人教版八年级下册数学18.2.2 菱形的判定教案与反思

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时菱形的判定
原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!
师者,所以传道,授业,解惑也。

韩愈
原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!
新竹高于旧竹枝,全凭老干为扶持。

出自郑燮的《新竹》
1.掌握菱形的判定方法;(重点)
2.探究菱形的判定条件并合理利用它进行论证和计算.(难点)
一、情境导入
我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?
菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:
1.两条对角线互相垂直平分;
2.四条边都相等;
3.每条对角线平分一组对角.
这些性质,对我们寻找判定菱形的方法有什么启示呢?
二、合作探究
探究点一:菱形的判定
【类型一】利用“有一组邻边相等的平行四边形是菱形”判定四边形是菱形
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
求证:四边形BCFE是菱形.
解析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.
证明:∵BE=2DE,EF=BE,∴EF=2DE.∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC,∴EF=BC.又∵EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.
方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.【类型二】利用“对角线互相垂直的平行四边形是菱形”判定四边形是菱形
如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:
(1)AC⊥BD;
(2)四边形ABCD是菱形.
解析:(1)证得△BAC是等腰三角形后利用“三线合一”的性质得到AC⊥BD 即可;(2)首先证得四边形ABCD是平行四边形,然根据“对角线互相垂直”得到平行四边形是菱形.
证明:(1)∵AE∥BF,∴∠BCA=∠CAD.AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形.∵BD平分∠ABC,∴AC⊥BD;
(2)∵△BAC是等腰三角形,∴AB=CB.∵BD平分∠ABC,∴∠CBD=∠ABD.∵AE∥BF,∴∠CBD=∠BDA,∴∠ABD=∠BDA,∴AB=AD,∴DA=CB.∵BC∥DA,∴四边形ABCD是平行四边形.∵AC⊥BD,∴四边形ABCD是菱形.方法总结:用判定方法“对角互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直四边形不一定是菱形.
【类型三】利用“四条边相等的四边形是菱形”判定四边形是菱形
如图,已知△ABC ,按如下步骤作图:
①分别以A ,C 为圆心,大于12
AC 的长为半径画弧,两弧交于P ,Q 两点; ②作直线PQ ,分别交AB ,A 于点E ,D ,连接CE ;
③过C 作CF ∥AB 交PQ 于点F ,连接AF .
(1)求证:△AED ≌CFD ;
(2)求证:四形AECF 是菱形.
解析:(1)由作图知PQ 为线段AC 的垂直平分线,从而得到AE =CE ,D =CD .然后根据CF ∥AB 得到∠EAC =∠FCA ,∠CFD =∠AED ,利用“AAS ”证得两三角形全等即可;(2)根据(1)中全等得到AE =CF .然后根据EF 为线段AC 的垂直分线,得到EC =EAFC =FA .从而得到EC =EA =FC =FA ,利用“四边相等的四边是菱形”判定四边形ACF 为菱形.
证明:(1)由作图知PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD .∵CF
∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED .在△AED 与△CFD 中,⎩⎨⎧∠EAC =∠FCA ,
∠AED =∠CFD ,
AD =C ,
∴△AED ≌△CFD (AAS);
(2)∵△AED ≌△CFD ,∴AE =CF ∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =FA ,∴EC =EA =FC =FA ,∴四边形AECF 为菱形.
方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.
探究点二:菱形的判定的应用
【类型一】 菱形判定中的开放性问题
如图,平行四边形ABCD 中,AF 、CE 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).
解析:∵AD ∥BC ,∴∠FAD =∠AFB .∵AF 是∠BAD 的平分线,∴∠BAF =∠FAD ,∴∠BAF =∠AFB ,∴AB =BF .同理ED =CD .∵AD =BC ,AB =CD ,∴AE =CF .又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC ⊥EF .
方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.
【类型二】 菱形的性质和判定的综合应用
如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于F ,连接DF .
(1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ;
(2)若AB ∥CD ,试证明四边形ABCD 是菱形;
(3)在(2)的条件下,试确定E 点的位置,使得∠EFD =∠BCD ,并说明理由. 解析:(1)首先利用“SSS ”证明△ABC ≌△ADC ,可得∠BAC =∠DAC .再证明△ABF ≌△ADF ,可得∠AFD =∠AFB ,进而得到∠AFD =∠CFE ;(2)首先证明∠CAD =∠ACD ,再根据“等角对等边”,可得AD =CD .再由条件AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .
(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,
BC =DC ,AC =AC ,
∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF 和△ADF 中,
⎩⎨⎧AB =AD ,
∠BAF =∠DAF ,AF =AF ,
∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;
(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;
(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,
∴BC =CD ,∠BCF =∠DCF .在△BCF 和△DCF 中,⎩⎨⎧BC =CD ,
∠BCF =∠DCF ,CF =CF ,
∴△BCF ≌△DCF (SAS),∴∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°,∴∠EFD =∠BCD .
方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
三、板书设计
1.菱形的判定
有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四条边相等的四边形是菱形.
2.菱形的性质和判定的综合运用
在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.
【素材积累】
驾驭命运的舵是奋斗。

不抱有一丝幻想,不放弃一点机会,不停止一日努力。

逆境给人宝贵的磨炼机会。

只有经得起环境考验的人,才能算是真正的强者。

人间的事往往如此,当时提起痛不欲生,几年之后,也不过是一场回忆而已。

知识给
人重量,成旧给人光彩,大多数人只是看到了光彩,而不去称量重量。

摘一条不适合自己的路上奔波,旧如同穿上一双不合脚的鞋,会令你十分痛苦。

【素材积累】
1、只要心中有希望存摘,旧有幸福存摘。

预测未来的醉好方法,旧是创造未来。

坚志而勇为,谓之刚。

刚,生人之德也。

美好的生命应该充满期待、惊喜和感激。

人生的胜者决不会摘挫折面前失去勇气。

2、我一直知道,漫长人生中总有一段泥泞不得不走,总有一个寒冬不得不过。

感谢摘这样的时候,我遇见的世界上最美的心灵,我接受的最温暖的帮助。

经历过这些,我将带着一颗感恩和勇敢的心继续走上梦想的道路,无论是风雨还是荆棘。

相关文档
最新文档