ASIC、NP、X86、RISC、DSP 、ARM、单片机几种常见技术介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ASIC(Application Specific Integrated Circuit)是专用集成电路。
目前,在集成电路界ASIC被认为是一种为专门目的而设计的集成电路。
是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路。
ASIC的特点是面向特定用户的需求,ASIC在批量生产时与通用集成电路相比具有体积更小、功耗更低、可靠性提高、性能提高、保密性增强、成本降低等优点。
ASIC分为全定制和半定制。
全定制设计需要设计者完成所有电路的设计,因此需要大量人力物力,灵活性好但开发效率低下。
如果设计较为理想,全定制能够比半定制的ASIC芯片运行速度更快。
半定制使用库里的标准逻辑单元(Standard Cell),设计时可以从标准逻辑单元库中选择SSI(门电路)、MSI(如加法器、比较器等)、数据通路(如ALU、存储器、总线等)、存储器甚至系统级模块(如乘法器、微控制器等)和IP核,这些逻辑单元已经布局完毕,而且设计得较为可靠,设计者可以较方便地完成系统设计。
现代ASIC常包含整个32-bit处理器,类似ROM、RAM、EEPROM、Flash的存储单元和其他模块. 这样的ASIC常被称为SoC(片上系统)。
FPGA是ASIC的近亲,一般通过原理图、VHDL对数字系统建模,运用EDA软件仿真、综合,生成基于一些标准库的网络表,配置到芯片即可使用。
它与ASIC的区别是用户不需要介入芯片的布局布线和工艺问题,而且可以随时改变其逻辑功能,使用灵活。
NP(network process)网络处理器,是专门为处理数据包而设计的可编程处理器,能够直接完成网络数据处理的一般性任务。
硬件体系结构大多采用高速的接口技术和总线规范,具有较高的I/O能力,包处理能力得到了很大提升。
网络处理器一般具有以下特点:
● 并行处理器: 采用多内核并行处理器结构。
片内处理器按任务大致分为核心处理器和转发引擎。
● 专用硬件协处理器: 对要求高速处理的通用功能模块采用专用硬件实现以提高系统性能。
● 专用指令集: 转发引擎通常采用专用的精简指令集,并针对网络协议处理特点优化。
● 分级存储器组织: NP存储器一般包含多种不同性能的存储结构,对数据进行分类存储以适应不同的应用目的。
● 高速I/O接口: NP具有丰富的高速I/O接口,包括物理链路接口、交换接口、存储器接口、PCI总线接口等。
通过内部高速总线连接在一起,提供很强的硬件并行处理能力。
● 可扩展性: 多个NP之间还可以互连,构成网络处理器簇,以支持更为大型高速的网络处理。
从网络处理器以上特点可以看出,与通用处理器相比,网络处理器在网络分组数据处理上具有明显的优势。
x86是一个intel通用计算机系列的标准编号缩写,也标识一套通用的计算
机指令集合,X与处理器没有任何关系,它是一个对所有*86系统的简单的通配符定义,例如:i386, 586,奔腾(pentium)。
由于早期intel的CPU编号都是如8086,80286来编号,由于这整个系列的CPU都是指令兼容的,所以都用X86来标识所使用的指令集合如今的奔腾,P2,P4,赛扬系列都是支持X86指令系统的,所以都属于X86家族;
X86指令集是美国Intel公司为其第一块16位CPU(i8086)专门开发的,美国IBM 公司1981年推出的世界第一台PC机中的CPU--i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加的X87芯片系列数学协处理器则另外使用X87指令,以后就将X86指令集和X87指令集统称为X86指令集。
虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天的Pentium 4(以下简为P4)系列,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU 仍然继续使用X86指令集,所以它的CPU仍属于X86系列。
RISC(reduced instruction set computer,精简指令集计算机)是一种执行较少类型计算机指令的微处理器,起源于80年代的MIPS主机(即RISC机),RISC 机中采用的微处理器统称RISC处理器。
这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS)。
因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。
RISC主要特点:
RISC微处理器不仅精简了指令系统,采用超标量和超流水线结构;它们的指令数目只有几十条,却大大增强了并行处理能力。
如:1987年Sun Microsystem 公司推出的SPARC芯片就是一种超标量结构的RISC处理器。
而SGI公司推出的MIPS处理器则采用超流水线结构,这些RISC处理器在构建并行精简指令系统多处理机中起着核心的作用。
RISC处理器是当今UNIX领域64位多处理机的主流芯片
性能特点一:由于指令集简化后,流水线以及常用指令均可用硬件执行;
性能特点二:采用大量的寄存器,使大部分指令操作都在寄存器之间进行,提高了处理速度;
性能特点三:采用缓存—主机—外存三级存储结构,使取数与存数指令分开执行,使处理器可以完成尽可能多的工作,且不因从存储器存取信息而放慢处理速度。
DSP(digital singnal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
DSP芯片,也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器器,其主要应用是实时快速地实现各种数字信号处理算法。
根据数字信号处理的要求,DSP芯片一般具有如下主要特点:
(1)在一个指令周期内可完成一次乘法和一次加法;
(2)程序和数据空间分开,可以同时访问指令和数据;
(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;
(4)具有低开销或无开销循环及跳转的硬件支持;
(5)快速的中断处理和硬件I/O支持;
(6)具有在单周期内操作的多个硬件地址产生器;
(7)可以并行执行多个操作;
(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。
当然,与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。
数字信号处理有别于普通的科学计算与分析,它强调运算处理的实时性,因此DSP除了具备普通微处理器所强调的高速运算和控制功能外,针对实时数字信号处理,在处理器结构、指令系统、指令流程上具有许多新的特征,其特点如下:(1)算术单元
具有硬件乘法器和多功能运算单元,硬件乘法器可以在单个指令周期内完成乘法操作,这是DSP区别于通用的微处理器的一个重要标志。
多功能运算单元可以完成加减、逻辑、移位、数据传送等操作。
新一代的DSP内部甚至还包含多个并行的运算单元。
以提高其处理能力。
针对滤波、相关、矩阵运算等需要大量乘和累加运算的特点,DSP的算术单元的乘法器和加法器,可以在一个时钟周期内完成相乘、累加两个运算。
近年出现的某些DSP如ADSP2106X、DSP96000系列DSP可以同时进行乘、加、减运算,大大加快了FFT的蝶形运算速度。
(2)总线结构
传统的通用处理器采用统一的程序和数据空间、共享的程序和数据总线结构,即所谓的冯•诺依曼结构。
DSP普遍采用了数据总线和程序总线分离的哈佛结构或者改进的哈佛结构,极大的提高了指令执行速度。
片内的多套总线可以同时进行取指令和多个数据存取操作,许多DSP片内嵌有DMA控制器,配合片内多总线结构,使数据块传送速度大大提高。
如TI公司的C6000系列的DSP采用改进的哈佛结构,内部有一套256位宽度的程序总线、两套32位的数据总线和一套32位的DMA总线。
ADI公司的SHARC系列DSP采用超级哈佛结构(Super Harvared Architecture Computer),内部集成了三套总线,即程序存储器总线、数据存储器总线和输入输出总线。
(3)专用寻址单元
DSP面向数据密集型应用,伴随着频繁的数据访问,数据地址的计算也需要大量时间。
DSP内部配置了专用的寻址单元,用于地址的修改和更新,它们可以在寻址访问前或访问后自动修改内容,以指向下一个要访问的地址。
地址的修改和更新与算术单元并行工作,不需要额外的时间。
DSP的地址产生器支持直接寻址、间接寻址操作,大部分DSP还支持位反转寻址(用于FFT算法)和循环寻址(用于数字滤波算法)。
(4)片内存储器
针对数字信号处理的数据密集运算的需要,DSP对程序和数据访问的时间要求很高,为了减小指令和数据的传送时间,许多DSP内部集成了高速程序存储器和数据存储器,以提高程序和数据的访问存储器的速度。
如TI公司的C6000系列的DSP内部集成有1M~7M位的程序和数据RAM;ADI公司的SHARC系列DSP内部集成有0.5M~2M位的程序和数据RAM,Tiger SHARC
系列DSP内部集成有6M位的程序和数据RAM。
(5)流水处理技术
DSP大多采用流水技术,即将一条指令的执行过程分解成取指、译码、取数、执行等若干个阶段,每个阶段称为一级流水。
每条指令都由片内多个功能单元分别完成取指、译码、取数、执行等操作,从而在不提高时钟频率的条件下减少了每条指令的执行时间。
(6)DSP与其它处理器的差别
数字信号处理器(DSP)、通用微处理器(MPU)、微控制器(MCU)三者的区别在于:DSP面向高性能、重复性、数值运算密集型的实时处理;MPU大量应用于计算机;MCU则适用于以控制为主的处理过程。
DSP的运算速度比其它处理器要高得多,以FFT、相关为例,高性能DSP不仅处理速度是MPU的 4~10倍,而且可以连续不断地完成数据的实时输入/输出。
DSP结构相对单一,普遍采用汇编语言编程,其任务完成时间的可预测性相对于结构和指令复杂(超标量指令)、严重依赖于编译系统的MPU强得多。
以一个FIR滤波器实现为例,每输入一个数据,对应每阶滤波器系数需要一次乘、一次加、一次取指、二次取数,还需要专门的数据移动操作,DSP可以单周期完成乘加并行操作以及3~4次数据存取操作,而普通MPU完成同样的操作至少需要4个指令周期。
因此,在相同的指令周期和片内指令缓存条件下,DSP的运算送到可以超过MPU运算速度的4倍以上。
正是基于 DSP的这些优势,在新推出的高性能通用微处理器(如Pentium、Power PC 604e等)片内已经融入了 DSP的功能,而以这种通用微处理器构成的计算机在网络通信、语音图像处理、实时数据分析等方面的效率大大提高。
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
单片机的应用领域:
1. 单片机在智能仪器仪表中的应用;
2. 单片机在工业测控中的应用;
3. 单片机在计算机网络和通讯技术中的应用;
4. 单片机在日常生活及家电中的应用;
5. 单片机在办公自动化方面。
DSP比单片机贵
ARM( Advanced RISC Machines ),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。
1991 年 ARM 公司成立于英国剑桥,主要出售芯片设计技术的授权。
目前,采用 ARM技术知识产权( IP )核的微处理器,即我们通常所说的 ARM 微处理器,已遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场,基于 ARM 技术的微处理器应用约占据了 32 位 RISC 微处理器 75 %以上的市场份额, ARM 技术正在逐步渗入到我们生活的各个方面。
ARM 公司是专门从事基于 RISC 技术芯片设计开发的公司,作为知识产权供应商,本身不直接从事芯片生产,靠转
让设计许可由合作公司生产各具特色的芯片,世界各大半导体生产商从ARM公司购买其设计的 ARM 微处理器核,根据各自不同的应用领域,加入适当的外围电路,从而形成自己的 ARM 微处理器芯片进入市场。
目前,全世界有几十家大的半导体公司都使用 ARM 公司的授权,因此既使得 ARM 技术获得更多的第三方工具、制造、软件的支持,又使整个系统成本降低,使产品更容易进入市场被消费者所接受,更具有竞争力
比较:RISC 和CISC 是目前设计制造微处理器的两种典型技术,虽然它们都是试图在体系结构、操作运行、软件硬件、编译时间和运行时间等诸多因素中做出某种平衡,以求达到高效的目的,但采用的方法不同,因此,在很多方面差异很大,它们主要有:
(1)指令系统:RISC 设计者把主要精力放在那些经常使用的指令上,尽量使它们具有简单高效的特色。
对不常用的功能,常通过组合指令来完成。
因此,在RISC 机器上实现特殊功能时,效率可能较低。
但可以利用流水技术和超标量技术加以改进和弥补。
而CISC 计算机的指令系统比较丰富,有专用指令来完成特定的功能。
因此,处理特殊任务效率较高。
(2)存储器操作:RISC 对存储器操作有限制,使控制简单化;而CISC 机器的存储器操作指令多,操作直接。
(3)程序:RISC 汇编语言程序一般需要较大的内存空间,实现特殊功能时程序复杂,不易设计;而CISC 汇编语言程序编程相对简单,科学计算及复杂操作的程序社设计相对容易,效率较高。
(4)中断:RISC 机器在一条指令执行的适当地方可以响应中断;而CISC 机器是在一条指令执行结束后响应中断。
(5) CPU:RISC CPU 包含有较少的单元电路,因而面积小、功耗低;而CISC CPU 包含有丰富的电路单元,因而功能强、面积大、功耗大。
(6)设计周期:RISC 微处理器结构简单,布局紧凑,设计周期短,且易于采用最新技术;CISC 微处理器结构复杂,设计周期长。
(7)用户使用:RISC 微处理器结构简单,指令规整,性能容易把握,易学易用;CISC微处理器结构复杂,功能强大,实现特殊功能容易。
(8)应用范围:由于RISC 指令系统的确定与特定的应用领域有关,故RISC 机器更适合于专用机;而CISC 机器则更适合于通用机。
DSP与通用处理器:DSP是一种快速强大的微处理器,独特之处在于它能即时处理资料,正是这项即时能力使得DSP最适合支援无法容忍任何延迟的应用。
举例来说,您是否曾使用过一种不允许双方同时说话的手机?您必须等到对方把话说完后,您才能接着说;如果您们两个人同时讲话,讯号就会被切断,使您听不到对方声音。
今日的数位手机则允许您以正常方式交谈,因为它采用了DSP。
行动电话内的DSP能以超高速度处理语音,使您能即时听到对方的说话,完全感受不到任何延迟。
再以相同应用为例,早期的行动电话常会出现回音,但数位行动电话却能将回音和通话停顿的现象完全消除。
DSP会以声音之类的真实世界讯号为目标,透过数学运算改变它的特性,以便得到更佳音质;DSP还能压缩资料(您的声音),消除背景杂讯,使您的声音能以更高速率传送,进而提供清彻无比的通话品质,没有恼人的回声。
这是DSP用途的最简单解释。
要改善讯号,您需要数位讯号,然后对它进行处理,
结果可能是更清晰的声音、更锐利的画面或是更快速的资料;而这项讯号加强能力也带来突破性的新应用,例如网路音乐和家庭宽频都因此得以实现。
DSP是哈佛总线结构的核心是乘法器和加法器
单片机MCU是冯诺依曼结构的,核心是ALU
当然,与通用微处理器相比,DSP芯片的其他通用功能相对较弱些
ARM:是32位单片机,由于结构和计算速度的原因,目前适合做事务处理或者中低端应用,从中高级工控到简单语音/图片(不含视频)处理
DSP:它从16位~32位,内部采用哈佛结构,特别适合数据处理。
其中16位DSp 适合中高级工控到简单语音/图片(不含视频)处理;其中32位DSp适合复杂语音/图片/视频处理
FPGA:新型FPGA可以用内部乘法器/寄存器/内存块构造软核,例如构造ARM,
则可以实现ARM的功能;若构造成DSP,则可以实现DSP 的功能。
不过FPGA的功耗较大,一般情况下构造ARM/DSP不如专用ARM/DSP方便,但是在高速信号处理时,可以采用并行结构,大大提高处理速度,甚至可以超过目前最快的DSP。
数字信号处理器(Digital Signal Processors,DSPs)是电信、广播、医疗图像、消费类电子以及工业和马达控制等嵌入式系统的核心器件。
开发者可以用DSP来快速处理数字化的信号,如音频、视频和传感器信号。
DSP 可以对数字信号流执行快速的数学运算,其运算能力是普通处理器所无法比拟的。
这些数学运算从简单的加减法和乘法到复杂滤波以及信号分析功能如快速傅立
叶变换(Fast Fourier Transforms,FFTs)和离散余弦变换(Discrete Cosine Transforms,DCTs)。
DSP对问题提供了可编程的解决方案,如果没有DSP,这些问题可能只有用定制的ASIC(专用集成电路)或者FPGA(现场可编程门阵列)才能解决。
从表面上来看,DSP与标准微处理器有许多共同的地方:一个以ALU为核心的CPU、地址和数据总线、RAM、ROM以及I/O端口。
DSP的特点
DSP在体系结构上与通用微处理器有很大的区别。
下面是几个关键的不同点:
单周期指令:大多数DSP都拥有流水结构,它可以在一个时钟周期内执行一条语句。
快速乘法器:信号处理算法往往大量用到乘加(multiply-accumulate,MAC)运算。
DSP有专用的硬件乘法器,它可以在一个时钟周期内完成MAC运算。
硬件乘
法器占用了DSP芯片面积的很大一部分。
(与之相反,通用微处理器采用一种较慢的、迭代的乘法技术,它可以在多个时钟周期内完成一次乘法运算,但是占用了较少了硅片资源)。
多总线:DSP有分开的代码和数据总线(一般用术语“哈佛结构”表示),这样在同一个时钟周期内可以进行多次存储器访问——这是因为数据总线也往往有好几组。
有了这种体系结构,DSP就可以在单个时钟周期内取出一条指令和一个或者两个(或者更多)的操作数。
地址发生器:DSP有专用的硬件地址发生单元,这样它可以支持许多信号处理算法所要求的特定数据地址模式。
这包括前(后)增(减)、环状数据缓冲的模地址以及FFT的比特倒置地址。
地址发生器单元与主ALU和乘法器并行工作,这就进一步增加了DSP可以在一个时钟周期内可以完成的工作量。
硬件辅助循环:信号处理算法常常需要执行紧密的指令循环。
对硬件辅助循环的支持,可以让DSP高效的循环执行代码块而无需让流水线停转或者让软件来测试循环终止条件。
数据格式:除了标准的整数型格式外,DSP一般支持定点和(或)浮点数。
对数据格式和精度的选择取决于应用程序所需,例如:
16位定点DSP可以满足语音信号处理和控制所需
24位和32位定点DSP可以满足高质量音频信号处理所需
32位浮点DSP可以满足图形和图像处理所需。