第四章 理想气体的热力过程及气体压缩
工程热力学(第五版)第4章练习题
第4章 理想气体热力过程及气体压缩4.1 本章基本要求熟练掌握定容、定压、定温、绝热、多变过程中状态参数p 、v 、T 、∆u 、∆h 、∆s 的计算,过程量Q 、W 的计算,以及上述过程在p -v 、T -s 图上的表示。
4.2 本章重点结合热力学第一定律,计算四个基本热力过程、多变过程中的状态参数和过程参数及在p -v 、T -s 图上表示。
本章的学习应以多做练习题为主,并一定注意要在求出结果后,在p -v 、T -s 图上进行检验。
4.3 例 题例1.2kg 空气分别经过定温膨胀和绝热膨胀的可逆过程,如图4.1,从初态1p =9.807bar,1t =300C ο膨胀到终态容积为初态容积的5倍,试计算不同过程中空气的终态参数,对外所做的功和交换的热量以及过程中内能、焓、熵的变化量。
图4.1解:将空气取作闭口系对可逆定温过程1-2,由过程中的参数关系,得bar v v p p 961.151807.92112=⨯==按理想气体状态方程,得111p RT v ==0.1677kg m /3 125v v ==0.8385kg m /312T T ==573K 2t =300C ο气体对外作的膨胀功及交换的热量为1211lnV V V p Q W T T ===529.4kJ 过程中内能、焓、熵的变化量为12U ∆=0 12H ∆=0 12S ∆=1T Q T=0.9239kJ /K 或12S ∆=mRln12V V =0.9238kJ /K 对可逆绝热过程1-2′, 由可逆绝热过程参数间关系可得kv v p p )(211'2= 其中22'v v ==0.8385kg m /3 故 4.12)51(807.9'=p =1.03barRv p T '''222==301K '2t =28C ο气体对外所做的功及交换的热量为)(11)(11'212211T T mR k V p V p k W s --=--==390.3kJ 0'=s Q过程中内能、焓、熵的变化量为kJ T T mc U v 1.390)(1212''-=-=∆或kJ W U 3.390212'-=-=∆kJ T T mc H p 2.546)(1212''-=-=∆ '12S ∆=0例2. 1kg 空气多变过程中吸取41.87kJ 的热量时,将使其容积增大10倍,压力降低8倍,求:过程中空气的内能变化量,空气对外所做的膨胀功及技术功。
工程热力学第四章理想气体热力过程教案
第四章 理想气体的热力过程概 述热能⇔机械能的相互转化是靠工质在热力设备中吸热、膨胀、压缩等状态变化的过程来实现的,这个状态变化的过程就是热力过程,那么,在前面第一章研究的平衡状态,第二章研究理想气体的性质以及第三章研究分析开、闭口系热力状态变化的工具——热力学第一定律都是为这一章打基础。
前面第三章已提到过相同的工质在相同的温度下,不同的热力过程,能量转化的状况是不同的。
P V q q >,00v p w w ==膨技,,因此工程上实际过程多种多样、复杂、多变,不是可逆过程,据传递能量的工质不一不可能一一加以研究,何况逐个研究不总结规律性的知识用途也不大。
因此,我们仍采用热力学常用的方法,对复杂多样的热力过程进行合理化的假设。
认为是理想气体的可逆过程,这就是我们下面要研究的理想气体○V ○P ○T ○S 。
○P :例如各种环热设备,工质一面流动一面被加热,流动中克服阻力的压力降与其压力相比小很多,故认为压力不变。
○V :汽油机工作时,火花塞一点火,气缸内已被压缩的可燃混合气即燃烧,在一瞬间烧完,这期间气缸与外界无质量交换,活塞移动极微,可近似定容过程。
○T :如往复式压气机,气体在气缸中被压缩时温度升高,为了省功气缸周围有冷却水套,若冷却效果好,气缸中温度几乎不变,可近似定温过程。
○S :例气缸中燃烧产物在气缸中膨胀对外作功过程,由于工质与外界交换的热量很少可略去不计,认为是定熵过程。
上述过程实际上是略去次要因素后的一个等同特征,就是过程中有一个状态参数不变,对理想气体()u f t = ()h f t =这研究起来就方便很多,而且只有实际意义。
4—1 研究热力过程的目的及方法一. 目的1.实现预期的能量转化,合理安排热力过程,从而来提高功力装置的热经济性。
2.对确定的过程,也可预计热→功之多少。
二.解决的问题1.根据过程特点,寻找过程方程式 2.分析状态参数在过程中的变化规律3.确定热功转化的数量关系,及过程中,,u h s ∆∆∆的变化 4.在P —V ,T —S 图上直观地表示。
工程热力学第四章理想气体热力过程
03
CHAPTER
等容过程
等容过程是指气体在变化的整个过程中,其容积保持不变的过程。
定义
特点
适用场景
气体在等容过程中,气体温度和压力会发生变化,但容积保持不变。
等容过程常用于高压、高温或低温等极端条件下的气体处理。
03
02
01
等容过程定义
在等容过程中,气体吸收的热量等于气体所做的功和气体温度升高所吸收的热量之和。
多变过程的具体形式取决于气体所经历的压力和温度的变化规律。
多变过程定义热力学第一定律 Nhomakorabea热力学第二定律
理想气体状态方程
热效率
多变过程的热力学计算
01
02
03
04
能量守恒定律,用于计算多变过程中气体吸收或释放的热量。
熵增原理,用于分析多变过程中气体熵的变化。
描述气体压力、体积和温度之间的关系,可用于多变过程的计算。
衡量多变过程能量转换效率的指标,通过比较输入和输出的热量来计算。
提高热效率的方法
优化多变过程参数,如压力和温度的变化规律,以减少不可逆损失和提高能量转换效率。
热效率与熵增的关系
根据熵增原理,不可逆过程会导致熵的增加,从而降低热效率。因此,减少不可逆损失是提高多变过程热效率的关键。
热效率计算公式
$eta = frac{Q_{out}}{Q_{in}}$,其中$Q_{out}$为输出热量,$Q_{in}$为输入热量。
计算公式
通过优化气体的初态和终态,以及选择合适的加热和冷却方式,可以提高等容过程的热效率。同时,也可以通过改进设备结构和操作方式来提高热效率。
提高热效率的方法
等容过程的热效率
04
CHAPTER
工程热力学4理想气体热力过程及气体压缩g
• 二、过程初,终状态参数间的关系p65
气态方程:
pv RT
过程方程 p1v1 p2v2 p1v1v1 1 p2v2v2 1
T1v1 1 T2v2 1
T1
p 1 1
T2
p2
1
p2 ( v1 )k (4-5) p1 v2
T2 ( v1 )k 1 4-6 T1 v2
研究热力学过程的依据
1) 第一定律: q du w dh wt
稳流:
q
h
1 2
c2
gz
ws
2) 理想气体: pv RT cp cv R u f (T ) h f (T )
k cp cv
3)可逆过程:
w pdv
wt vdp
2) ds δq T
s12
2
ds
1
2 δq ? 0
1T
上述两种结论哪一个对?为什么? 既然 δq 0 q 0 为什么熵会增加?(不可逆)
结论: 1)
ds δq TR
必须可逆
2)熵是状态参数,故用可逆方法推出的熵变 △s 公式也可用于不可逆过程。
3)不可逆绝热过程的熵变大于零。
pv RgT
p T
Rg v
2
s 1 ds
2
1 cV
dT T
Rg
ln
v2 v1
2
1 cp
dT T
Rg
ln
p2 p1
2
1 cp
dv v
2
1 cV
dp p
第4章-理想气体的热力性质和热力过程
m
pRgVT1w
1
Ts
0.098MPa36m3 0.28[7kJ/(kgK)]
2
1 73K
1 308K
5.117kg
9
第二节 理想气体的比热容
10
• 热容:指工质温度升高1K所需的热量。
C Q dT
• 比热容:1kg(单位质量)工质温度升高1K所
k
nn1n2n3 ni nk ni i 1
• 第 i 种组元气体的摩尔分数 (mole fraction of a mixture):
xi
ni n
(433)
xi nni nni 1
各组元摩 尔分数之
和为1
37
换算关系
mnM
mi niMi
• 根据热力学第一定律,任意准静态过程:
q d u p d v d h v d p
u是状态参数: uf(T,v)
du(T u)vdT(uv)Tdv
q( T u)vdT[p( u v)T]dv
单位物量的物质 在定容过程中温 度变化1K时热 力学能的变化值
q u
• 定容: dv0 cv (dT)v (T)v 12
3
第一节 理想气体及其状态方程
4
• 理想气体 ideal gas定义:
– 遵循克拉贝龙(Clapeyron)状态方程的气体,
即基本状态参数 p、v、T 满足方程
pv 常数 T 的气体称为理想气体。
理想气体的基本假设:
• 分子为不占体积的弹性质点 uu(T)
• 除碰撞外分子间无作用力
理想气体是实际气体在低压高温时的抽象
第4章理想气体热力过程及气体压缩
第4章 理想气体热力过程及气体压缩4.1 本章基本要求熟练掌握定容、定压、定温、绝热、多变过程中状态参数p 、v 、T 、∆u 、∆h 、∆s 的计算,过程量Q 、W 的计算,以及上述过程在p -v 、T -s 图上的表示。
4.2 本章重点结合热力学第一定律,计算四个基本热力过程、多变过程中的状态参数和过程参数及在p -v 、T -s 图上表示。
本章的学习应以多做练习题为主,并一定注意要在求出结果后,在p -v 、T -s 图上进行检验。
4.3 例 题例1.2kg 空气分别经过定温膨胀和绝热膨胀的可逆过程,如图,从初态1p =,1t =300C 膨胀到终态容积为初态容积的5倍,试计算不同过程中空气的终态参数,对外所做的功和交换的热量以及过程中内能、焓、熵的变化量。
图解:将空气取作闭口系对可逆定温过程1-2,由过程中的参数关系,得bar v v p p 961.151807.92112=⨯==按理想气体状态方程,得111p RT v ==kg m /3125v v ==kg m /312T T ==573K 2t =300C 气体对外作的膨胀功及交换的热量为1211lnV V V p Q W T T ===过程中内能、焓、熵的变化量为12U ∆=0 12H ∆=0 12S ∆=1T Q T= /K 或12S ∆=mRln 12V V = /K对可逆绝热过程1-2′, 由可逆绝热过程参数间关系可得kv v p p )(211'2= 其中22'v v ==kg m /3故4.12)51(807.9'=p =Rv p T '''222==301K '2t =28C气体对外所做的功及交换的热量为)(11)(11'212211T T mR k V p V p k W s --=--=='=s Q过程中内能、焓、熵的变化量为kJT T mc U v 1.390)(1212''-=-=∆或kJW U 3.390212'-=-=∆kJT T mc H p 2.546)(1212''-=-=∆'12S ∆=0例2. 1kg 空气多变过程中吸取的热量时,将使其容积增大10倍,压力降低8倍,求:过程中空气的内能变化量,空气对外所做的膨胀功及技术功。
热工流体第四章 理想气体的基本热力过程
第一节定容过程
气体比体积保持不变的热力过程称为定容过程。
1、过程方程式
v=c(4-1)
2、状态方程
或 (4-2)
3、过程曲线
图4-1
4、 、 的计算
理想气体的热流学能,焓是温度的单值函数
(4-3)
(4-4)
5、容积变化功与传热量
定容过程比体积变化量Δv=0,所以定容过程体积变化功为
及q=0(4-19)
根据熵的定义,可逆绝热过程有
(4-20)
即
s=c(4-21)
所以可逆绝热过程为定熵过程。
1、过程方程式
(4-22)
κ---绝热指数,理想气体绝热指数,也等于理想气体比热容比。
2、状态方程
(4-23)
(4-24)
(4-25)
3、过程曲线
图4-4
4、 、 的计算
(4-26)
(4-27)
当n=0时, ,为比定压热容;
当n=1时, ,为比定温热容;
当n=κ时, ,为比定熵热容;
当n= 时, ,为比定容热容。
例空气在压气机中被压缩,初始状态为V1=0.052m3,p1=0.1Mpa,t1=40°c,可逆多变压缩至p2=0.565Mpa,V2=0.013 m3,然后排到储气罐,求多变过程的多变指数n,压缩终温t2,容积变化功与换热量,以及压缩过程中气体热力学能、焓的变化值。
当n=1时, ;
当n=κ时, ;
当n= 时, 。
2、状态方程
(4-32)
(4-33)
(4-34)
3、过程曲线
图4-5
4、 、 的计算
(4-35)
(4-36)
5、多变过程容积变化功与传热量
工程热力学第三版课后习题答案沈维道(第四章)
第四章 理想气体的热力过程
4—1 有 2.3 千克的 CO, 初态 T1 = 477K,p1 = 0.32MPa , 经可逆定容加热, 终温 T2 = 600K , 设 CO 为理想气体,求 ∆U 、 ∆H 、 ∆S ,过程功及过程热量。 (1)设比热容为定值; (2)变 值比热容,按气体性质表。 解: (1)定值比热容
4—3 试由 w = 算式。 解: 可逆过程的过程功 w =
2 2
∫
1
pdv,wt = − ∫ vdp 导出理想气体进行可逆绝热过程时过程功和技术功的计
1
∫
2
1
pdv ,由绝热过程方式可知 p1v1κ = pvκ , p =
p1v1κ vκ
所以
w = p1v1κ ∫
v2
v1
dv 1 1 = ( p1v1 − p2 v2 ) = Rg (T − T ) κ v κ −1 κ −1 1 2
60.08K = 13546.39J/mol 100K
1 ( H m,1 − H m,2 ) M 1 (9123.608 − 13546.39)J/(mol ⋅ K) = −138.21× 103 J/kg = −3 32.0 × 10 kg/mol
4—6 3kg 空气, p1 = 1MPa,T1 = 900K ,绝热膨胀到 p2 = 0.1MPa 。设比热容为定
Rg =
R 8.3145J/(mol ⋅ K) = = 0.260J/(kg ⋅ K) T1 = t1 + 273 = 40 + 273 = 313K M 32.0 × 10−3 kg/mol
p1 0.1MPa = 0.260J/(kg ⋅ K) × 313K ln = −112.82J/kg p2 4MPa
第四章理想气体的热力过程
即定温过程中系统吸收的热量等于系统所作的功 。
4-5 绝热过程
The Adiabatic Process
系统与外界不发生热量交换时所经历的过程。 对于无功耗散的准静态绝热过程即为定熵过程,因此有: q ds 0 T 一、定值比热容情况下绝热(定熵)过程的分析 由熵变关系式 ds cV 0 整理可得: 即:
T T ( )p T-s图上的斜率: s c p0
定压过程中能量转换关系 系统的容积变化功:
w1 2 pdv p(v 2 v1 ) R g (T2 T1 )
1
2
系统接受的热量:
q1 2 h2 h1 c p 0 dT
1
2
δq=dh-vdp
当比热为定值时:
q12 c p0 (T2 T1 )
ws vdp 0
1 2
轴功:
4-4 定温过程 The Constant-Temperature Process 温度保持不变时系统状态发生变化所经历的过程 过程方程及状态参数之间的关系:
p 2 v1 p1 v 2
pv p1v1 Rg T 常量
p
Rg T v
p 2 v1 p1 v 2
w1 2
2
1
v2 p1 pdv Rg T1 ln Rg T1 ln v1 p2
稳定流动的开口系统,若其工质的流动动能和重力位能的变 化可以忽略不计,则按定温过程方程式,定温过程中系统所 作的轴功为:
ws vdp pdv
1 1
2
2
pv const
d( pv) pdv vdp 0
即定温过程中系统轴功等于容积变化功
热量:定温过程中系统的热力学能及焓均不变化,因而有
工程热力学课件第4章
κ=
cp cv
pv κ = 常数
∴κ > 1
Qc p > cv
2、初、终状态参数关系 、
p 2 v1 = p1 v 2
κ
pvκ = 常数
pv = RT
T2 v1 = T1 v2 κ −1 T2 p2 κ = T1 p1
1 1
2
2
κ
dp
1
=κ
R (T1 − T2 ) = κw κ −1
pκ
κ ( p1v1 − p 2 v 2 ) = κ −1
2)热量 )
q=0
∆s = 0
∆u + w = 0 或 ∆u = − w ∆ h + wt = 0 或 ∆ h = − wt
4-3 多变过程的综合 分析
多变过程
1、 过程方程: pv n 、 过程方程:
pc dT pc dp sc − sb = ∫ cp − ∫ R = −R ln T T pb p pb
T
Qsc > sb
∴pc < pb
sb sc
s
定压线向左水平移动, 定压线向左水平移量转换 、 1)过程功 dp= 0 ∴wt = −∫1 vdp = 0 ) 2)热量 )
2
2
v
4
3
wT = wt ,T
2)热量 )
T
∆h = c p (t2 − t1) = 0
2’ 1 2
∆u = cv (t2 − t1) = 0
v2 p1 p1 q = w = wt = RT ln = RT ln = p1v1 ln v1 p2 p2
s
4
工程热力学第四章理想气体的热力过程及气体压缩1
二、热力过程中工质状态参数变化值的计算
参数 p、v、 T、 u、 h、 s
1、初、终状态基本参数(p、v、T )的计算
依据: 1)理想气体状态方程式
pv RT
p1v1 p2v2
状态2
系统
本章假定:工质为理想气体,过程为可逆过程。
§4.1 分析热力过程的目的及一般 方法
一、分析热力过程的目的和任务
实施热力过程的目的:
1)完成一定的能量转换 2)使工质达到一定的热力状态
分析热力过程的目的: 研究外部条件对热能和机械 能转换的影响,通过有利的外部条件,达到合理安 排热力过程,提高热能和机械能转换效率的目的。
p2 p1
v1 v2
k
(1)
p1v1 p2v2
T1
T2
T2 T1
v1 v2
k
1
(2)
k 1
T2 T1
p2 p1
k
(3)
3、过程在p–v图和 T -s图上表示
p
绝热线比定温线陡
2’
1-2 绝热膨胀
1-2‘ 绝热压缩
1
曲线斜率
2
T
v
p k p
v s
v
2’
ds q 0
1
T
2
定熵过程:可逆绝热过程
dT T
2 p dv 1T
pR Tv
s
2
1 cv
dT T
2R dv
1v
s
cv
ln
T2 T1
R ln
v2 v1
第4章 理想气体的热力过程
① 闭口系: w =
由于定温时:
dp d dv
=−
T
p v
⎛ dp ⎞ ⎛ dp ⎞ ⎜ ⎟ 〉 ⎜ ⎟ ⎝ dv ⎠ s ⎝ dv ⎠T
∫ pdv = ∫ pv
1 1 2
2
k
dv vk
2
因 pvk 为常数,所以: 为常数 所以 w = pv k ∫ 同时,因 pv=RgT ,可得:
2
2 1− k pv dv k v = = pv k ∫ v − k dv = pv k 1− k 1 1 − k 1 1 v
② 开口系: wt = − ∫ vdp = − ∫
1
1
2
2
RgT dp p
5、功与热量的计算 ①闭口系: w =
∫
1
2
RgT dv pdv = ∫ v 1
2
2
= −RgT ∫
1
2
⎛ p1 ⎞ ⎛ v2 ⎞ dp = RgT ln⎜ ⎜p ⎟ ⎟ = RgT ln⎜ ⎜v ⎟ ⎟ p ⎝ 2⎠ ⎝ 1⎠
2
⎤ ⎥ ⎥ ⎥ ⎦
n= k n= ± ∞
可见,绝热过程wt 是 w 的 k 倍 。热量q 为零。
2、状参关系式
3、绘制过程曲线
p 2 ⎛ v1 =⎜ p1 ⎜ ⎝ v2
T2 ⎛ v1 =⎜ T1 ⎜ ⎝ v2
⎞ ⎟ ⎟ ⎠
⎞ ⎟ ⎟ ⎠
n
n −1
由 pvn= const,pv=RgT
得
n −1
⎛ p2 T2 = ⎜ ⎜ p T1 ⎝ 1
如电厂中各种换热设备中的加热或冷却过程。 1、过程方程: 2、状参关系式 根据: p= const dp= 0
第4章理想气体的性质及其热力过程
解 :取整个容器(包括真空容器)为系统, 由能量方程得知: U1 = U 2 , T1 = T2 = T 对绝热过程,其环境熵变
∆S sys = CP ln
T2 P P − R ln 2 = 0 − R ln 2 T1 P1 P 1
P 0 .2 = R ln 1 = 0.287 ln = 0.199 kJ / kg ⋅ k P2 0 .1
∆S sur = S 2 − S1 +
q P q = R ln 1 + T0 P2 T0
100 330 .4 = 0.287 ln + = 0.44 kJ / k g ⋅ k 1000 300
例 6: 如果室外温度为-10℃, 为保持车间内最低温度为 20℃, 需要每小时向车间供热 36000kJ, 求:1) 如采用电热器供暖,需要消耗电功率多少。2) 如采用热泵供暖,供给热泵的功率至 少是多少。3) 如果采用热机带动热泵进行供暖,向热机的供热率至少为多少。图 4.1 为热 机带动热泵联合工作的示意图。假设:向热机的供热温度为 600K,热机在大气温度下放热。 600K 293K & &′ Q Q 1 1 & W 热泵 热机 263K 图 4.1 解 :1)用电热器供暖,所需的功率即等于供热率, 故电功率为
. . .
3600 W s = 3600 Q + mCv (T2 − T1 )
. . 3600 W − Q = 293 + 3600(0.2 − 0.1) = 544 K T2 = T1 + mCv 2 × 0.7175
.
.
由定容过程:
P2 T2 T 544 = , P2 = P1 2 = 0.1 × = 0.186 MPa P1 T1 T1 293
理想气体的热力过程和气体压缩
4-3 定压过程
■过程方程式 p 定值
如换热器、锅炉中进行的过程、燃气轮机装置燃 烧室内的燃烧过程。 ■初、终状态参数之间的关系
v2 / v1 T2 / T1
即定压过程比体积与温度成正比。
■在p-v图和T-s图上的表示
n 0 (p / v) p np / v 0
nk cn n 1 cV cp (T / s) p T / cp
●可以取(, ) 之间的所有数。 n v 定值(定容过程)
n 0 p 定值(定压过程)
n 1 T 定值 (定温过程)
n k
(绝热过程)
四个基本热力过程是多变过程的特例。
●实际过程中,n 值是变化的,可用平均值代替;或者
把实际过程分作几段,每段的值保持不变。
即定温过程吸收的热量全部转化为功。
解:(1)定温压缩
T1 T2 305K
h 0
s
Rg ln
p2 p1
0.4619kJ /(kg K)
q wt T1s 140.88kJ / kg
Pt qm wt 1.69kW
qQ qmq 6086kJ / h
s
2
w 1 pdv p(v2 v1)
■技术功
2
wt 1 vdp 0
■热量
qp h
即定压过程吸收的热量全部用于增加焓值。
解:把两个过程在p-v图和T-s图上表示出来。
Rg cp cV 287J /(kg K)
初态1:
v1 RgT1 / p1 1.0705m3 / kg 终态 2v : v2v v1 1.0705m3 / kg p2v RgT2 / v2v 0.1804106 Pa 终态 2 p :p2p p1 0.1106 Pa v2p RgT2 / p2p 1.9315m3 / kg
第4章--理想气体热力过程及气体压缩
第4章 理想气体热力过程及气体压缩4.1 本章基本要求熟练掌握定容、定压、定温、绝热、多变过程中状态参数p 、v 、T 、∆u 、∆h 、∆s 的计算,过程量Q 、W 的计算,以及上述过程在p -v 、T -s 图上的表示。
4.2 本章重点结合热力学第一定律,计算四个基本热力过程、多变过程中的状态参数和过程参数及在p -v 、T -s 图上表示。
本章的学习应以多做练习题为主,并一定注意要在求出结果后,在p -v 、T -s 图上进行检验。
4.3 例 题例1.2kg 空气分别经过定温膨胀和绝热膨胀的可逆过程,如图4.1,从初态1p =9.807bar,1t =300C膨胀到终态容积为初态容积的5倍,试计算不同过程中空气的终态参数,对外所做的功和交换的热量以及过程中内能、焓、熵的变化量。
图4.1解:将空气取作闭口系对可逆定温过程1-2,由过程中的参数关系,得bar v v p p 961.151807.92112=⨯== 按理想气体状态方程,得111p RT v ==0.1677kg m /3125v v ==0.8385kg m /312T T ==573K 2t =300C 气体对外作的膨胀功及交换的热量为1211lnV V V p Q W T T ===529.4kJ过程中内能、焓、熵的变化量为12U ∆=0 12H ∆=0 12S ∆=1T Q T=0.9239kJ /K 或12S ∆=mRln 12V V =0.9238kJ /K对可逆绝热过程1-2′, 由可逆绝热过程参数间关系可得kv v p p )(211'2= 其中22'v v ==0.8385kg m /3故4.12)51(807.9'=p =1.03barRv p T '''222==301K '2t =28C气体对外所做的功及交换的热量为)(11)(11'212211T T mR k V p V p k W s --=--==390.3kJ'=s Q过程中内能、焓、熵的变化量为kJT T mc U v 1.390)(1212''-=-=∆或kJW U 3.390212'-=-=∆kJT T mc H p 2.546)(1212''-=-=∆'12S ∆=0例2. 1kg 空气多变过程中吸取41.87kJ 的热量时,将使其容积增大10倍,压力降低8倍,求:过程中空气的内能变化量,空气对外所做的膨胀功及技术功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c)各级散热相同,而且每级的中间冷却器向外放 出的热量也相等 d)对提高整机容积效率v有利
三、压气机的效率
【
定温压缩效率
c.T
ws.T ws
-
例 4
5
绝热压缩效率
c.s
ws.s ws.s
压缩前气体的状态相同,压
T
2
】
2' p1
缩后气体的压力相同
趋势
u,h↑(T↑) w↑(v↑) wt↑(p↓) q↑(s↑)
p
h>0 u>0
q>0
w>0
T
h>0
w>0
n0
u>0
n0
wt>0
n 1 wt>0
nk
n
n 1
q>0
n
v
nk s
p-v,T-s图练习(1)
压缩、升温、放热的过程,终态在哪个区域?
p
T
n0
n0
n
n 1 nk
v
n
n 1
nk s
p-v,T-s图练习(2)
p2
c.s
h1 h2 h1 h2
c.s
T1 T2 T1 T2
1
s
小
结
多变过程在p-v图、T-s图上的表示及其综合分析 (会计算状态参数变化,焓、熵、内能的变化, 以及过程中各种功量和热量)
压气机(理论轴功、余隙容积、容积效率、 级间压力)
表4-1
第四章作业 第4-9、4-10、4-15题
2
1
WC p1V1 pdV p2V2
1
WC=Wt=Ws=
2
WC Vdp
p
1
3
压气机所耗轴功取决于压缩过
程的初、终状态和压缩过程的 性质。
4
对压缩过程1-2存在两种极端情 况,一是定熵,二是定温。
实际压气机都采用冷却措施, 压缩过程为介于定温与定熵之 间的多变过程。
2 1 V
三种压气过程的参数关系
根据过程进行的条件,揭示状态变化规律 与能量传递之间的关系,从而计算热力过 程中工质状态参数的变化及传递的能量、 热量和功量。
二、热力过程中工质参数变化值的计算
1.初、终状态基本参数(p、 v、T)的计算,依据:
(1)pv =RT 及
p1v1 p2v2
T1
T2
(2)过程方程式 p=f(v)
2.过程中理想气体内能、焓和熵变化值的计算:
工业上:锅炉鼓风、出口引风、炼钢、 燃气轮机、制冷空调等等
活塞式(往复式) 离心式
轴流式 回转容积式
叶轮式
引射式
通风机 p<115kPa
鼓风机 115<p<350kPa
压气机 p>350kPa
一、单级活塞式压气机工作原理
余隙容积:
活塞的左死点位置与气缸头之间 的间隙。
单级活塞式压气机的工作过程分三个阶段:
p2 p1 p3
p2 p3 p1 p2
二、级间压力的确定
p2 p1 p3 令 p2 p3
p1 p2
p2 p3 p1 p2
则 2 p2 p3 p3
p1 p2 p1
可得 p3
p1
依此类推,对z级压缩
可得 z pz1
p1
按 z pz1 选择各级中间压力,优点有:
p1
a)各级气缸终温相同
p u>0 w>0
T
h>0
T1 p1
w>0
n0
u>0
wt>0
n0
n 1 wt>0
n 1
nk
n
n
v
nk s
q在p-v,T-s图上的变化趋势
q Tds
T
p
h>0 u>0
q>0
T
w>0
h>0
u>0
qw
w>0
n0
n0
wt>0
n 1 wt>0
nk
n
n 1
q>0
n
v
nk s
u,h,w,wt,q在p-v,T-s图上的变化
焓变化
2
h cpdT 内能变化
1
2
u cV dT
1
由熵的定义式 ds q
T
得
s 2 q 1T
将 δq =du+pdv=cVdT+ pdv 代入上式,得
s
2 1
q
T
2 1
cV dT T
pdv
2 1
cV
dT T
2 1
pdv T
由pv =RT
并取cV为定值得
s
cV
ln
T2 T1
R ln
看【例4-1】
【例4-2】
【例4-3】
【表4-1】
利用特殊过程的特性,如 p1 p4
利用过程的能量关系,如
v4 v1 T4 T1
T4 T1
T1 T4 q u w
s4 s1 q 0 v4 v1
第四节 压气机的理论压缩轴功
压气机 的作用
型式 结构
压 力 范 围
生活中:自行车打气。
wtT wtn wts qT qn qs 0
v2T v2n v2s
T1 T2T T2n T2s
p p2
2T
2n
2s
p1
T
2T 2n 1
2s p2 p1 1
v
s
三种压气过程功的计算
wtn
n
n 1
RT1[1
(
p2
)
n 1 n
]
p1
wtT
RT1 ln
p1 p2
wts
k
k
1
RT1[1
n
设T2'=T1,则p1V1=p2V2,代入上式整理得
n1
n1
Ws
n n 1
p1V1
2
p2 p1
n
p3 p2
n
二、级间压力的确定
n1
n1
Ws
n n 1
p1V1
2
p2 p1
n
p3 p2
n
由上式可见,Ws随p2而变化 要求Ws为最小时的p2值,可求极值点。
令dWs/dp2=0
可得
多变过程比热容
二、多变过程分析
1.多变过程在p-v,T-s图上的分析
p-v图 多变过程在p-v图上的斜率公式为:
p n p
v n
v
p n p v n v
(n 0) (n 1)
(n )
n
0
p v
p
v
在p-v图
上,通过 同一状态 的定熵线 的斜率的 绝对值总 是大于定 温线的, 所以定熵 线比定温 线陡。
T2 T1
R ln
p2 p1
利用式 cp-cV=R整理后可得
s
cp ln
v2 v1
cv ln
p2 p1
1
1
cV tt12三T、w热力h12过pcd程pv 中tt12 能Twt 量 传s12递vd的sp20 计s10算qR1g2lTndspp12
pdv
q u 2 w w...t 1 vdp
排气过程:活塞左行到某一位置时,气体压力升高到 预定压力p2,排气阀被顶开,活塞继续左行,把压缩 气体排至储气罐或输气管道,直至左死点,排气完毕。 排气过程中气体的热力状态p2、T2没有变化。
理论压气过程:
不考虑余隙容积的影响;压缩过程可逆;不考虑进、 排气阀阻力损失;排气压力与外界压力相等;
升压比(或压力比)β
T
h>0 u>0
n0
n 1
n0 n 1
nk
n
v
n
nk s
w在p-v,T-s图上的变化趋势
h>0
p u>0
w pdv
w>0
T
h>0 u>0
n0
n 1
T2 ( v1 )k1 T1 v2
w>0
n0
n 1
nk
n
v
n
nk s
wt在p-v,T-s图上的变化趋势
wt vdp
T2
(
p2
)
k 1 k
h>0
p
T
v
s
四、绝热过程的能量转换 状态参数的变化与过程无关 内能变化 焓变化 熵变化
膨胀功 w
技术功 wt 热量 q
第三节 多变过程的综合分析
一、多变过程方程及多变比热容
过程方程
n是常量,称为多变指数, 每一过程有一 n 值
n=k
s (表示定熵过程)
n0
多 变
n 1
pc=p常数,cV表示定压过程
(
p2
)
k 1 k
]
p1
p p2
2T
2n
2s
T
2T
p1
1
最小 重要启示
2s p2 p1
2n
1
v
s
Ws Vdp
W pdV
对 pVn= 常数求导 得到 -Vdp = npdV
Ws Vdp=n pdV nW
轴功等于多变指数n乘以膨胀功 【例4-4】
第五节 活塞式压气机的余隙影响
活塞排量
p
V3
T-s图 多变过程在T-s图上的斜率公式为:
T T s n cn
T
n
n 1