1+101)×101÷2=5151.故答案为:5151.【点评】此题考查因式分解的实际运用,分组分解,利用平方差公式解决问题.8.(秋•乐至县期末)定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论:①2★(﹣2)=3②a★b=b★a③若a+b=0,则(a★a)+(b★b)=2ab④若a★b=0,则a=1或b=0.其中正确结论的序号是③④(填上你认为正确的所有结论的序号).【分析】根据题中的新定义计算得到结果,即可作出判断.【解答】解:①2★(﹣2)=(1﹣2)×(﹣2)=2,本选项错误;②a★b=(1﹣a)b,b★a=(1﹣b)a,故a★b 不一定等于b★a,本选项错误;③若a+b=0,则(a★a)+(b★b)=(1﹣a)a+(1﹣b)b=a﹣a2+b﹣b2=﹣a2﹣b2=﹣2a2=2ab,本选项正确;④若a★b=0,即(1﹣a)b=0,则a=1或b=0,本选项正确,其中正确的有③④.故答案为③④.【点评】此题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解本题的关键.9.(春•张掖校级期末)如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8= 0 .【分析】4项为一组,分成2组,再进一步分解因式求得答案即可.【解答】解:∵1+a+a2+a3=0,∴a+a2+a3+a4+a5+a6+a7+a8,=a(1+a+a2+a3)+a5(1+a+a2+a3),=0+0,=0.故答案是:0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.10.(春•昆山市期末)若多项式x2﹣6x﹣b 可化为(x+a)2﹣1,则b的值是﹣8 .【分析】利用配方法进而将原式变形得出即可.【解答】解:∵x2﹣6x﹣b=(x﹣3)2﹣9﹣b=(x+a)2﹣1,∴a=﹣3,﹣9﹣b=﹣1,解得:a=﹣3,b=﹣8.故答案为:﹣8.【点评】此题主要考查了配方法的应用,根据题意正确配方是解题关键.二.解答题(共20小题)11.已知n为整数,试说明(n+7)2﹣(n﹣3)2的值一定能被20整除.【分析】用平方差公式展开(n+7)2﹣(n﹣3)2,看因式中有没有20即可.【解答】解:(n+7)2﹣(n﹣3)2=(n+7+n ﹣3)(n+7﹣n+3)=20(n+2),∴(n+7)2﹣(n﹣3)2的值一定能被20整除.【点评】主要考查利用平方差公式分解因式.公式:a2﹣b2=(a+b)(a﹣b).12.(秋•农安县校级期末)因式分解:4x2y ﹣4xy+y.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:4x2y﹣4xy+y=y(4x2﹣4x+1)=y(2x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(秋•成都校级期末)因式分解(1)a3﹣ab2(2)(x﹣y)2+4xy.【分析】(1)原式提取a,再利用平方差公式分解即可;(2)原式利用完全平方公式分解即可.【解答】解:(1)原式=a(a2﹣b2)=a (a+b)(a﹣b);(2)原式=x2﹣2xy+y2+4xy=x2+2xy+y2=(x+y)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(春•甘肃校级期末)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题:(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.(2)已知△ABC的三边长a,b,c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是怎样形状的三角形?【分析】(1)首先把x2+2y2﹣2xy+4y+4=0,配方得到(x﹣y)2+(y+2)2=0,再根据非负数的性质得到x=y=﹣2,代入求得数值即可;(2)先把a2+b2﹣6a﹣6b+18+|3﹣c|=0,配方得到(a﹣3)2+(b﹣3)2+|3﹣c|=0,根据非负数的性质得到a=b=c=3,得出三角形的形状即可.【解答】解:(1)∵x2+2y2﹣2xy+4y+4=0∴x2+y2﹣2xy+y2+4y+4=0,∴(x﹣y)2+(y+2)2=0∴x=y=﹣2∴;(2)∵a2+b2﹣6a﹣6b+18+|3﹣c|=0,∴a2﹣6a+9+b2﹣6b+9+|3﹣c|=0,∴(a﹣3)2+(b﹣3)2+|3﹣c|=0∴a=b=c=3∴三角形ABC是等边三角形.【点评】此题考查了配方法的应用:通过配方,把已知条件变形为几个非负数的和的形式,然后利用非负数的性质得到几个等量关系,建立方程求得数值解决问题.15.(秋•太和县期末)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为2500 .【分析】(1)利用36=102﹣82;=5052﹣5032说明36是“和谐数”,不是“和谐数”;(2)设两个连续偶数为2n,2n+2(n为自然数),则“和谐数”=(2n+2)2﹣(2n)2,利用平方差公式展开得到(2n+2+2n)(2n+2﹣2n)=4(2n+1),然后利用整除性可说明“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”中,最小的为:22﹣02=4,最大的为:502﹣482=196,将它们全部列出不难求出他们的和.【解答】解:(1)36是“和谐数”,不是“和谐数”.理由如下:36=102﹣82;=5052﹣5032;(2)设两个连续偶数为2k+2和2k(n为自然数),∵(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=(4k+2)×2=4(2k+1),∵4(2k+1)能被4整除,∴“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”之和,S=(22﹣02)+(42﹣22)+(62﹣42)+…+(502﹣482)=502=2500.故答案是:2500.【点评】本题考查了因式分解的应用:利用因式分解把所求的代数式进行变形,从而达到使计算简化.16.(春•兴化市校级期末)如图1,有若干张边长为a的小正方形①、长为b宽为a的长方形②以及边长为b的大正方形③的纸片.(1)如果现有小正方形①1张,大正方形③2张,长方形②3张,请你将它们拼成一个大长方形(在图2虚线框中画出图形),并运用面积之间的关系,将多项式a2+3ab+2b2分解因式.(2)已知小正方形①与大正方形③的面积之和为169,长方形②的周长为34,求长方形②的面积.(3)现有三种纸片各8张,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),求可以拼成多少种边长不同的正方形.【分析】(1)根据小正方形①1张,大正方形③2张,长方形②3张,直接画出图形,利用图形分解因式即可;(2)由长方形②的周长为34,得出a+b=17,由题意可知:小正方形①与大正方形③的面积之和为a2+b2=169,将a+b=17两边同时平方,可求得ab的值,从而可求得长方形②的面积;(3)设正方形的边长为(na+mb),其中(n、m为正整数)由完全平方公式可知:(na+mb)2=n2a2+2nmab+m2b2.因为现有三种纸片各8张,n2≤8,m2≤8,2mn≤8(n、m为正整数)从而可知n≤2,m≤2,从而可得出答案.【解答】解:(1)如图:拼成边为(a+2b)和(a+b)的长方形∴a2+3ab+2b2=(a+2b)(a+b);(2)∵长方形②的周长为34,∴a+b=17.∵小正方形①与大正方形③的面积之和为169,∴a2+b2=169.将a+b=17两边同时平方得:(a+b)2=172,整理得:a2+2ab+b2=289,∴2ab=289﹣169,∴ab=60.∴长方形②的面积为60.(3)设正方形的边长为(na+mb),其中(n、m为正整数)∴正方形的面积=(na+mb)2=n2a2+2nmab+m2b2.∵现有三种纸片各8张,∴n2≤8,m2≤8,2mn≤8(n、m为正整数)∴n≤2,m≤2.∴共有以下四种情况;①n=1,m=1,正方形的边长为a+b;②n=1,m=2,正方形的边长为a+2b;③n=2,m=1,正方形的边长为2a+b;④n=2,m=2,正方形的边长为2a+2b.【点评】此题考查因式分解的运用,要注意结合图形解决问题,解题的关键是灵活运用完全平方公式.17.(秋•莱城区校级期中)(1)有若干块长方形和正方形硬纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得出的一个等式为:a2+2a+1 = (a+1)2.(2)有若干块长方形和正方形硬纸片如图3所示.①请你用拼图等方法推出一个完全平方公式,画出你的拼图;②请你用拼图等方法推出2a2+5ab+2b2因式分解的结果,画出你的拼图.【分析】(1)要能根据所给拼图运用不同的计算面积的方法,来推导公式;(2)要能根据等式画出合适的拼图.【解答】解:(1)①长方形的面积=a2+2a+1;长方形的面积=(a+1)2;②a2+2a+1=(a+1)2;(2)①如图,可推导出(a+b)2=a2+2ab+b2;②2a2+5ab+2b2=(2a+b)(a+2b).【点评】本题考查运用正方形或长方形的面积计算推导相关的一些等式;运用图形的面积计算的不同方法得到多项式的因式分解.18.(秋•海淀区校级期末)已知a+b=1,ab=﹣1,设s1=a+b,s2=a2+b2,s3=a3+b3,…,sn=an+bn(1)计算s2;(2)请阅读下面计算s3的过程:因为a+b=1,ab=﹣1,所以s3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×s2﹣(﹣1)=s2+1= 4你读懂了吗?请你先填空完成(2)中s3的计算结果,再用你学到的方法计算s4.(3)试写出sn﹣2,sn﹣1,sn三者之间的关系式;(4)根据(3)得出的结论,计算s6.【分析】(1)(2)利用完全平方公式进行化简,然后代入a+b,ab的值,即可推出结论;(3)根据(1)所推出的结论,即可推出Sn﹣2+Sn﹣1=Sn;(4)根据(3)的结论,即可推出a6+b6=S6=S4+S5=2S4+S3.【解答】解:(1)S2=a2+b2=(a+b)2﹣2ab=3;(2)∵(a2+b2)(a+b)=a3+ab2+a2b+b3=a3+b3+ab(a+b),∴3×1=a3+b3﹣1,∴a3+b3=4,即S3=4;∵S4=(a2+b2)2﹣2(ab)2=7,∴S4=7;(3)∵S2=3,S3=4,S4=7,∴S2+S3=S4,∴Sn﹣2+Sn﹣1=Sn;(3)∵Sn﹣2+Sn﹣1=Sn,S2=3,S3=4,S4=7,∴S5=4+7=11,∴S6=7+11=18.【点评】本题主要考查整式的混合运算、完全平方公式的运用,关键在于根据题意推出S2=3,S3=4,S4=7,分析归纳出规律:Sn﹣2+Sn﹣1=Sn.19.(春•重庆校级期末)(1)利用因式分解简算:9.82+0.4×9.8+0.04(2)分解因式:4a(a﹣1)2﹣(1﹣a)【分析】(1)利用完全平方公式因式分解计算即可;(2)先利用提取公因式法,再利用完全平方公式因式分解即可.【解答】解:(1)原式=9.82+2×0.2×9.8+0.22=(9.8+0.2)2=100;(2)4a(a﹣1)2﹣(1﹣a)=(a﹣1)(4a2﹣4a+1)=(a﹣1)(2a﹣1)2.【点评】此题考查因式分解的实际运用,掌握平方差公式和完全平方公式是解决问题的关键.20.(春•惠山区校级期末)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x﹣y的值.(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣8b+25=0,求△ABC的最大边c的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a﹣b+c= 7 .【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x与y的值,即可求出x﹣y的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a与b的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a﹣b=4,得到a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b与c的值,进而求出a的值,即可求出a ﹣b+c的值.【解答】解:(1)∵x2+2xy+2y2+2y+1=0∴(x2+2xy+y2)+(y2+2y+1)=0∴(x+y)2+(y+1)2=0∴x+y=0 y+1=0解得x=1,y=﹣1∴x﹣y=2;(2)∵a2+b2﹣6a﹣8b+25=0∴(a2﹣6a+9)+(b2﹣8b+16)=0∴(a﹣3)2+(b﹣4)2=0∴a﹣3=0,b﹣4=0解得a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4∴c<7,又c是正整数,∴c最大为6;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a﹣b+c=2﹣(﹣2)+3=7.故答案为:7.【点评】此题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.21.(秋•温岭市校级期末)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴n+3=﹣4m=3n 解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:(1)若二次三项式x2﹣5x+6可分解为(x﹣2)(x+a),则a= ﹣3 ;(2)若二次三项式2x2+bx﹣5可分解为(2x ﹣1)(x+5),则b= 9 ;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x﹣k有一个因式是(2x﹣3),求另一个因式以及k的值.【分析】(1)将(x﹣2)(x+a)展开,根据所给出的二次三项式即可求出a的值;(2)(2x﹣1)(x+5)展开,可得出一次项的系数,继而即可求出b的值;(3)设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,可知2n﹣3=5,k=3n,继而求出n和k的值及另一个因式.【解答】解:(1)∵(x﹣2)(x+a)=x2+(a﹣2)x﹣2a=x2﹣5x+6,∴a﹣2=﹣5,解得:a=﹣3;(2)∵(2x﹣1)(x+5)=2x2+9x﹣5=2x2+bx ﹣5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,则2n﹣3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k的值为12.故答案为:(1)﹣3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分).【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.22.(春•郯城县期末)分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.【解答】解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y后,需要继续利用完全平方公式进行二次因式分解.23.(春•碑林区校级期末)已知a,b,c是三角形的三边,且满足(a+b+c)2=3(a2+b2+c2),试确定三角形的形状.【分析】将已知等式利用配方法变形,利用非负数的性质解题.【解答】解:∵(a+b+c)2=3(a2+b2+c2),∴a2+b2+c2+2ab+2bc+2ac,=3a2+3b2+3c2,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故△ABC为等边三角形.【点评】本题考查了配方法的运用,非负数的性质,等边三角形的判断.关键是将已知等式利用配方法变形,利用非负数的性质解题.24.(秋•北辰区校级期末)分解因式(1)2x4﹣4x2y2+2y4(2)2a3﹣4a2b+2ab2.【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式提取公因式,利用完全平方公式分解即可.【解答】解:(1)2x4﹣4x2y2+2y4=2(x4﹣2x2y2+y4)=2(x2﹣y2)2=2(x+y)2(x﹣y)2;(2)2a3﹣4a2b+2ab2=2a(a2﹣2ab+b2)=2a(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,提取公因式后利用公式进行二次分解,注意分解要彻底.25.(秋•苏州期末)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m﹣n)2;(2)观察图②请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系是(m+n)2﹣(m﹣n)2=4mn .(3)若x+y=7,xy=10,则(x﹣y)2= 9 .(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了(m+n)(2m+n)=2m2+3mn+n2.(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.【分析】(1)可直接用正方形的面积公式得到.(2)掌握完全平方公式,并掌握和与差的区别.(3)此题可参照第(2)题.(4)可利用各部分面积和=长方形面积列出恒等式.(5)可参照第(4)题画图.【解答】解:(1)阴影部分的边长为(m﹣n),阴影部分的面积为(m﹣n)2;(2)(m+n)2﹣(m﹣n)2=4mn;(3)(x﹣y)2=(x+y)2﹣4xy=72﹣40=9;(4)(m+n)(2m+n)=2m2+3mn+n2;(5)答案不唯一:例如:.【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.26.(秋•海淀区期末)已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由a﹣b=8可得a=b+8;将其代入ab+c2+16=0得:b2+8b+c2+16=0;此时可发现b2+8b+16正好符合完全平方公式,因此可用非负数的性质求出b、c的值,进而可求得a的值;然后代值运算即可.【解答】解:因为a﹣b=8,所以a=b+8.(1分)又ab+c2+16=0,所以(b+8)b+c2+16=0.(2分)即(b+4)2+c2=0.又(b+4)2≥0,c2≥0,则b=﹣4,c=0.(4分)所以a=4,(5分)所以2a+b+c=4.(6分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.27.(春•北京期末)已知:一个长方体的长、宽、高分别为正整数a、b、c,且满足a+b+c+ab+bc+ac+abc=,求:这个长方体的体积.【分析】我们可先将a+b+c+ab+bc+ac+abc分解因式可变为(a+1)(b+1)(c+1)﹣1,就得(1+b)(c+1)(a+1)=,由于a、b、c均为正整数,所以(a+1)、(b+1)、(c+1)也为正整数,而只可分解为3×3×223,可得(a+1)、(b+1)、(c+1)的值分别为3、3、223,所以a、b、c值为2、2、222.就可求出长方体体积abc了.【解答】解:原式可化为:a+ab+c+ac+ab+abc+b+1﹣1=,a(1+b)+c(1+b)+ac(1+b)+(1+b)﹣1=,(1+b)(a+c+ac)+(1+b)=,(1+b)(c+1+a+ac)=,(1+b)(c+1)(a+1)=,只能分解为3×3×223∴(a+1)、(b+1)、(c+1)也只能分别为3、3、223∴a、b、c也只能分别为2、2、222∴长方体的体积abc=888.【点评】本题考查了三次的分解因式,做题当中用加减项的方法,使式子满足分解因式.28.(秋•普陀区校级期末)(x2﹣4x)2﹣2(x2﹣4x)﹣15.【分析】把(x2﹣4x)看作一个整体,先把﹣15写成3×(﹣5),利用十字相乘法分解因式,再把3写成(﹣1)×(﹣3),﹣5写成1×(﹣5),分别利用十字相乘法分解因式即可.【解答】解:(x2﹣4x)2﹣2(x2﹣4x)﹣15,=(x2﹣4x+3)(x2﹣4x﹣5),=(x﹣1)(x﹣3)(x+1)(x﹣5).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.29.(春•镇海区期末)阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是提公因式法,共应用了 2 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x (x+1),则需应用上述方法次,结果是(1+x).(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【分析】此题由特殊推广到一般,要善于观察思考,注意结果和指数之间的关系.【解答】解:(1)上述分解因式的方法是提公因式法,共应用了2次.(2)需应用上述方法次,结果是(1+x).(3)解:原式=(1+x)[1+x+x(x+1)]+x (x+1)3+…+x(x+1)n,=(1+x)2(1+x)+x(x+1)3+…+x(x+1)n,=(1+x)3+x(x+1)3+…+x(x+1)n,=(x+1)n+x(x+1)n,=(x+1)n+1.【点评】本题考查了提公因式法分解因式的推广,要认真观察已知所给的过程,弄清每一步的理由,就可进一步推广.30.(春•射洪县校级期末)对于多项式x3﹣5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3﹣5x2+x+10=0,这时可以断定多项式中有因式(x﹣2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),(1)求式子中m、n的值;(2)以上这种因式分解的方法叫试根法,用试根法分解多项式x3﹣2x2﹣13x﹣10的因式.【分析】(1)根据(x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣2n,得出有关m,n 的方程组求出即可;(2)由把x=﹣1代入x3﹣2x2﹣13x﹣10,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【解答】解:(1)方法一:因(x﹣2)(x2+mx+n)=x3+(m﹣2)x2+(n﹣2m)x﹣2n,=x3﹣5x2+x+10,(2分)所以,解得:m=﹣3,n=﹣5(5分),方法二:在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(注:不同方法可根据上面标准酌情给分)(2)把x=﹣1代入x3﹣2x2﹣13x﹣10,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,(7分)。