人教版七年级数学下册8.4三元一次方程组的解法学案

合集下载

人教版七年级数学下册8.4《三元一次方程组的解法》教学设计

人教版七年级数学下册8.4《三元一次方程组的解法》教学设计

人教版七年级数学下册8.4《三元一次方程组的解法》教学设计一. 教材分析人教版七年级数学下册8.4《三元一次方程组的解法》是学生在学习了二元一次方程组的基础上进行学习的。

本节课主要让学生掌握三元一次方程组的解法,并能灵活运用解法解决实际问题。

教材通过丰富的情境和实例,引导学生探索三元一次方程组的解法,从而提高学生的数学思维能力和解决问题的能力。

二. 学情分析学生在进入七年级下册之前,已经学习了二元一次方程组的相关知识,对于解方程组的方法和技巧有一定的掌握。

但学生在解决三元一次方程组问题时,可能会感到困惑和不解。

因此,在教学过程中,教师需要关注学生的学习需求,通过引导和启发,帮助学生理解和掌握三元一次方程组的解法。

三. 教学目标1.知识与技能目标:让学生掌握三元一次方程组的解法,并能灵活运用解法解决实际问题。

2.过程与方法目标:通过探索和合作,培养学生解决问题的能力和团队协作精神。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和坚持不懈的精神。

四. 教学重难点1.重点:三元一次方程组的解法。

2.难点:理解和掌握三元一次方程组的解法,并能灵活运用解决实际问题。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。

2.探索教学法:引导学生通过合作和讨论,探索三元一次方程组的解法。

3.实例教学法:通过具体的实例,让学生理解和掌握三元一次方程组的解法。

六. 教学准备1.教学课件:制作教学课件,包括教学内容的呈现、实例的展示等。

2.教学素材:准备相关的实际问题,作为课堂练习和巩固的内容。

3.教学板书:设计教学板书的结构,突出重点内容。

七. 教学过程1.导入(5分钟)教师通过引入实际问题,引发学生的思考,激发学生的学习兴趣。

2.呈现(10分钟)教师通过课件呈现三元一次方程组的解法,引导学生理解解法的过程和方法。

3.操练(10分钟)教师提出具体的实例,让学生分组进行讨论和解答,引导学生运用解法解决问题。

七年级下册《8.4 三元一次方程组的解法》教案、导学案、同步练习

七年级下册《8.4 三元一次方程组的解法》教案、导学案、同步练习

《8.4 三元一次方程组的解法》教案一【教学目标】1.理解三元一次方程组的含义.2.会解某个方程只有两元的简单的三元一次方程组.3.掌握解三元一次方程组过程中化三元为二元或一元的思路.【教学重点与难点】1.使学生会解简单的三元一次方程组.2.通过本节学习,进一步体会“消元”的基本思想.3. 针对方程组的特点,灵活使用代入法、加减法等重要方法.【教学过程】一、导入新课前面我们学习了二元一次方程组的解法.有些问题,可以设出两个未知数,列出二元一次方程组来求解.实际上,有不少问题中含有更多的未知数.大家看下面的问题.二、推进新课出示引入问题小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.1.题目中有几个未知数,你如何去设?2.根据题意你能找到等量关系吗?3.根据等量关系你能列出方程组吗?请大家分组讨论上述问题.(教师对学生进行巡回指导)学生成果展示:1.设1元,2元,5元各x张,y张,z张.(共三个未知数)2.三种纸币共12张;三种纸币共22元;1元纸币的数量是2元纸币的4倍.3.上述三种条件都要满足,因此可得方程组师:这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(学生小组交流,探索如何消元.)可以把③分别代入①②,便消去了x ,只包含y 和z 二元了:解此二元一次方程组得出y 、z ,进而代回原方程组可求x .教师对学生的想法给予肯定并总结解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.即三元一次方程组 二元一次方程组一元一次方程三、例题讲解例1:解三元一次方程组(让学生独立分析、解题,方法不唯一,可分别让学生板演后比较.) 解:②×3+③,得11x+10z=35.①与④组成方程组 把x=5,z=-2代入②,得y=.因此,三元一次方程组的解为12,2522,4.x y z x y z x y ++=⎧⎪++=⎨⎪=⎩8,412,512,2,42522,6522. 2.x y y z y z y y y z y z z =⎧++=+=⎧⎧⎪=⎨⎨⎨++=+=⎩⎩⎪=⎩即解得消元消元347,239,5978.x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩347,5,111035. 2.x z x x z z +==⎧⎧⎨⎨+==-⎩⎩解得135,1,32.x y z =⎧⎪⎪=⎨⎪=-⎪⎩归纳:此方程组的特点是①不含y ,而②③中y 的系数为整数倍关系,因此用加减法从②③中消去y 后,再与①组成关于x 和z 的二元一次方程组的解法最合理.•反之用代入法运算较烦琐.例2:在等式y=ax2+bx+c 中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60,求a ,b ,•c 的值.(师生一起分析,列出方程组后交由学生求解.)解:由题意,得三元一次方程组②-①,得a+b=1, ④ ③-①,得4a+b=10. ⑤④与⑤组成二元一次方程组. 解得把a=3,b=-2代入①,得c=-5.因此,答:a=3,b=-2,c=-5. 四、知能训练1.解下列三元一次方程组:2.甲、乙、丙三个数的和是35,甲数的2倍比乙数大,乙数的等于丙数0,423,25560.a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩1,410.a b a b +=⎧⎨+=⎩3,2a b =⎧⎨=-⎩3,2,5.a b c =⎧⎪=-⎨⎪=-⎩29,34,(1)3,(2)2312,247; 6.22,2,:(1)15.5,(2)3,12.5; 1.x y x y z y z x y z z x x y z x x y y z z -=--+=⎧⎧⎪⎪-=+-=⎨⎨⎪⎪+=++=⎩⎩==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩解13的,求这三个数.解:设甲、乙、丙三个数分别为x 、y 、z ,则 即甲、乙、丙三数分别为10、15、10. 五、课堂小结1.学会三元一次方程组的基本解法.2.掌握代入法,加减法的灵活选择,体会“消元”思想. 六、布置作业 七、活动与探究 拓广探索解:由已知,得 ②-①,得b=-11, ④由③得=0, ⑤ ④代入⑤,得a=6. ⑥把代入①,得c=3,因此,答:a=6,b=-11,c=3.《8.4 三元一次方程组的解法》教案二【教学目标】:1235,10,25,15,10.,32x y z x x y y y z z ⎧⎪++==⎧⎪⎪-==⎨⎨⎪⎪=⎩⎪=⎩解得2,20,93.4293a b c a b c a b a b c c ⎧⎪-=++⎪=-+⎨⎪⎪++=++⎩777366a b+6,11a b =⎧⎨=-⎩6,11,3.a b c =⎧⎪=-⎨⎪=⎩1.了解三元一次方程组的概念.2.会解某个方程只有两元的简单的三元一次方程组.3.掌握解三元一次方程组过程中化三元为二元的思路.【教学重点】:(1)使学生会解简单的三元一次方程组.(2)通过本节学习,进一步体会“消元”的基本思想.【教学难点】:针对方程组的特点,灵活使用代入法、加减法等重要方法.【教学过程】:一、创设情景,导入新课前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。

人教版数学七年级下册8.4《三元一次方程组的解法》优秀教学案例

人教版数学七年级下册8.4《三元一次方程组的解法》优秀教学案例
3.学生能够通过解决实际问题,感受到数学的实际价值,培养解决实际问题的能力。
4.学生能够在学习过程中,培养团队协作精神,提高与人沟通、交流的能力。
希望通过本节课的教学,学生能够在知识与技能、过程与方法、情感态度与价值观三个方面得到全面提高,为今后的数学学习打下坚实的基础。
三、教学策略
(一)情景创设
1.教师可以通过设计有趣的数学问题或生活情境,引发学生的兴趣,激发学生的学习动力。例如,可以设计一个关于三个朋友共同出资购买礼物的问题,引导学生在解决问题的过程中,自然地引入三元一次方程组的概念。
2.教师可以使用多媒体课件或实物道具,帮助学生直观地理解三元一次方程组的概念和解法。例如,可以使用动画演示三个球的颜色和位置关系,让学生通过观察和思考,发现方程组的解法。
3.教师可以设置一个挑战性的问题,引导学生思考并尝试解决。例如,可以提出一个关于三个变量的问题,让学生尝试找到合适的解法。
(二)讲授新知
(二)问题导向
1.教师可以通过提出问题,引导学生主动思考和探究。例如,可以提问:“你们认为如何解决三个朋友共同购买礼物的问题?”让学生思考并提出自己的解决方案。
2.教师可以引导学生通过讨论和交流,共同解决问题,培养学生的合作精神和沟通能力。例如,可以组织学生进行小组讨论,让他们分享自己的解题思路和方法,互相学习和借鉴。
(五)作业小结
1.教师可以布置一些相关的作业,让学生巩固所学知识。例如,可以给学生提供一些实际问题,要求他们运用解法解决。
2.教师可以对学生的作业进行及时的批改和反馈,帮助学生提高解题能力。例如,可以对学生的作业进行详细的批改,指出他们的错误和不足,并提供改进的建议。
3.教师可以对学生的作业情况进行总结和归纳,了解学生的学习情况,为后续的教学提供参考。例如,可以分析学生的作业完成情况,了解他们在解法方面的掌握程度和解题思路的多样性。

人教版七年级下册8.4三元一次方程组的解法(教案)

人教版七年级下册8.4三元一次方程组的解法(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三元一次方程组的基本概念。三元一次方程组是由三个含有三个未知数的一次方程组成的方程体系。它在解决多个未知数的实际问题中起着重要作用。
案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将实际问题转化为三元一次方程组,并通过代入法和加减消元法求解。
然而,我也注意到,有些同学在小组讨论中参与度不高,可能是因为他们对这个话题还不够感兴趣,或者是对自己的数学能力缺乏信心。在未来的教学中,我需要更多地关注这部分学生,激发他们的学习兴趣,帮助他们建立信心。
此外,实践活动虽然能够让学生们动手操作,但在时间安排上可能有些紧张,导致部分学生没有足够的时间去深入思考和实践。我考虑在接下来的课程中,适当延长实践活动的时间,让学生们有更充分的操作和思考空间。
-难点三:将实际问题转化为三元一次方程组时,如何正确识别和设定未知数。
举例:在应用题中,学生可能难以确定三个人的总分、各科分数与方程组之间的关系,从而无法正确列出方程组。
-难点四:在解题过程中,如何进行有效的逻辑推理和数据分析,特别是当方程组较为复杂时。
举例:在处理多个方程和未知数时,学生可能会在推理过程中迷失方向,无法清晰地找出解题路径。
举例:在例1中,选择第一个方程的z变量代入第二个和第三个方程,学生可能会在代入和化简过程中出现计算错误。
-难点二:掌握加减消元法的运用,特别是在多个方程中选择合适的方程进行组合,以及如何处理消元后出现的分数。
举例:在例1中,将第一个方程与第二个方程相加,消去y,学生可能会在选择方程时犹豫不决,或者在消元过程中处理分数不当。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三元一次方程组的解法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决几个问题的情况?”比如,分配任务时需要考虑每个人的能力和时间。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三元一次方程组的奥秘。

人教版数学七年级下册8.4三元一次方程组解法举例教学设计

人教版数学七年级下册8.4三元一次方程组解法举例教学设计
人教版数学七年级下册8.4三元一次方程组解法举例教学设计
一、教学目标
(一)知识与技能
1.了解三元一次方程组的定义,知道它是由三个方程组成,含有三个未知数。
2.学会运用代入法、消元法等方法求解三元一次方程组,并能熟练运用到实际问题中。
3.能够分析实际问题中的数量关系,将其转化为三元一次方程组,从而解决实际问题。
(2)实际问题应用题:从生活中选取一个实际问题,建立三元一次方程组,并运用所学方法求解。
2.选做题:
(3)拓展提高题:选取一些具有一定难度的三元一次方程组题目,鼓励学生在课后进行挑战,提高自己的解题能力。
(4)研究性学习题:针对三元一次方程组,开展研究性学习,探讨其他解题方法,或分析三元一次方程组在实际问题中的应用。
2.学生对解法的掌握:观察学生是否熟练掌握代入法、消元法等解法,以及他们在解题过程中可能遇到的困难。
3.学生在解决问题时的思维方式:关注学生在解决三元一次方程组问题时,是否能够运用数学思维,抓住问题的关键,进行有效分析。
4.学生的合作交流能力:了解学生在小组讨论和课堂交流中的表现,培养他们倾听、表达、合作的能力。
1.教学内容:以生活中的实际问题为例,如“某商店同时销售三种商品,已知甲、乙、丙三种商品的销售单价分别为x元、y元、z元,某天销售总额为3000元,且三种商品的销售数量分别为2x、3y、4z,求三种商品的销售单价。”
2.教学过程:
(1)教师出示问题,引导学生思考如何列出方程组。
(2)学生尝试列出方程组,教师给予指导和评价。
三、教学重难点和教学设想
(一)教学重难点
1.重难点一:三元一次方程组的建立
学生在学习过程中,难点在于从实际问题中抽象出三元一次方程组。因此,教师需要引导学生关注问题中的数量关系,抓住主要矛盾,将问题转化为数学模型。

人教版数学七年级下册8-4 三元一次方程组的解法 教案

人教版数学七年级下册8-4  三元一次方程组的解法  教案

三元一次方程组的解法教学设计课题三元一次方程组的解法单元8 学科初中数学年级七下学习目标1.理解三元一次方程组的概念.2.会用代入法和加减消元法解简单的三元一次方程组.3.通过解三元一次方程组进一步体会消元思想.4.通过探究消元法解三元一次方程组的过程,提高学生逻辑思维能力、计算能力、解决实际问题的能力.重点使学生会解简单的三元一次方程组,进一步体会“消元”的基本思.难点针对方程组的特点,灵活使用代入法、加减法等重要方法.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】问题1:解二元一次方程组有哪几种方法?预设:学生分别说一说,并引导其说出代入法和加减法的求解过程及其注意事项.强调:不管是代入法还是加减法,其根本都是消元.问题2:解二元一次方程组的思路是什么?预设:把二元一次方程组通过代入和加减法进行消元,即“二元”化为“一元”.思考:若含有3个未知数的方程组如何求解?回顾、思考并回答.通过回忆二元一次方程组的概念和解法,引出三元一次方程组的学习,并为后边学习三元一次方程组及其相关知识做铺垫.讲授新课【合作探究】小明手头有12张面额分别为1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张?要想解决这个问题,引导学生让其带着如下三个问题进行思考:学生尝试用学过的知识思考,并回答.通过解决实际问题的情景引出三元一次方程组的学习,以此提高学生学习的兴趣(1)题目中有几个未知量?分别是什么?1元纸币的数量、2元纸币的数量、5元纸币的数量x张y张z张(2)题目中有哪些等量关系?①1元纸币的数量+2元纸币的数量+5元纸币的数量=12张②1元纸币金额+2元纸币金额+5元纸币金额=22元③1元纸币的数量=2元纸币的数量的4倍(3)如何用方程表示这些等量关系呢?先把问题(1)中的未知量设为不同的未知数,然后根据问题(2)中的等量关系列出三个方程分别为:x + y + z = 12,x + 2y + 5z = 22,x = 4y,组成一个方程组.观察得到的方程组,引导学生参照二元一次方程组的概念总结给出三元一次方程组的概念:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.强调组成三元一次方程组必须满足:方程组含有三个未知数、每个方程中含未知数的项的次数都是1、含有三个方程.【探究】怎样解这个得到的三元一次方程组呢?回忆一下二元一次方程组的求解过程,有代入法和加减法,我们根据二元一次方程组的求解过程探究一下三元一次方程组的解法吧!观察这个方程组,发现三个方程中x的系数都是一样的,因此可以用代入法和加减法进行消元计算,但是第三个方程的结构比较简单,可以直接代入第一个和第二个方程直接进行消元计算.解三元一次方程组:把③分别代入①②,得5y+z = 12,6y + 5z = 22.得到一个二元一次方程组解这个方程组,得学生小组交流,汇总并举手发言.自主进行探究、讨论,然后通过类比得到解三元一次方程组的思路.和动力.通过教师的引导,使学生能类比总结出三元一次方程组的概念.让学生在探究三元一次方程组的解法过程中,进一步体会类比的数学思把y = 2,z = 2代入①,得x=8.因此这个方程组的解是想一想,还有其它的解法吗?你可以根据自己的想法尝试一下哦!通过计算三元一次方程组,你能说一说解三元一次方程组的思路吗?总结:通过“代入”或“加减”进行消元,把“三元”化成“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.思考并计算.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1解三元一次方程组:分析:方程①中只含有x,z,②③中未知数y的系数有倍数关系,因此可以由②③消去y,得到一个也只含有x,z的方程.将得到的有关x,z的二元一次方程与①组成一个二元一次方程组,求解得到x,z,进而可求出y.解:②×3+③,得11x + 10z = 35. ④①与④组成方程组解这个方程组,得把x = 5,z = –2代入②,解得因此这个三元一次方程组的解为你还有其他解法吗?试一试,并与这种解法进行比较!例2 在等式y = ax2+bx+c 中,当x= –1 时,y=0;当x=2 时,y = 3;当x=5 时,y=60.求a,b,c 的学生思考、计算并回答.通过练习,进一步巩固所学知识,加深理解.培养学生在具体情境中分析问题和解决问题的能力.值.分析:观察题目,你能得到什么信息?预设:可以把a,b,c看作三个未知数,分别把已知的三组x,y的值代入原等式,就可以得到 3 个三元一次方程.把这 3 个三元一次方程组成一个方程组,解这个方程组即可求出a,b,c.解:根据题意,得三元一次方程组(观察这个方程组,发现未知数c的系数都是1,因此先消去c.)②–①,得 a + b = 1;④③–①,得4a + b = 10;⑤④与⑤组成二元一次方程组解这个方程组,得把a =3,b = –2代入①,得c = –5.因此即a,b,c的值分别为3,–2,–5.【课堂练习】教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.解下列三元一次方程组:2.甲、乙、丙三个数的和是35,甲数的2倍比乙数大5,乙数的等于丙数的.求这三个数.答案:1.解:②×2+③,得x+2y = 53. ④④+①,得x = 22.把x = 22代入④,得y =把x = 22代入③,得z =所以原方程的解为①+②,得5x+2y=16. ④②+③,得3x+4y=18. ⑤⑤–④×2得,x = 2.把x = 2代入④,得y = 3.把x =2,y =3代入③,得z=1.所以原方程的解为2.解:设甲、乙、丙三数分别为x,y,z.根据题意,得解这个方程组,得∴甲数是10,乙数是15,丙数是10. 自主完成练习,然后集体交流评价.通过练习,进一步巩固所学知识,加深理解.培养学生在具体情境中分析问题和解决问题的能力.课堂小结以思维导图的形式呈现本节主要内容:回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书 1.三元一次方程组的概念:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.解三元一次方程组的思路:通过“代入”或“加减”进行消元,把“三元”化成“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.3.例题讲解。

新人教版七年级下册数学《8.4三元一次方程组的解法举例》精品教案

新人教版七年级下册数学《8.4三元一次方程组的解法举例》精品教案

新人教版七年级下册数学《8.4三元一次方程组的解法举例》精品教案第一篇:新人教版七年级下册数学《8.4三元一次方程组的解法举例》精品教案8.4.1 三元一次方程组解法举例练习教学目标1.理解三元一次方程组的含义.2.会解某个方程只有两元的简单的三元一次方程组.3.掌握解三元一次方程组过程中化三元为二元或一元的思路.教学重点1.使学生会解简单的三元一次方程组.2.通过本节学习,进一步体会“消元”的基本思想.教学难点针对方程组的特点,灵活使用代入法、加减法等重要方法.导入新课前面我们学习了二元一次方程组的解法.有些问题,可以设出两个未知数,列出二元一次方程组来求解.实际上,有不少问题中含有更多的未知数.大家看下面的问题.教学过程活动与探究习题8.4 拓广探索⎧⎪-2=a+b+c,⎪解:由已知,得⎨20=a-b+c,⎪93ab⎪a+b+c=++c.293⎩4 ②-①,得b=-11,④由③得7736a+76b=0,⑤④代入⑤,得a=6.⑥⎧a=6,⎧a=6,⎪把⎨代入①,得c=3,因此,⎨b=-11,⎩b=-11⎪c=3.⎩答:a=6,b=-11,c=3.备课资料参考例题⎧3x-2y+z=6,⎪ 1.已知方程组⎨6x+y-2z=-2,与关于x,y,z的方程组⎪6x+2y+5z=3⎩⎧ax+by+2cz=2,⎪⎨2ax-3by+4cz=-1,相同,求a,b,c 的⎪3ax-3by+5cz=1⎩值.⎧x:y=3:2,⎪2.解方程组⎨y:z=5:4,⎪x+y+z=66.⎩3.在y=ax+bx+c中,当x=1,2,3时,y=0,3,28,求a,b,c的值.当x=-1时,y•的值是多少?答案: 2 1.分析:因为两个方程组的解相同,即x,y,z取值相同,可求解第一个方程组中的x,y,z,代入第二个方程组后,求解a,b,c.1⎧x=,⎪⎧3x-2y+z=6,3⎪⎪解:解方程组⎨6x+y-2z=-2,解得⎨y=-2,⎪6x+2y+5z=3,⎪z=1.⎩⎪⎩1⎧x=,⎪⎧ax+by+2cz=2,3⎪⎪把⎨y=-2,⎨2ax-3by+4cz=-1,⎪z=1⎪3ax-3by+5cz=1,⎩⎪⎩⎧a=9,⎪1⎪解得⎨b=-,2⎪⎪⎩c=-1.⎧a-2b+2c=2,⎪3⎪⎪2⎨a+6b+4c=-1,⎪3⎪a+6b+5c=1.⎪⎩2.提示:将①②变为x=⎧x=30,⎪答案:⎨y=20,⎪z=16.⎩32y,z= 45y后求解.⎧a+b+c=0,⎪3.解:由题意,得⎨4a+2b+c=3,解得⎪9a+3b+c=28.⎩2⎧a=11,⎪⎨b=-30, ⎪c=19.⎩所以y=11x-30x+19.所以当x=-1时,y=11×(-1)-30×(-1)+19=60.第二篇:三元一次方程组解法举例教案三元一次方程组解法三元一次方程组的解法①⎧x+y+z=12⎪例1.解方程组⎨x+2y+5z=22②⎪x=4y③⎩发现三个方程中x的系数都是1,因此确定用减法“消x”.解法1:消x ②-① 得y+4z=10.④③代人① 得5y+z=12.⑤由④、⑤得⎨⎧y+4z=10,⎩5y+z=12.④ ⑤解得⎨⎧y=2,⎩z=2.把y=2,代入③,得x=8.⎧x=8,⎪∴⎨y=2, 是原方程组的解.⎪z=2.⎩方程③是关于x 的表达式,确定“消x”的目标.解法2:消x由③代入①②得⎨⎧5y+z=12,④⎩6y+5z=22.⑤⎧y=解得⎨z=2.⎩把y=2代入③,得x=8.⎧x=8,⎪∴⎨y=2, 是原方程组的解.⎪z=2.⎩【方法归纳】类型一:有表达式,用代入法.针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.解法3:消z①×5得5x+5y+5z=60,④ x+2y+5z=22,② ④-②得4x+3y =38 ⑤由③、⑤得⎨③⎧x=4y,⎩4x+3y=38.⑤解得⎨⎧x=8,⎩y=2.把x=8,y=2代入①,得z=2.⎧x=8,⎪∴⎨y=2, 是原方程组的解.⎪z=2.⎩根据方程组的特点,由学生归纳出此类方程组为:类型二:缺某元,消某元.三、典型例题讲解例1、解方程组分析:方程③是关于x的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x”的目标.解法1:代入法,消x.把③分别代入①、②得解得把y=2代入③,得x=8.因此三元一次方程组的解为观察方程组进行分析,方程组中的方程③里缺z,因此利用①、②消z,也能达到消元构成二元一次方程组的目的.解法2:消z.①×5得 5x+5y+5z=60 ④④-② 得4x+3y=38⑤由③、⑤得解得把x=8,y=2代入①得z=2.因此三元一次方程组的解为点评:解法一根据方程组中有表达式,可用代入法消元.解法二根据方程组中③缺z元,可由①②消去z元得关于x,y的方程组.例2、解方程组分析:.通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等.具备这种特征的方程组,我们给它定义为“轮换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解.解:由①+②+③得4x+4y+4z=48,即x+y+z=12.④①-④得x=3,②-④得y=4,③-④得z=5,因此三元一次方程组的解为小结:轮换方程组,采用求和作差法.例3、解方程组分析1:观察此方程组的特点是未知项间存在着比例关系,根据以往的经验,见比例式就会想把比例式化成关系式求解,即由x∶y=1∶2得y =2x;由x∶z=1∶7得z=7x.从而从形式上转化为三元一次方程组的一般形式,即,根据方程组的特点,可选用“有表达式,用代入法”求解.解法1:由①得y=2x,z=7x,并代入②,得x=1.把x=1,代入y=2x,得y=2;把x=1,代入z=7x,得z=7.因此三元一次方程组的解为分析2:由以往知识可知遇比例式时,可设一份为参数k,因此由方程①x ︰y︰z=1︰2︰7,可设为x=k,y=2k,z=7k.从而也达到了消元的目的,并把三元通过设参数的形式转化为一元,可谓一举多得.解法2:由①设x=k,y=2k,z=7k,并代入②,得k=1.把k=1,代入x=k,得x=1;把k=1,代入y=2k,得y=2;把k=1,代入z=7k,得 z=7.因此三元一次方程组的解为小结:遇比例式找关系式,采用设元解法.例4、解方程组分析:对于一般形式的三元一次方程组的求解,应该认清两点:一是确立消元目标——消哪个未知项;二是在消元的过程中三个方程式如何正确的使用,怎么才能做到“目标明确,消元不乱”.解:①+③ 得5x+2y=16,④②+③ 得3x+4y=18,⑤由④、⑤得解得把x=2,y=3代人②,得z=1.因此三元一次方程组的解为小结:一般选择同一个未知项系数相同或互为相反数的那个未知数消元;或选择同一个未知项系数最小公倍数最小的那个未知数消元.1.例5、学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2∶3,三种球共41个,求三种球各有多少个?分析:设篮球数为x个,排球数为y个,足球数为z个,分析题中存在的相等关系:①篮球数=2×排球数-3,即x=2y-3;②足球数:排球数=2∶3,即z∶y=2∶3;③三种球数的总和为41个,即x+y+z=41.解:设篮球有x个,排球有y个,足球有z个,依题意,得解这个方程组,得答:篮球有21个,排球有12个,足球有8个.第三篇:数学七年级8.4三元一次方程组的解法练习8.4三元一次方程组的解法基础训练知识点1三元一次方程(组)的有关概念1.下列方程是三元一次方程的是_________.(填序号)①x+y-z=1;②4xy+3z=7;③+y-7z=0;④6x+4y-3=0.2.①②③④⑤其中是三元一次方程组的是__________.(填序号)3.若(a-1)x+5yb+1+2z2-|a|=10是一个关于x,y,z的三元一次方程,那么a=__________,b=__________.知识点2三元一次方程组的解法4.解三元一次方程组先消去_________,化为关于_________、_________的二元一次方程组较简便.5.解方程组若要使运算简便,消元的方法应选()A.消去xB.消去yC.消去zD.以上说法都不对6.已知三元一次方程组经过步骤①-③和③×4+②消去未知数z后,得到的二元一次方程组是()A.B.C.D.知识点3三元一次方程组的应用7.已知单项式-8a3x+y-zb12cx+y+z与2a2b2x-yc6是同类项,则x= ,y= ,z=.8.已知式子ax2+bx+c,当x=1时,其值为-4;当x=2时,其值为3;当x=4时,其值为35.当x=3时,其值为.9.桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水,先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?()A.80B.110C.140D.22010.解方程组提升训练11.解方程组12.解方程组13.解方程组:14.用两种消元法解方程组:探究培优15.如图是一个有三条边的算法图,每个“”里有一个数,这个数等于它所在边的两个“”里的数之和,请你通过计算确定三个“”里的数之和,并且确定三个“”里应填入的数.16.已知甲、乙二人解关于x,y的方程组甲正确地解得而乙把c抄错了,解得求a,b,c的值.解三元一次方程组的消元技巧:(1)先消去某个方程缺少的未知数;(2)先消去系数最简单的未知数;(3)先消去系数成整倍数关系的未知数.另外,在“消元”的过程中必须保证每个方程至少用一次.参考答案1.【答案】①2.【答案】①②3.【答案】-1;04.【答案】z;x;y5.【答案】B解:因为y的系数的绝对值都是1,所以消去y较简便.6.【答案】A 7.【答案】4;-4;6 8.【答案】169.【答案】B解:设甲杯中原有水a毫升,乙杯中原有水b毫升,丙杯中原有水c 毫升.根据题意得②-①,得b-a=110.故选 B.10.解:由②+①×2,得4x+3x+6z+2z=2+2,即7x+8z=4.④由③+②×2,得6x-4x+4z-z=4-1,即2x+3z=3.⑤由④⑤组成方程组,得解得把代入①,得y=-2.所以原方程组的解为分析:解三元一次方程组时,通常需在某些方程两边同乘以某常数,以便于消去同一未知数;在变形过程中,易漏乘常数项而出现方程①变形为4x+2y+6z=1的错误.11.解:设=a,=b,=c,则原方程组可化为①+②,得2a+2c=1,④②+③,得2a+4c=4.⑤④与⑤组成方程组,得解这个方程组,得把代入①,得b=6.因此,x=-1,y=,z=.即原方程组的解为分析:本题运用了换元法,将,分别用a,b,c表示,将原方程组化为关于a,b,c的三元一次方程组,求出a,b,c的值后,进一步再求x,y,z的值,这种方法可使解题过程变简便.12.解:设x=k,y=2k,z=3k,代入②,得2k+2k-9k=15.解得k=-3.所以原方程组的解为分析:像这种已知未知数之间数量比的问题,通常采用设参数的方法,将“多元”化为“一元”,使解题过程变简便.13.解:①+②+③,得2x+2y+2z=12,所以x+y+z=6.④④-①,得z=3.④-②,得x=1.④-③,得y=2.所以原方程组的解为分析:本题没有采用常规的消元方法求解,而是利用整体加减的方法求出未知数的值,给解题过程带来了简便.14.解:方法一:用代入法解方程组.把②变形为2y=3x-4z-8,④将④代入①,得2x+2(3x-4z-8)-3z=9,整理,得8x-11z=25.⑤将④代入③,得5x-3(3x-4z-8)-5z=7,整理,得4x-7z=17.⑥由⑤⑥组成方程组,得解得将代入④,得y=.所以原方程组的解为方法二:用加减法解方程组.①+②×2,得8x-11z=25.④①×3+③×2,得16x-19z=41.⑤由④⑤,得解得将代入①,得y=.所以原方程组的解为15.解:如图,如果把三个“”里的数分别记作x,y,z,则①+②+③,得2(x+y+z)=142,即x+y+z=71.④④-①,得z=-12.④-②,得x=50.④-③,得y=33.所以三元一次方程组的解为所以三个“”里的数之和为71,三个“”里应填入的数按先上后下,先左后右的顺序依次为50,33,-12.16.解:甲正确地解得故可把代入原方程组.乙仅抄错了题中的c,解得故可把代入第一个方程.由题意得解得第四篇:人教版七年级数学下册8.4:三元一次方程组的解法28.4三元一次方程组解法(2)教学设计教学目标:1、会解较复杂的三元一次方程组.2、理解解三元一次方程组的基本思路,会解三元一次方程组,掌握三元一次方程组的解法及其步骤。

人教版七年级下册8.4三元一次方程组的解法教学设计

人教版七年级下册8.4三元一次方程组的解法教学设计

人教版七年级下册8.4三元一次方程组的解法教学设计知识目标1.理解三元一次方程组的概念与解法2.学会使用代入法与消元法求解三元一次方程组3.能够把抽象的数学概念应用到实际问题中能力目标1.提高学生的数学思维能力,分析和解决实际问题2.培养学生的团队合作精神,增强沟通协调能力3.培养学生的自学能力,激发兴趣,探索知识教学过程导入(5分钟)介绍三元一次方程组的相关概念,如:未知数、系数、方程等,引导学生理解。

知识点讲解(15分钟)给学生讲解代入法和消元法的概念,并演示如何使用这两种方法解决三元一次方程组。

利用黑板和投影仪,让学生更好地理解。

当堂练习(25分钟)学生分成若干个小组,每个小组随机分到一个三元一次方程组实际问题,如:小王有5元和10元的硬币共两种,他一共有20枚硬币,这些硬币总的面值为90元。

请问小王有多少张5元硬币和10元硬币?学生需要分析问题,列出方程组并使用代入法或消元法来解决问题。

每组的解决方案需要在黑板上展示,并进行讨论和批评。

总结归纳(10分钟)回顾当堂练习,让学生总结代入法和消元法的特点,强调在实际问题中运用数学方法的重要性。

作业布置(5分钟)布置一些与三元一次方程组相关的作业题目,要求学生自主完成。

作业中需涉及到来自实际生活和工作的问题,这可以增加学生的兴趣,提高他们的自学能力。

教学特色1.场景化教学法通过把数学概念应用到实际问题中,让学生更加容易理解和记忆。

2.合作学习法学生分组进行当堂练习,强化了沟通和合作能力,同时激发了团队合作的精神。

3.自主学习法作业的设计涉及到实际问题,让学生自己分析问题并解决,可以提高自学能力和兴趣。

教学效果通过本课程的教学,学生能够掌握三元一次方程组的解法方法,并能够将抽象的数学概念应用到实际问题中。

学生的数学思维能力也得到了提高,同时培养了团队合作和自主学习的能力。

七年级数学下册(人教版)8.4三元一次方程组的解法优秀教学案例

七年级数学下册(人教版)8.4三元一次方程组的解法优秀教学案例
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的问题为背景,创设情境,引发学生的思考,激发学生的学习兴趣。例如,设计一道与购物、旅游等生活场景相关的问题,让学生在解决问题的过程中自然地引入三元一次方程组。
2.故事情境:通过讲述一个有趣的故事,引发学生的兴趣,使他们能够主动参与到学习中。例如,讲述一个侦探破案的故事,引导学生思考并解决问题,从而引入三元一次方程组的概念和解法。
2.鼓励学生互相倾听和尊重对方的意见,培养他们的团队合作能力。例如,在小组活动中,可以设置一个环节,让每个小组成员分享自己的解题思路和方法,并进行讨论和评价。
(四)总结归纳
1.对本节课的主要内容和知识点进行总结归纳,让学生能够梳理和巩固所学知识。例如,总结三元一次方程组的定义、解法和解的情况的判断方法等。
在教学过程中,我注重引导学生运用已知知识解决未知问题,培养他们的逻辑思维能力和创新意识。同时,我通过设计丰富的教学活动,激发学生的学习兴趣,使他们能积极主动地参与课堂讨论,提高课堂效果。此外,我还注重对学生的个性化指导,针对不同学生的学习情况,给予他们有针对性的帮助,使他们在课堂上都能有所收获。
二、教学目标
3.小组合作:本节课通过组织学生进行小组合作学习,促进了学生之间的交流和合作。例如,设计一个小组活动,让学生分组讨论并解决一个复杂的三元一次方程组问题。在合作过程中,学生能够互相倾听和尊重对方的意见,培养他们的团队合作能力。小组合作的方式不仅能够提高学生的学习效果,还能够培养他们的沟通能力、协作能力和团队意识。
2.通过提问引导学生思考问题的本质,引发学生的思考和探究。例如,提出一个问题:“如果有一个房间,里面有三个开关,对应着另一个房间里的三盏灯,你如何通过只进房间一次,找出哪盏灯对应哪个开关?”让学生思考并解决这个问题。

人教版数学七年级下册8.4《三元一次方程组的解法》教学设计4

人教版数学七年级下册8.4《三元一次方程组的解法》教学设计4

人教版数学七年级下册8.4《三元一次方程组的解法》教学设计4一. 教材分析《三元一次方程组的解法》是人教版数学七年级下册第8.4节的内容,本节主要让学生掌握解三元一次方程组的基本方法,培养学生解决实际问题的能力。

在教材中,已经给出了三元一次方程组的解法——加减消元法,学生需要通过练习来熟练掌握这种方法。

二. 学情分析学生在七年级上学期已经学习了二元一次方程组的解法,对解方程组有一定的基础。

但三元一次方程组的解法相对复杂,需要学生能够灵活运用已学的知识,因此,学生在学习本节内容时可能会感到困难。

三. 教学目标1.让学生掌握三元一次方程组的解法——加减消元法。

2.培养学生解决实际问题的能力。

3.培养学生的团队合作精神。

四. 教学重难点1.重点:三元一次方程组的解法——加减消元法。

2.难点:如何将实际问题转化为三元一次方程组,并运用加减消元法求解。

五. 教学方法采用问题驱动法、案例教学法、合作学习法。

六. 教学准备1.教学课件。

2.练习题。

3.小组讨论记录表。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,引发学生对三元一次方程组的兴趣。

例如,某商店同时销售A、B、C三种商品,售价分别为100元、80元、60元。

若商店一天售出A、B、C商品各一件,共收入240元,问每种商品各售出多少件?2.呈现(10分钟)呈现教材中的例题,引导学生分析问题,将实际问题转化为三元一次方程组。

例如,例题中给出的方程组:请学生观察并尝试解这个方程组。

3.操练(10分钟)学生独立解决教材中的例题,教师巡回指导。

鼓励学生相互讨论,共同解决问题。

4.巩固(10分钟)给出一些类似的三元一次方程组,让学生运用加减消元法求解。

例如:请学生在小组内讨论解题思路,并完成解答。

5.拓展(10分钟)引导学生思考:如何判断一个三元一次方程组是否有解?如果有解,如何求解?学生通过小组讨论,总结解题方法。

6.小结(5分钟)教师引导学生总结本节课所学内容,强调三元一次方程组的解法——加减消元法,以及如何将实际问题转化为方程组。

人教版七年级数学下册8.4三元一次方程组的解法导学案

人教版七年级数学下册8.4三元一次方程组的解法导学案

集体备课导学案学段初中年级七年级学科数学单元第8单元课题8.4.1三元一次方程组的解法(2)课型新授主备学校初审人终审人主备人合作团队课标依据掌握代入消元法和加减消元法,能解二元一次方程组。

教学目标熟练地掌握简便方法解三元一次方程组教学重点掌握三元一次方程组的解法。

教学难点三元一次方程组如何化归到二元一次方程组。

导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标2分小黑板呈现目标自主学习温故知新5分1、解三元一次方程组的思路是什么?2、课本106业习题8.4第1题复习检查上节课所学知识。

消元法互助释疑3分鼓励学生提出疑问。

小组内互相帮助解决.探究出招10分1、课本105业例22、解方程组先独立思考,然后在小组内合作、讨论。

③②①361xzzyyx解法一:消去y,得:解法二:(①+②+③)×得:______④④-①,得:④-②,得:④-③,得:展示交流小组展示3分组长负责,组员在小组内展示。

班级展示3分各组派代表在全班展示、交流。

点拨升华反馈矫正3分在展示、交流过程中存在的问题要及时反馈、纠错。

必要时教师给予补充。

释疑解惑3分你还有什么疑惑?师生共同解答总结提高3分这节课你有什么收获?学生举手回答课堂作业达标训练10分1、课本106页练习第2题。

2、课本106页习题8.4 第3、5题。

检查学生对所学知识的掌握情况。

21。

人教版数学七年级下册《8-4三元一次方程组的解法》教学设计

人教版数学七年级下册《8-4三元一次方程组的解法》教学设计

人教版数学七年级下册《8-4三元一次方程组的解法》教学设计一. 教材分析《8-4三元一次方程组的解法》是人教版数学七年级下册的一章,主要介绍了用加减消元法解三元一次方程组的方法。

这部分内容是在学生已经掌握了二元一次方程组的解法基础上进行学习的,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

二. 学情分析学生在学习本节内容前,已经掌握了二元一次方程组的解法,对解方程组有一定的了解。

但三元一次方程组的解法相对复杂,需要学生能够灵活运用已学的知识,进行推理和计算。

因此,在教学过程中,需要关注学生的理解情况,引导学生进行思考和探索。

三. 教学目标1.理解三元一次方程组的含义,能够识别和列出三元一次方程组。

2.学会用加减消元法解三元一次方程组,并能够进行计算和应用。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:掌握加减消元法解三元一次方程组的方法。

2.难点:如何引导学生理解并运用加减消元法,以及如何处理方程组中的特殊情况。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生解决实际问题,激发学生的学习兴趣和动力。

2.使用多媒体教学辅助工具,通过动画和图形展示,帮助学生直观理解方程组的解法。

3.小组讨论和合作,让学生在讨论中思考问题,培养学生的团队协作能力。

六. 教学准备1.准备相关的教学PPT和多媒体教学资源。

2.准备一些实际问题,用于引导学生解决。

3.准备一些特殊情况的例子,用于讲解和讨论。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决三元一次方程组的问题。

例如,可以设置一个关于三个未知数的实际问题,让学生感受到解三元一次方程组的必要性。

2.呈现(10分钟)通过PPT或多媒体教学资源,呈现三元一次方程组的定义和加减消元法的解法步骤。

同时,通过动画和图形展示,帮助学生直观理解方程组的解法。

3.操练(10分钟)让学生分组进行讨论和合作,解决一些简单的三元一次方程组问题。

人教版数学七年级下册《8-4三元一次方程组的解法》教案

人教版数学七年级下册《8-4三元一次方程组的解法》教案

人教版数学七年级下册《8-4三元一次方程组的解法》教案一. 教材分析《8-4三元一次方程组的解法》是人教版数学七年级下册的一章内容。

本章主要介绍了三元一次方程组的解法,包括代入法、加减法和矩阵法。

通过本章的学习,学生能够掌握三元一次方程组的基本解法,并能够运用到实际问题中。

二. 学情分析学生在学习本章内容前,已经学习了二元一次方程组的解法,具备了一定的方程组解法基础。

但是,对于三元一次方程组,学生可能存在一定的困惑和难度。

因此,在教学过程中,需要引导学生理解和掌握三元一次方程组的解法,并通过实例让学生感受到方程组在实际问题中的应用。

三. 教学目标1.知识与技能目标:学生能够理解三元一次方程组的概念,掌握三元一次方程组的解法,并能够运用到实际问题中。

2.过程与方法目标:通过解决实际问题,学生能够自主探究三元一次方程组的解法,培养学生的解决问题的能力。

3.情感态度与价值观目标:学生能够感受到数学与实际生活的联系,增强对数学的兴趣和信心。

四. 教学重难点1.重点:三元一次方程组的解法。

2.难点:三元一次方程组的解法的运用。

五. 教学方法1.情境教学法:通过实际问题的引入,激发学生的学习兴趣,引导学生主动探究三元一次方程组的解法。

2.实例教学法:通过具体的实例,让学生理解和掌握三元一次方程组的解法。

3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和解决问题的能力。

六. 教学准备1.教具准备:黑板、粉笔、多媒体教学设备。

2.教学素材:实际问题实例、解法步骤图解。

七. 教学过程1.导入(5分钟)利用多媒体展示实际问题实例,引导学生思考如何解决该问题。

通过问题的引入,激发学生的学习兴趣,引出本节课的主题——三元一次方程组的解法。

2.呈现(10分钟)通过PPT或者黑板,呈现三元一次方程组的解法:代入法、加减法和矩阵法。

引导学生理解和掌握每一种解法的步骤和应用。

3.操练(10分钟)学生分组讨论和解决问题,教师巡回指导。

人教版七年级下册8.4三元一次方程组的解法第八章:三元一次方程组的解法教学设计

人教版七年级下册8.4三元一次方程组的解法第八章:三元一次方程组的解法教学设计

人教版七年级下册8.4三元一次方程组的解法第八章:三元一次方程组的解法教学设计一、教学目标1.掌握三元一次方程组的解法2.能够熟练运用代入法、消元法和减法法解决三元一次方程组的问题3.培养学生分析问题和解题的能力二、教学重点难点1.掌握三元一次方程组的解法2.熟练运用代入法、消元法和减法法解决三元一次方程组的问题3.培养学生分析问题和解题的能力三、教学方法1.分组思维导引法2.示范教学法3.合作学习法四、教学过程1. 思维导引(5分钟)通过多种媒介,教师引导学生审题、观察现象,激发学生求解想法。

2. 理论讲解(30分钟)对三元一次方程组的概念、性质、解法进行讲解,归纳三种基本解法:代入法、消元法和减法法,分析它们的优缺点和使用条件。

同时,通过演示计算过程,让学生理解解法的具体步骤和应用方法。

3. 示例演练(25分钟)(1)课堂设计:分小组演练,将解法与实际问题结合起来,掌握题意求解。

(2)案例内容:某银行发放借贷,其中小额贷款、中额贷款和大额贷款的总额分别为300万元、200万元和150万元,总计450万元。

如果小额贷款的利率为2.5%、中额贷款的利率为3%、大额贷款的利率为3.5%,则银行总收益为多少?4. 合作讨论(25分钟)(1)课堂设计:小组合作讨论,并将成果呈现出来。

提高学生的分析问题、解决问题的能力。

(2)案例内容:有一辆商务车,载有15人,底盘质量8600公斤,承载能力3.5吨。

其轮胎数不超过10个,每个轮胎最高能负载1.2吨,两边各一对轮胎,中间的轮胎承载力不足,因此只能靠前两对轮胎支撑。

这辆商务车有几个轮胎?五、教学效果评价1.学生完成相关练习(时间:15分钟);2.学生用三元一次方程组解决相关问题(时间:10分钟);3.根据课堂表现和综合评价,给出总体评价。

六、教学拓展1.在实际生活中,如何使用三元一次方程组解决问题?2.如何推广理论知识到实际运用的场景?七、教学反思1.教学准备:授课前应准备完整的讲义以及足够的问题集合。

人教版七年级下册数学:8.4三元一次方程组解法-学案

人教版七年级下册数学:8.4三元一次方程组解法-学案

课题:三元一次方程组解法举例主备人审核人审核时间课型班级姓名流程导学内容助教策略(学习随笔)目标导学知识目标:1.进一步体会“消元”思想,准确熟练地用代入法或加减法解三元一次方程组.2.通过用代入法或加减法解三元一次方程组的训练及选用合理、简捷的方法解方程组,明确解三元一次方程组的主要思路是“消元”能力目标:经历观察操作、交流等过程,进一步培养学生分析问题能力。

情感目标:树立严谨科学的学习态度,培养解决问题的能力。

学习重难点:用代入法或加减法解三元一次方程组的技巧自主学习1、解下列方程组:⑴⑵2、在“小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.”这一问题中有几个未知量?几个相等关系?根据题意列出方程组,请写在下面空白处。

自主学习的方法用时5分钟合作探究1.解方程组:3:2,:5:4,66.x yy zx y z=⎧⎪=⎨⎪++=⎩2、3.解方程组(1)(2)4.在y=ax2+bx+c中,当x=1,2,3时,y=0,3,28,求a,b,c的值.当x=-1时,y•的值是多少?小组合作的技巧组内展示、课堂小结本节课我们学习了哪些内容?x+y-z=11y+z-x=5z+x-y=1x+y-z=6x-3y+2z=13x+2y-z=4226:5:4:3:⎪⎩⎪⎨⎧=-+==zyxzyyx解方程组x+y-z=6x-3y+2z=13x+2y-z=4x+y=3y+z=5x+z=6达标检测1.在等式2y ax bx c=++中,当1x=-时,0;y=当2x=时,3;y=当5x=时,60.y=求,,a b c的值.2.已知代数式ax2+bx+c,当x=-1时,其值为4;当x=1时,其值为8;当x=2时,其值为25;则当x=3时,其值为多少?3.已知∣x-8y∣+2(4y-1)2+3∣8z-3x∣=0,求x+y+z的值4.在等式y ax bx c2=++中,当x=-1时y=0;当x=2时,y=3;当x=5时,y=60.求a、b、c的值.5.小明手头有12张面额分别是1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张?6.球类运动室有篮球、排球和足球共26个.已知篮球比排球多1个,排球与足球个数的和比篮球多6个.问这三种球各有多少个?学(教)后反思通过本节课的学习:对自己说,你有哪些收获?对同学说,你有哪些经验?对老师说,你有哪些困惑。

七年级数学下册 8.4 三元一次方程组的解法学案(新版)新人教版(3)

七年级数学下册 8.4 三元一次方程组的解法学案(新版)新人教版(3)

8.4三元一次方程组的解法【学习目标】1、会用代入消元法和加减消元法解三元一次方程组,提高运算技能;2、通过解三元一次方程组,进一步体会“消元化归”思想;【学习重点】学准确、迅速地解三元一次方程组【学习难点】 根据方程组特点确定先消哪个元,怎么消【学习过程】一、知识链接复习旧知:1、回答下列问题:(1)解二元一次方程组的基本方法有哪几种?__________________________________________________________________(2)解二元一次方程组的基本思想是什么?___________________________________________________________________2、解下列方程组:(请用最简便的方法来解)1、 2、⎩⎨⎧=-=-②① 1483 3y x y x ⎩⎨⎧=+=-②① 243 842y x y x二、自主学习1、阅读教材P103-105、解决下列问题问题:小明手头有12张面额分别为1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元、2元、5元纸币各多少张?请设未知数列出等量关系,并将列出的等量关系写成方程组的形式,思考如何求出所设的未知数的值?由上观察得出:1、这个方程组有______个未知数,每个方程的未知数的次数都是_____,并且一共有_______个方程,像这样的方程组,就是我们要学的三元一次方程组。

2、三元一次方程组的概念:______________________________________________________________________________ ,叫做三元一次方程组。

3、解三元一次方程组的基本思路:通过“代入” 或“加减”进行_______,把“三元”化为_______,使解三元一次方程组转化为_____________,进而再转化为_________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品基础教育教学资料,请参考使用,祝你取得好成绩!
*8.4 三元一次方程组的解法
【学习目标】
1、知道解三元一次方程组的基本思想方法是消元,即化“三元”为“二元”。

2、会用加减法和代入法解简单的三元一次方程组。

【学习重点与难点】
1.学习重点:掌握三元一次方程组的解法。

2.学习难点:三元一次方程组如何化归到二元一次方程组。

【学习过程】
一、自主学习
(一)预习自我检测(阅读课本,完成下列各题)
1、温故而知新:解下列方程组:
⎩⎨⎧+=-=-536553)1(x y y x (2)
2、阅读课本:了解三元一次方程组的概念。

3、在下列方程中,是三元一次方程的在括号内打“√”,否则打“×”。

(1)2x+3y=12-z ( ) (2) xy -z=14 ( )
(3)13361-=+-z y x ( ) (4)4243+=-z y x ( )
4、在等式中
c bx ax y ++=2中,当x=-1,y=0时; 当x=2,y=3时; 当x=5,y=60时;求a 、b 、c 的值
二、合作探究
1、三元一次方程组的解法:
二元一次方程组解法思路是先用加减法或代入法消去一个未知数,化____元为_____元,那么,三元一次方程组的解法是否类似地将“三元”化为“二元”呢?
⎩⎨⎧=--=-+0
7650132y x y x
解方程组⎪⎩⎪⎨⎧=+-=-=++③②
①182126z y x y x z y x
解法一:(消x )由②得 x=___________ ④ 把④代入①,得:___________________ 用④代入③消去x 得:__________________
整理得 解以上二元一次方程组得:
把 代入④得x=
解法二:(观察②缺z,考虑消z)
⎪⎩⎪⎨⎧=+-=-=++③②
①182126z y x y x z y x ③-①得:__________ ④ 解方程组⎩⎨⎧④②_____________________________
得x= ________y= __________ 把x= ______y= ________ 代入 ①, 得z= ⎪⎩⎪⎨⎧==
=∴z y x
解法三:(先消去y 行吗?) ①+②,得:_____________④ ③-②,得:_____________⑤
解方程组⎩⎨⎧⑤④____________________________ 得x=_______z= ______ 把x 的值代入 ②得y=_________
⎪⎩⎪⎨⎧==
=∴z y x
由上可知,三元一次方程组的思路也是先消元,但方法灵活,应选择简便方法。

⎩⎨⎧⎩⎨⎧==z y ⎩⎨⎧==z y ⎪⎩⎪⎨⎧===∴z y x
三、达标测试
解三元一次方程组:
⎪⎩⎪⎨⎧=+-=++=+87959
327
43)1(z y x z y x z x
⎪⎩⎪⎨⎧===-=-472392)2(x z z y y x ⎪⎩⎪⎨⎧=++=-+=+-6123243)3(z y x z y x z y x
四、我的感悟
这节课我的最大收获是: 我不能解决的问题是:
五、课后反思。

相关文档
最新文档