201X年秋八年级数学上册 第5章 二元一次方程组 5.5 应用二元一次方程组—里程碑上的数作业课件

合集下载

八年级数学上册第五章二元一次方程组知识整理北师大版

八年级数学上册第五章二元一次方程组知识整理北师大版

第五章 二元一次方程组一、本章知识点梳理:知识点1:二元一次方程(组)的定义 知识点2:二元一次方程组的解定义知识点3:二元一次方程组的解法 知识点4:一次函数与二元一次方程(组)知识点5:实际问题与二元一次方程组 二、各知识点分类讲解知识点1:二元一次方程(组)的定义 1、二元一次方程的概念含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数。

(2)含有未知数的项的次数都是1。

(3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1。

即若ax m +by n =c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1 例1:已知(a -2)x -by|a|-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.例2:下列方程为二元一次方程的有_________ ①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22=-y x,⑥22=-+y x xy ,⑦71=+y x⑧y x 23+,⑨1=++c b a 【巩固练习】下列方程中是二元一次方程的是( ) A .3x-y 2=0 B .2x+1y=1 C .3x —52y=6D .4xy=32、二元一次方程组的概念由两个二元一次方程所组成的方程组叫二元一次方程组注意:①方程组中有且只有两个未知数。

②方程组中含有未知数的项的次数为1。

③方程组中每个方程均为整式方程. 例:下列方程组中,是二元一次方程组的是( )A 、228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩【巩固练习】1、 已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩, 其中属于二元一次方程组的个数为( )A .1B 。

北师大版数学八年级上册教材最新目录

北师大版数学八年级上册教材最新目录

北师大版数学八年级上册教材最新目录第一章勾股定理
1、索勾股定理
2、一定是直角三角形吗
3、勾股定理的应用
第二章实数
1、认识无理数
2、平方根
3、立方根
4、估算
5、用计算器开方
6、实数
7、二次根式
第三章位置与坐标
1、确定位置
2、平面直角坐标系
3、轴对称与坐标变换
第四章一次函数
1、函数
2、一次函数与正比例函数
3、一次函数的图像
4、一次函数的应用
第五章二元一次方程组
1、认识二元一次方程组
2、求解二元一次方程组
3、应用二元一次方程组——鸡兔同笼
4、应用二元一次方程组——增收节支
5、应用二元一次方程组——里程碑上的数
6、二元一次方程与一次函数
7、用二元一次方程组确定一次函数表达式
8、三元一次方程组
第六章数据的分析
1、平均数
2、中位数与众数
3、从统计图分析数据的集中趋势
4、数据的离散程度
第七章平行线的证明
1、为什么要证明
2、定义与命题
3、平行线的判定
4、平行线的性质
5、三角形内角和定理。

八年级数学上册第五章二元一次方程组5.5应用二元一次方程组—里程碑上的数习题课件(新版)北师大版 (1)

八年级数学上册第五章二元一次方程组5.5应用二元一次方程组—里程碑上的数习题课件(新版)北师大版 (1)

所以这种出租车的起步价是5元,超过3 km后每千 米收费1.5元.
◎基础训练 1. 用8块相同的长方形地砖 拼成一块矩形地面地砖的拼放方 式及相关数据如图所示,设每块 地砖的长为x cm,宽为y cm.下列方程不能正确反映图中 所提供的信息的是( A.x+y=60 C.4y=60
D
) B.2x=x+3y D.x+3y=120
“我乘这种出租车走11 km,付了17元;”乙说:“我 乘这种出租车走了23 km,付了35元”.请你算一算: 出租车的起步价是多少元?超过3 km后,每千米的车费 是多少元?
解:设出租车的起步价是x元,超过3 km后每千米
x+(11-3)y=17, 收费y元,则 x+(23-3)y=35, x=5, 解得 y=1.5,
10x+y=11, A. 10x+y+45=10y+x x+y=11, C. 10x+y+45=10y+x
C
)
10x+y=11, B. x+y+45=y+x
D.以上各式均不对
2. 甲数的2倍比乙数大30,乙数的3倍比甲数的4倍 少20,求甲、乙两数,若设甲、乙两数分别为x,y,则
18(x+y)=360, A. 24(x-y)=360 18(x-y)=360, C. 24(x-y)=360
A
)
18(x+y)=360, B. 24(x+y)=360 18(x-y)=360, D. 24(x+y)=360
4. 已知甲、乙两人从相距18千米的两地同时出发, 4 2 相向而行,1 小时相遇.如果甲比乙先走 小时,那么 5 3 3 在乙出发后 小时两人相遇.设甲、乙两人速度分别为 2 每小时x千米和y千米,则根据题意可列方程组为
2. 甲、乙两人相距8 km,两人同时出发,如果同 向而行,甲4小时可追上乙;如果相向而行,两人1小时 相遇.问两人的平均速度各是多少?若设甲的平均速度 是每小时行x km,乙的平均速度是每小时行y km,根据 题意,列方程组正确的是(

2022年八年级数学上册第五章二元一次方程组5.4应用二元一次方程组__增收节支教案新版北师大版

2022年八年级数学上册第五章二元一次方程组5.4应用二元一次方程组__增收节支教案新版北师大版

5.4应用二元一次方程组——增收节支教学目标【知识与能力】1.能运用列表分析法分析数量关系;2.能熟练地列二元一次方程组解决简单的实际问题.3.掌握运用列二元一次方程组解决实际问题的技能.【过程与方法】经历和体验列方程组解决实际问题的过程,体会方程是刻画现实世界的有效的数学模型,培养学习数学应用能力.【情感态度价值观】1.通过问题的解决进一步认识数学与现实世界的密切联系.2.通过对问题的解决,培养学生的必要的经济意识,增强他们节约成本、有效合理利用资源的意识.教学重难点【教学重点】1.初步体会列方程组解决实际问题的步骤.2.学会用图表分析较复杂的数量关系问题.【教学难点】将实际问题转化成二元一次方程组的数学模型;会用图表分析数量关系.课前准备教具:教材,课件,电脑(视频播放器)学具:教材,练习本教学过程第一环节:创设情境,导入新课(5分钟,学生观看图片和实际问题,引发思考和提升解决问题的兴趣.创设问题情景,引导学生思考,导入课题)你想过吗?提出问题:同学们你知道你的生活有哪些必要开支吗?引发问题:经济生活在我们生活中多么重要!你想运用数学知识使你的生活更加合理优化,生活的更加幸福惬意吗?那么你能帮帮解决下面的实际经济问题吗?教学进程:教师演示幻灯片,学生回答问题1.开商店小明想开一家时尚G点专卖店,开店前他到其它专卖店调查价格.他看中了一套新款春装,成本共500元,专卖店店员告诉他在上市时通常将上衣按50﹪的利润定价,裤子按40﹪的利润定价.由于新年将至,节日优惠,在实际出售时,为吸引顾客,两件服装均按9折出售,这样专卖店共获利157元,小明觉得上衣款式好,销路会好些,想问问上衣的成本价,但店员有事走开了,你能帮助他?2.购物新年来临爸爸想送Mike一个书包和随身听作为新年礼物.爸爸对Mike说:“我在家乐福、人民商场都发现同款的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元,你能说出随身听和书包单价各是多少元,那么我就买给你做新年礼物”.你能帮助他吗?(最优化决策)最近商家促销有促销活动,人民商场所有商品打八折销售,家乐福全场购物满100元返物券30元销售(不足100元不返券,购物券全场通用),爸爸只给Mike 400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?第二环节:新课讲解(15分钟,通过回答知识回顾问题,教师启发学生做经验提升;通过回答问题对学生能力进行及时评价,如果回答错误及时纠正.) 知识回顾:填一填1. 某工厂去年的总产值是x 万元, 今年的总产值比去年增加了20%, 则今年的总产值是__________万元;2. 若该厂去年的总支出为y 万元, 今年的总支出比去年减少了10%, 则今年的总支出是__________万元;3. 若该厂今年的利润为780万元, 那么由1, 2可得方程___________________________.(1+20%)x (1-10%)y (1+20%) x - (1-10%) y =780经验提升:解增降率问题常用的关系式为a(1±x )=b(其中:a 表示基数;x 表示增降率;b 表示目标数;增时为加,降时为减)例题探索例1 CNI公司去年的利润(总产值—总支出)为200万元.今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元.去年的总产值、总支出各是多少万元?分析:关键:找出等量关系.⎩⎨⎧=-=-万元今年的总支出今年的总产量万元去年的总支出去年的总产量780200 今年的总产值=去年总产值×(1+20%) 今年的总支出=去年的总支出×(1—10%) 相等关系中的数量关系真多,画个表格来表示它们吧!(题目中可分析今年,去年;总产值,总支出和利润,画个2×3的表格来分析看)得到两个等式: x —y =200 ,(1+20%) x —(1—10%) y =780.解:设去年的总产值为x 万元,总支出为y 万元,则 今年的总产值=(1+20%)x 万元, 今年的总支出=(1—10%)y 万元. 由题意得:解得 ⎩⎨⎧=--+=-)2(.780%)101(%)201()1(,200y x y x ⎩⎨⎧==.1800,2000y x答:去年的总收入为2000万元,总支出为1800万元.教学进程:学生作相等关系、数量关系的分析,教师教学生画表格分析数量关系,并共同解答.例2 医院用甲、乙两种原料为手术后的病人配制营养品.每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要? 分析:找出等量关系.⎩⎨⎧=+=+.40,35每餐乙原料中含铁质量每餐甲原料中含铁质量量每餐乙原料中含蛋白质量每餐甲原料中含蛋白质每餐甲原料中含蛋白质量=0.5×每餐甲原料的质量, 每餐乙原料中含蛋白质量=0.7×每餐乙原料的质量, 每餐甲原料中含铁质量=1×每餐甲原料的质量, 每餐乙原料中含铁质量=0.4×每餐乙原料的质量, 由于相等关系中的数量关系复杂,所以可以选取用列表格的方法来表示各数量关系之间的关系,有利于根据相等关系列方程.(题目中可分析蛋白质含量,铁的含量;甲、乙两种原料和病人配置的营养品,所以画个2 ×3的表格来分析;学生通常对要分析那些数量关系不太明确,所以讲解时要说明为什么会这样画表格)解:设每餐需要甲、乙两种原料各x , y 克,则有下表: 由上表可以得到的等式:化简得:(1)×2得 10x +14y =700 (5)(5)-(4)得 10y =300⎩⎨⎧=+=+)2(.404.0)1(,357.05.0y x y x ⎩⎨⎧=+=+)4(.400410)3(,35075y x y xy =30将y =30代入(3)得 x =28答:每餐需甲原料28克,乙原料30克.第三环节:练习提高、合作学习;(5分钟,小组探究) 1.育才学校去年有学生3100名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名? 设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为. 分析:找出等量关系.去年寄宿学生+去年走读学生=3100名今年寄宿学生+今年走读学生=3100 ×(1+4.4%)题目中可分析去年,今年;寄宿学生,走读学生,学生总数.画个2 ×3的表格来分析⎩⎨⎧+⨯=-++=+%).4.41(3100%)21(%)61(,3100y x y x 2.编题有一个方程组:⎩⎨⎧+⨯=-++=+%).4.41(3100%)21(%)61(,3100y x y x 你能根据这个方程组编一个实际背景的应用题吗? 活动规则:四个同学一组编题,互评;然后推选出有创意,符合实际生活的例子进行全班交流. 第四环节:问题解决;(10分钟,学生尝试独立解决问题,后全班交流) 解决问题一小明想开一家时尚G点专卖店,开店前他到其它专卖店调查价格.他看中了一套新款春装,成本共500元,专卖店店员告诉他在上市时通常将上衣按50﹪的利润定价,裤子按40﹪的利润定价.由于新年将至,节日优惠,在实际出售时,为吸引顾客,两件服装均按9折出售,这样专卖店共获利157元,小明觉得上衣款式好,销路会好些,想问问上衣的成本价,但店员有事走开了,你能帮助他吗? 分析:找出等量关系.题目中可分析上衣,裤子;成本.实际售价和利润.画个2× 3的表格来分析 上衣成本+裤子成本=500元 上衣利润+裤子利润=157元解:设上衣的成本价为x 元,裙子的成本价为y 元,则上衣利润 元, 裤子利润为0.9(1+40%)y -y 元,依题意得x +y =500,0.9×(1+50%)x -x +0.9×(1+40%)y -y =157. 整理得:x +y =500 , ……① 35x +26y =15700. …… ② ②-① ×26,得9x =2700, ∴x =300.把其代入①,得y =500-300=200x =300, y =200.答:上衣成本300元,裙子成本200元. 解决问题二新年来临爸爸想送Mike 一个书包和随身听作为新年礼物.爸爸对Mike 说:“我在家乐福、人民商场都发现同款的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元,你能说出随身听和书包单价各是多少元,那么我就买给你做新年礼物”.你能帮助他吗?(1)解:设书包单价为x 元,则随身听单价为y 元,根据题意可列出方程:⎩⎨⎧=-=+.84,452y x y x 解之得:⎩⎨⎧==.360,92y x 答:书包单价92元,随身听单价360元. 最优化决策:聪明的Mike 想了想回答正确后便同爸爸去买礼物,恰好赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱? 提示:书包单价92元,随身听单价360元. 2)在人民商场购买随声听与书包各一样需花费现金452×108=361.6(元) ∵ 361.6<400 ∴可以选择在人民商场购买.在家乐福可先花现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元).因为362<400,所以也可以选择在家乐福购买. 因为362>361.6,所以在人民商场购买更省钱.第五环节:学习反思;(5分钟,学生思考回答,不足的地方教师补充和强调.)你的收获是什么? x x -+⨯%)501(9.01.通过本节的学习活动,你会用列表分析数据吗?2.你能用列方程组的方法解决实际问题吗?3.你体会到方程思想在生活中的存在吗?小结:1.在很多实际问题中,都存在着一些等量关系,因此我们往往可以借助列方程或方程组的方法来处理这些问题.2.这种处理问题的过程可以进一步概括为:分析求解抽象检验3.要注意的是,处理实际问题的方法是多种多样的,图表分析是一种直观简洁的方法,应根据具体问题灵活选用.。

北师大版八年级数学上册第五章 二元一次方程组 求解二元一次方程组(第1课时)

北师大版八年级数学上册第五章 二元一次方程组 求解二元一次方程组(第1课时)
北师大版 数学 八年级 上册
5.2 求解二元一次方程组 (第1课时)
导入新知
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,
负1场得1分.某队在10场比赛中得到16分,那么这个队胜负场
数分别是多少? (1)如果设胜的场数是x ,则负的场数是10-x,
可得一元一次方程 2x 10 x 16 ;
2
解得:x=20000
把x=20000代入③得:y=50000
所以
x 20000
y
50000
探究新知 方法点拨
用代入消元法解二元一次方程组时,尽量选取未知 数系数的绝对值是1的方程进行变形;若未知数系数的绝 对值都不是1,则选取系数的绝对值较小的方程变形.
巩固练习
变式训练
x y 2

解方程组:2(x 1) y 1 ②
连接中考
解方程组: xx
y 1 3y 9
解:
x x
y 1 3y 9
①, ②
由①得,x=y+1 ③ ,
把③代入②得,y+1+3y=9,解得y=2,
把y=2代入x=y+1得x=3.
故原方程组的解为
x 3
y
2

课堂检测
基础巩固题
1.二元一次方程组
x y 4, x y 2
的解是( D )
解:由② ,得 x=13 - 4y ③
还能直接代入吗? 变形
将③代入① ,得 2(13 - 4y)+3y=16 26 –8y +3y =16,
代入求解
-5y= -10, y=2.
再代求解
将y=2代入③ ,得x=5. x=5
所以原方程组的解是 y=2

八年级数学上册第五章二元一次方程组5应用二元一次方程组——里程碑上的数作业课件(新版)北师大版

八年级数学上册第五章二元一次方程组5应用二元一次方程组——里程碑上的数作业课件(新版)北师大版

【素养提升】 12.(16分)在期末一节复习课上,八(1)班的数学老师要求同学们列二元一次方程 组解下列问题: 在某市“乡村振兴”工作中,甲、乙两个工程队先后接力为某村庄修建3 000 m 的村路,甲队每天修建150 m,乙队每天修建200 m,共用18天完成.
(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记
解:设乙的速度为x m/min,环形场地的周长为y m,则甲的速度为2.5x m/min.
y=2.5x×4-4x,
x=150,
由题意,得y=4x+300, 解得y=900, 所以2.5x=2.5×150=375,所以甲、
乙两人的速度分别为375 m/min,150 m/min,环形场地的周长为900 m
第五章 二元一次方程组
5 应用二元一次方程组——里程碑上的数
用二元一次方程组解数字问题
1.(4பைடு நூலகம்)已知两数x,y之和是10,x比y的3倍大2,则下面所列的方程组正确的是
( C)
x+y=10, A.y=3x+2
x+y=10, C.x=3y+2
x+y=10, B.y=3x-2
x+y=10, D.x=3y-2
4.(10分)有一个三位数,它的百位数字的9倍比将这个三位数的百位数字去掉后得 到的两位数小3,若将它的百位数字移到最右边,得到的新的三位数比这个三位数小 45,试求这个三位数.
解:设这个三位数的百位数字为x,将这个三位数的百位数字去掉后得到的两位数为
9x=y-3,
x=4,
y,根据题意,得10y+x=100x+y-45,
(1 000x+y)-(100y+x)=12 600, 解得 y=125.
这个三位数是125
所以这个两位数是25,

北师版八年级上册数学第5章 二元一次方程组 二元一次方程与一次函数

北师版八年级上册数学第5章 二元一次方程组   二元一次方程与一次函数
第五章二元一次方程组
第五章二元一次方程组
5.3二元一次方程与 一次函数
学习目标
1 课时讲解 二元一次方程与一次函数的关系
二元一次方程组与一次函数的关系
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
课时导入
x+y=5这是什么? 二元一次方

一次函数
这是怎么回 事?
感悟新知
知1-讲
知识点 1 二元一次方程与一次函数的关系
两条直线有交点(相交)
无交点(平行)
合)
方程组只有一个解;两条直线 方程组无解;两条直线是同一直线(重 方程组有无数个解.
感悟新知
知2-练
例用3图象法解方程组
x y 2,
导引:先把两个方程化成一次2x函数y 的1形. 式,再在同一直
角坐标系中画出它们的图象,两个图象交点的坐
标就是方程组的解.

x 2, 就是方程组 x y 5, 的解.
y3
2x y 1
感悟新知
1.二元一次方程组与一次函数的对应关系: (1)一般地,从图形的角度看,确定两条直线交点的坐标,知2-讲
相当于求相应的二元一次方程组的解;解一个二元一次
方程组相当于确定相应两条直线交点的坐标.
(2)二元一次方程组与一次函数的对应关系:
总结
知2-讲
本题运用图象法可以直观地获得问题的结果, 但常常不是很准确,因此,画图时坐标轴上的单 位长度要一致.
感悟新知
如图,观察图象,确定方
例4
程组的解. x y 1,
导引:两个方程x 变y形即2 可得到两个一次
函数,根据两直线的位置关系,
知2-练
即可得到方程组的解.

北师大版初中数学八年级(上)备课资料5-5 应用二元一次方程组——里程碑上的数

北师大版初中数学八年级(上)备课资料5-5 应用二元一次方程组——里程碑上的数

5应用二元一次方程组——里程碑上的数典型例题题型一列二元一次方程组解决数字问题例1有一个两位数,个位上的数字比十位上的数字大5,如果把这两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.分析:如果一个两位数十位上的数字为a,个位上的数字为b,这个两位数就表示为10a+b;如果一个三位数百位上的数字为a,十位上的数字为b,个位上的数字为c,这个三位数就表示为100a+10b+c.本题中的相等关系:①个位上的数字-十位上的数字=5,②原数+新数=143.解:设原来的两位数中,个位上的数字为x,十位上的数字为y,则原数为10y+x,把这两个数字的位置对换后,所得的新数为10x+y.根据题意,得5, 1010143, x yy x x y-=⎧⎨+++=⎩解得9,4. xy=⎧⎨=⎩所以这个两位数为10y+x=10×4+9=49.答:这个两位数为49.点拨:利用方程组解决数字问题时,一般不直接设这个数,而是设这个数的各数位上的数字,再利用数的表示方法表示出这个数.例2有一个三位数,现将最左边的数字移到最右边,则比原来的数小45,又知百位数字的9倍比十位和个位数字组成的两位数小3,求原三位数.分析:根据两个条件,可知不必设成三个未知数,只需把它看成一个百位数字x和一个由十位与个位数字组成的两位数y,则这个三位数就可看成100x+y;若将最左边的数字移到最右边,则x就变成了个位数字,y就扩大了10倍,新三位数可表示为10y+x.因此相等关系为:(1)百位数字×9=由十位与个位数字组成的两位数-3;(2)新三位数=原三位数-45.解:设原三位数的百位数字为x,由十位与个位数字组成的两位数为y.根据题意,得93, 1010045, x yy x x y=-⎧⎨+=+-⎩解得4,39.xy=⎧⎨=⎩则4×100+39=439.答:原三位数为439.点拨:此题通过灵活选设未知数,将一个三元问题转化成了二元问题.题型二列二元一次方程组解决行程问题例3某中学新建的塑胶操场环形跑道一圈长400 m,甲、乙两名同学从同一起点同时出发,相背而跑,40 s后首次相遇;若从同一起点同时同向而跑,200 s后甲首次追上乙,求甲、乙两名同学的速度.分析:在环形跑道上,同时同地出发,相背而跑,为相遇问题,首次相遇时,相等关系为:甲跑的路程+乙跑的路程=跑道一圈的长;若从同一地点同时同向而跑,甲首次追上乙为追及问题,相等关系为:甲跑的路程-乙跑的路程=跑道一圈的长.解:设甲同学的速度为x m/s,乙同学的速度为y m/s.根据题意,得()40400, 200200400, x yx y+⨯=⎧⎨-=⎩整理,得10,2,x yx y+=⎧⎨-=⎩解得6,4.xy=⎧⎨=⎩答:甲同学的速度为6 m/s,乙同学的速度为4 m/s.点拨:相遇问题中,(甲速+乙速)×时间=总路程;追及问题中,(甲速-乙速)×时间=甲、乙相距的路程.例4甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由甲、乙两地出发,相向而行,43h 相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1 h 后调转车头原速返回,在汽车再次出发12h 时追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米? 分析:画直线型示意图理解题意(如图1所示).图1这里有两个未知数:(1)汽车的行程;(2)拖拉机的行程.有两个相等关系:(1)相向而行:汽车43h 行驶的路程+拖拉机43h 行驶的路程=160 km ; (2)同向而行:汽车12h 行驶的路程=拖拉机112⎛⎫+ ⎪⎝⎭h 行驶的路程. 解:设汽车每小时行驶x km ,拖拉机每小时行驶y km. 根据题意,得4()160,3111,22x y x y ⎧⨯+=⎪⎪⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩解得90,30.x y =⎧⎨=⎩ 90×4132⎛⎫+ ⎪⎝⎭=165(km),30×4332⎛⎫+ ⎪⎝⎭=85(km). 答:汽车行驶了165 km ,拖拉机行驶了85 km.题型三 列二元一次方程组解决航速问题例5 一轮船从甲地到乙地顺流航行需4 h ,从乙地到甲地逆流航行需6 h ,那么一木筏从甲地漂流到乙地需多长时间?分析:对于航速问题,主要有如下两个公式:①顺速=静速+水(风)速;②逆速=静速-水(风)速.显然本题中所求的木筏由甲地漂流到乙地所需的时间,实际上就是水从甲地流到乙地需要的时间,木筏漂流的速度就是水流的速度,如果本题采用直接设法,则难以解决,故选用间接设法,设出轮船在静水中的速度和水流速度,为了解题更简单,可增设一个未知数,即甲、乙两地间的路程.解:设轮船在静水中的速度为x km/h ,水流速度为y km/h ,甲、乙两地间的路程为a km.根据题意,得4(),6(),x y a x y a +=⎧⎨-=⎩解这个方程组,得x =5y .把x =5y 代入①,得a =4×(5y +y )=24y . 所以木筏从甲地漂流到乙地所需时间为a y =24y y=24(h). 答:木筏从甲地漂流到乙地需24 h.点拨:本题中有三个未知数,但是却只有两个方程,所以在解题后是得不到具体数据的,不过我们可以把其中的一个未知数看作一个常数,如上面的y ,其他的未知数就可以用这个未知数来表示.a 的参与增加了方程组的可理解性,更能提供操作的可能性,便于解题.题型四列二元一次方程组解决年龄问题例6一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时,你才出生;你到我这么大时,我已经36岁了.”请求出老师、学生今年的年龄.分析:本题的相等关系:①老师的年龄-学生的年龄=相差年龄(学生今年年龄);②增长的年龄+老师的年龄=36.解:设老师今年x岁,学生今年y岁.根据题意,得,36,x y yx y x-=⎧⎨-+=⎩解得24,12.xy=⎧⎨=⎩答:老师今年24岁,学生今年12岁.注意:人与人的年龄是同时增长的,所以老师与学生的年龄差是不变的.题型四开放拓展题例7如图2所示,在3×3的方格内,填写了一些代数式和数.图2(1)在图①中,各行、各列及对角线上三个数之和都相等,请求出x,y的值.(2)把满足(1)的其他6个数填入图2②中的方格中.分析:依题意可知图2①中有两个等式:2x+3+2=2+(-3)+4y,2x+3+2=2x+y+4y,由此可以列出二元一次方程组求解.解:(1)由已知条件可列出方程组2322(3)4, 23224,x yx x y y++=+-+⎧⎨++=++⎩整理,得2343,55,x yy+=-⎧⎨=⎩解得1,1.xy=-⎧⎨=⎩(2)由(1)可得如图3所示的方格.图3说明:本题列方程组时有不同的列法,具有一定的开放性,虽然所列的方程组可能不同,但结果是一样的.拓展资源经典有趣的行程问题1甲、乙两人分别从相距100 米的A、B两地出发,相向而行,其中甲的速度是2米/秒,乙的速度是3 米/秒.一只狗从A地出发,先以6米/秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇.问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了.不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要20 秒,在这20 秒的时间里小狗一直在跑,因此它跑过的路程就是120 米.2假设你站在甲、乙两地之间的某个位置,想乘坐出租车到乙地去.你看见一辆空车远远地从甲地驶来,而此时整条路上并没有别人与你争抢空车.我们假定车的行驶速度和人的步行速度都是固定不变的,并且车速大于人速.为了更快地到达目的地,你应该迎着车走过去,还是顺着车的方向往前走一点?在各种人多的场合下提出这个问题,此时大家的观点往往会立即分为鲜明的两派,并且各有各的道理.有人说,由于车速大于人速,我应该尽可能早地上车,充分利用汽车的速度优势,因此应该迎着空车走上去,提前与车相遇.另一派人则说,为了尽早到达目的地,我应该充分利用时间,马不停蹄地赶往目的地.因此,我应该自己先朝目的地走一段路,再让出租车载我走完剩下的路程.其实答案出人意料的简单,两种方案花费的时间显然是一样的.只要站在出租车的角度上想一想,问题就变得很显然了:不管人在哪儿上车,出租车反正都要驶完甲地到乙地的全部路程,因此你到达乙地的时间总等于出租车驶完全程的时间,加上途中接人上车可能耽误的时间.从省事儿的角度来讲,站在原地不动是最好的方案!不过不少人都找到了这个题的一个缺陷,那就是在某些极端情况下,顺着车的方向往前走可能会更好一些,因为你或许会直接走到终点,而此时出租车根本还没追上你!。

北师大版数学八年级上册5.5应用二元一次方程组—里程碑上的数教案

北师大版数学八年级上册5.5应用二元一次方程组—里程碑上的数教案
-能够通过解决具体问题,理解数学与实际生活的联系,增强数学应用意识。
举例:以里程碑上的数问题为例,重点讲解如何将问题转化为方程组,以及如何使用代入法和消元法求解方程组。
2.教学难点
-难点一:理解实际问题中的等量关系,并将其准确地转化为数学模型。对于初学者来说,从现实情境中抽象出数学问题是一项挑战。
-举例:在里程碑上的数问题中,难点在于如何将里程碑之间的距离关系和总路程关系转化为方程组中的等量关系。
5.激发学生的创新意识,鼓励学生在解决实际问题时,勇于尝试不同的解题方法和策略,培养创新思维。
三、教学难点与重点
1.教学重点
-理解并掌握利用二元一次方程组解决实际问题的方法,特别是如何从实际问题中抽象出数学模型,即列出二元一次方程组。
-掌握代入法、消元法等解二元一次方程组的基本方法,并能够熟练应用于具体问题中。
北师大版数学八年级上册5.5应用二元一次方程组—里程碑上的数教案
一、教学内容
本节课选自北师大版数学八年级上册第5章第5节“应用二元一次方程组—里程碑上的数”。教学内容主要包括:利用二元一次方程组解决实际问题,结合里程碑上的数的情境,理解问题的背景,掌握问题的数学模型,并能正确列出方程组。具体内容包括:
1.理解里程碑上的数问题背景,分析问题涉及的等量关系。
2.根据实际问题列出二元一次方程组,并解释每个方程的含义。
3.探讨解二元一次方程组的方法,如代入法、消元法等,求解里程碑上的数问题。
4.通过解决实际问题,培养学生的数学建模能力和解决实际问题的能力。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生运用数学知识解决实际问题的能力,使学生能够结合生活情境,发现并理解数学模型,提高数学建模素养。

八年级数学上册第5章二元一次方程组4应用二元一次方程组__增收节支预学课件新版北师大版

八年级数学上册第5章二元一次方程组4应用二元一次方程组__增收节支预学课件新版北师大版
子的进价、标价如下表所示:
折扇
团扇
进价/(元/把)
13
20
标价/(元/把)
30
40
(1)折扇和团扇各购进了多少把?
解:(1)设折扇购进了 x 把,团扇购进了 y 把,依题意,得
+ = ,
= ,

解得ቊ
= .
+ = ,
所以折扇购进了60把,团扇购进了40把.
第五章
4
二元一次方程组
应用二元一次方程组——增收节支
CONTENTS


01
复习回顾
02
预习效果检测
03
课堂导学
增收节支问题(分析问题中所蕴含的数量关系):
1. 增长(下降)率公式:
原来的量×(1
×(1


增长率)=后来的量;原来的量
下降率)=后来的量.
1
2
3
2. 利润公式:
利润
=总收入-总支出;利润=售价-成本(或进价)
如下表所示:
名称
黄瓜
茄子
m
n
批发价/(元/千克)
6.6
5.4
零售价/(元/千克)
(1)求 m , n 的值;
+ = ,
= ,
解:(1)根据题意,得ቊ
解得ቊ
+ = ,
= .
(2)请你帮李师傅计算一下,如果他周三批发60千克茄子,当
天卖完所有批发的黄瓜和茄子后,能获利多少元?
500万元.由于去年总产值比前年增加了15%,总支出比前
年节约了10%,因此,去年总产值比总支出多950万元.去
年的总产值和总支出各为多少万元?(设前年的总产值为 x

第5章 二元一次方程组 北师大版八年级上册习题课件 应用二元一次方程组——增收节支

第5章 二元一次方程组 北师大版八年级上册习题课件 应用二元一次方程组——增收节支

解:(1)530
(2)0.9x,0.8x+50
(3)设第一次购物的货款为 x 元,第二次购物的货款为 y 元.①当 x<200,则
y≥500,由题意,得
x+y=820, x+0.8y+50=728.
解得
x=110, y=710;
②当
200≤x<500,y≥500.由题意,得
x+y=820, 0.9x+0.8y+50=728.
(1)小林以折扣价购买商品 A,B 是第______次购物; (2)求出商品 A,B 的标价; (3)若商品 A,B 的折扣相同,问商店是打几折出售这两种商品的?
解:(1)三
(2)设商品
A
的标价为
x
元,商品
B
的标价为
y
元,根据题意,得
6x+5y=1140, 3x+7y=1110,
解得
x=90, y=120.
为 y 吨,根据题意列关于 x,y 的方程组为 __(__1_-__1_5_%__)__x_+__(__1_-__1_0_%__)__y= __1_7_4____.
8.小林在某商店购买商品 A,B 共三次.只有一次购买时,商品 A,B 同时打 折,其余两次均按标价购买.三次购买商品 A,B 的数量和费用如下表:
解:(1)答案不唯一,如购买 A 种花卉 10 株和 B 种花卉 25 株共花费 225 元
(2)设 A 种花卉每株的价格为 x 元,B 种花卉每株的价格为 y 元,根据题意,得
10x+25y=225, 20x+15y=275,
解得
x=10, y=5.
答:A 种花卉每株的价格为 10 元,B 种花卉每株
数学 八年级上册 北师版
第五章 二元一次方程组

北师大版八年级数学上册第5章 二元一次方程组 应用二元一次方程组——里程碑上的数

北师大版八年级数学上册第5章 二元一次方程组  应用二元一次方程组——里程碑上的数

21.
答:这个两位数是 63,另一个两位数是 21.
知识拓展
5. 汽车在上坡时速度为 28 km/h,下坡时速度 42 km/h,
从甲地到乙地用了 4 小时 30 分,返回时用了 4 小时 40 分,
从甲地到乙地上、下坡路各是多少千米?(只列方程组) 分析:从甲地到乙地的上坡路和下坡路分别是从乙
地到甲地的下坡路和上坡路. 解:设从甲地到乙地上坡路是 x 千米,下坡路是 y 千米.
根据题意,得
解得
x 6,
y
5.
x y 11, 10x y 10y
x 9,
10y+x=56.
答:原来的两位数为 56.
[归纳总结] 在求两位数或三位数时,一般是不能直接设 这个两位数或三位数的,而是把它各个数位上的数字设
为未知数.解题的关键是弄清题意,根据题意找出合适
的等量关系,列出方程组,再进行求解.
上学 60(10 x) 80x
放学 60(15 y) 40 y
80x40y. x5,

解方程组,得
y
10.
故,平路路程:60×(10 - 5) = 300(米),
坡路路程:80×5 = 400(米).
所以,小明家到学校的距离为 300 + 400 = 700 (米).
典例精析
例2 甲、乙两地相距 4 km,以各自的速度同时出发. 如果同向而行,甲 2 h 追上乙;如果相向而行,两人 0.5 h 后相遇. 试问两人的速度各是多少?
合作探究 小明爸爸骑着摩托车带着小明在公路上匀 速行驶,下图是小明每隔 1 小时看到的里程情况.你 能确定小明在 12:00 时看到的里程碑上的数吗?
是一个两位数, 它的两个数字之

北师大版八年级上册数学:5 应用二元一次方程组里程碑上的数》 (1)

北师大版八年级上册数学:5 应用二元一次方程组里程碑上的数》 (1)
前一个三位数
(两位数放在一位数 前面)
x
y
y
10x+y
100y+x
后一个三位数
(一位数放在两位数 前面)
x
议一议:
列二元一次方程组 解决实际问题的一般步 骤是怎样的?与你的同 伴进行交流.
【规律方法】利用二元一次方程组解决实际问题的一般步 骤
★ 审 清题意,找出等量关系; ★ 设 未知数;(直接设或间接设) ★ 列 出二元一次方程组;(注意方程两边的单位要一致) ★ 解 方程组; ★ 检 验;
★ 答 题.
①12:00看到的数,两个数字之和是6 ②12:00~13:00间汽车行驶的路程×5 =12:00~17:00间汽车行驶的路程
17:00
x
12:00
x y
13:00
y x
9
y
100x+90+3;y -(10x+y) 10y+x -(10x+y)
10y+x
百位 十位 个位 表达式 数字 数字 数字
北师大版八年级数学上册
5.5 应用二元一次方程组——
里程碑上的数
榆林市第一中学分校 张旭
上周末,张老师开车匀速行驶在公路上, 12:00时看到里程碑上的数字是10(km), 17:00时看到里程碑上的数字是210(km), 你能获得哪些信息?
10
210
12:00~17:00间汽车行驶的
路程=17:00时看到的碑数字-

八年级数学上册5.5应用二元一次方程组_里程碑上的数教案 新版北师大版

八年级数学上册5.5应用二元一次方程组_里程碑上的数教案 新版北师大版

八年级数学上册5.5应用二元一次方程组_里程碑上的数教案新版北师大版一. 教材分析本节课的内容是北师大版八年级数学上册5.5应用二元一次方程组。

这部分内容是学生在学习了二元一次方程组的基本概念和解法的基础上,进一步探究二元一次方程组在实际问题中的应用。

通过本节课的学习,学生能够熟练运用二元一次方程组解决实际问题,提高解决问题的能力。

二. 学情分析学生在学习了二元一次方程组的基本概念和解法后,对于如何将实际问题转化为二元一次方程组,并运用解法求解,还有一定的困难。

因此,在教学过程中,需要教师引导学生将实际问题转化为数学问题,并通过适当的例子,让学生理解二元一次方程组在实际问题中的应用。

三. 教学目标1.知识与技能:使学生能够将实际问题转化为二元一次方程组,并运用解法求解。

2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极解决问题的态度。

四. 教学重难点1.教学重点:将实际问题转化为二元一次方程组,并运用解法求解。

2.教学难点:如何引导学生将实际问题转化为数学问题。

五. 教学方法采用问题驱动的教学方法,教师引导学生将实际问题转化为数学问题,并通过举例子的方式,让学生理解二元一次方程组在实际问题中的应用。

同时,运用小组合作的学习方式,培养学生的合作能力和解决问题的能力。

六. 教学准备1.教师准备:教师需要准备一些实际问题,用于引导学生转化为数学问题。

2.学生准备:学生需要预习相关知识,了解二元一次方程组的基本概念和解法。

七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生将其转化为数学问题。

例如,某商店进行促销活动,一件商品原价80元,现在打八折,同时赠送一件价值30元的商品,求购买一件商品的实际花费。

2.呈现(10分钟)教师呈现问题,让学生思考如何用数学模型来表示这个问题。

引导学生列出二元一次方程组,并解释为什么这样表示。

2024八年级数学上册第五章二元一次方程组5应用二元一次方程组__里程碑上的数课件新版北师大版

2024八年级数学上册第五章二元一次方程组5应用二元一次方程组__里程碑上的数课件新版北师大版

感悟新知
知3-练
例3 [中考·宿迁] [教材P122习题T3] 学校组织学生乘汽车 去自然保护区野营,先以 60 km/h 的速度走平路,后 又以 30 km/h 的速度爬坡,共用了 6.5 h;回来时汽车 以 40 km/h 的速度下坡,又以 50 km/h 的速度走平路, 共用了 6 h,问平路和坡路各有多远?
=6.5, =6,
解得ቊxy==115200,.
答: 平路和坡路分别有 150 km 和 120 km.
感悟新知
知3-练
3-1.从 A 地 到 B 地,先下坡然后走平路,某人骑自行车 以 12 km/h的速度下坡,然后以9 km/h 的速 度通 过 平路,到 达 B 地共用 55min. 回来时以 8 km/h的 速 度通 过平路,以 4km/h 的速度上坡,回到A 地 共 用 1.5 h,从 A地到 B 地有多少千米?
知1-练
1-1. 一个两位数,十位上的数字与个位上的数字之和是5, 若这个两位数加上9,所得的两位数的数字顺序与原 来两位数的数字顺序恰好颠倒,求原两位数.
知1-练
解:设原两位数十位上的数字为 x,个位上的数字为 y. 则x1+0xy+=y5+,9=10y+x,解得xy==32., 则 2×10+3=23. 答:原两位数是 23.
知1-讲
特别提醒 ◆在表示多位数时,什么数位上的数字就乘什么,如百
位就是百位上的数字乘100,千位就是千位上的数字 乘1 000. ◆若用两个数拼一个新数,则要关注两个数的前后顺序 和前面的数扩大的倍数与后面的数的位数的关系.
知1-练
例1 [母题 教材P121例题]有一个三位数,现将最左边的数 字移到最右边,则比原来的数小45;又知原百位数字 的9 倍比原三位数去掉百位数字后的两位数小3,求原 三位数.

北师大版八年级数学上册第五章二元一次方程组二元一次方程组解法的综合应用

北师大版八年级数学上册第五章二元一次方程组二元一次方程组解法的综合应用
二元一次方程组的解法的 综合应用
教学目标: 1、能熟练、正确、灵活用代入和加减
法解二元一次方程组
2、会利用一个二元一次方程组的解, 去求另外一个特殊方程组的解
1、解下列方程组
x 3y 10 (1) 3x 5y 2
x 4
y
2
(2)
2x 2x
3y 5y
2 6
x
1
2
y 1
已知xy方程11组求a、32aabxx的bb值yy 。87 的解是
2x 3y k 的解x,y
满足方程5x-y=3,则k =______.
已知方程组
3x 2x
4y 3y
k k
11
的解x,y
满足方程5x-y=3,则k =______.
将y=5x-3分别代入①、 ② 转化成x、k的方程组
例2:
已知方程组32xx 43yy
k 11① k ②
的解x,y
满足方程5x-y=3,则k =______。
满足方程5x-y=3,则k =-_4_____.
①+②得5xy=2k+11 然后整体代入得 3=2k+11
ห้องสมุดไป่ตู้
例3:关于x,y的方程组32xx
2 3
y y
5 a
2
的解x,y相等,则a=_3____.
解:将x=y代入得3y+2y=5 x=y=1 5=a+2 a=3
关于x,y的方程组
3x 5y
2x
a 2b 4
a 2b 2 a 3
解这个方程组,得
b
1 2
变式一:
ax by 4 ax by 2
方程组 2xx + 3yy=44 与 44xx+55yy =6

八年级数学上册5.5应用二元一次方程组—里程碑上的数

八年级数学上册5.5应用二元一次方程组—里程碑上的数
第二十三页,共二十四页。
内容(nèiróng)总结
第五章 二元一次方程组。12:00 是一个两位数,它的两个(liǎnɡ ɡè)数字之和为7。12 :00是一个两位数,它的两个(liǎnɡ ɡè)数字之和为7。要学会在图表中用含未知数的代数式表示 出要分析的量。2.借助方程组解决实际问题.。相等关系:1.原三位数-45=新三位数,。解 : 设百位数字为x,由十位数字与个位数字组成的两位数。看到里程碑上的数是一个两位数,它 的数字之和是9。C.1.6,3.2.。(1+41%)y。作业:Leabharlann y =6.元法比较
学法小结:
简单
1.对较复杂的问题可以通过(tōngguò)列表格的方法理 清题中的未知量,已知量以及等量关系,条理清楚.
2.借助方程组解决实际问题.
情景(qíngjǐng) 再现
第九页,共二十四页。
下面我们接着(jiē zhe)研究数字问题:
有一个三位数,现将最左边的数字移到最右边, 则比原来的数小45;又知百位数字的9倍比由十位 数字和个位数字组成的两位数小3,试求原来的3位 数.
第二季度
方法2
第十七页,共二十四页。
列方程 CNI公司第二季度进出口总额是980万元,第二
季度进口额比一季度增长(zēngzhǎng)了39%,出口额增长(zēngzhǎng) 了41%,进出口总额增长(zēngzhǎng)了40%,第二季度的进,出 口额分别是多少?
进口额
出口额
进出口总额
一季度
x
A.1.2,3.6;
B.1.8,3;
C.1.6,3.2.
第十五页,共二十四页。
选一选:
分析:本题间接设未知数更简洁. 解:设上坡x时,下坡y时,据题意 得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档