[小学教育]二元一次方程组的常见解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组的常见解法
二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.
一、代入法即由二元一次方程中的一个方程变形,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程中,实现消元,进而求解.一般情况下用代入法解方程组时,选择变形的方程要尽可能的简单,表示的代数式也要尽可能的简单,以利于计算.
2x+5y=-21①
例1、解方程组
x+3y=8 ②
解由②得:x=8-3y ③
把③代入①得2(8-3y)+5y=-21
解得:y=37
把y=37
代入③得:x=8-3×37=-103
x=-103
所以这个方程组的解是
y=37
二、整体代入法当方程组中的两个方程存在整数倍数关系时,用代入法解可将整数倍数关系数中较小的一个变形,用另一个字母代数式表示它后代入另一个方程.
3x-4y=9①
例2、解方程组
9x-10y=3②
解由①得3x=4y+9 ③
把③代入②得3(4y+9)-10y=3
把y=-12代入③得3x=4×(-12)+9
解得x=-13
x=-13
所以方程组的解是
y=-12
三、加减消元法即方程组中两个二元一次方程中的同一个未知数的系数相等时,让两个方程相减.如果方程组中两个二元一次方程中的同一个未知数的系数互为相反数时则让两个方程相减.消去一个未知数,得到一个一元一次方程,这种方法叫加减消元法.
2x+3y=14 ①
例3、解方程组
4x-5y=6②
解由①×2得4x+6y=28 ③
③-②得:11y=22
解得y=2
把y=2代入②得4x-5×2=6
解得x=4
x=4
所以方程组的解为
y=2
四、整体运用加减法即当两个二元一次方程中的某一部分完全相同或符号相反时,可以把这两个方程两边相加或相减,把相同的部分整体消去.
3(x+2)+(y-1)=4 ①
例4 解方程组
3(x+2)+(1-y)=2 ②
解①-②得(y-1)-(1-y)=4-2
整理得2y=4
把y=2 代入①得3(x+2)+(2-1)=4
整理得3x+7=4
解得x=-1
x=-1
所以方程组的解为
y=2
解二元一次方程组的主要方法有代入法和消元法,因为方程的形式是多种多样的.所以在解方程中一定要仔细观察方程中各部分以及各个未知数和它们的系数之间的关系的找到最简便的解题方法.。