逻辑函数的最简形式
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑函数的最简形式
一个逻辑函数的表达式不是唯一的,可以有多种形式,并且能互相转换。
例如:
在上述多种表达式,与-或表达式是逻辑函数的最基本表达形式。
因此,在化简逻辑函数时,通常是将逻辑式化简成最简与-或表达式,然后再根据需要转换成其他形式。
究竟应该将函数式变换成什么形式,要视所用门电路的功能类型而定。
在与-或式中,若其中包含的乘积项已经最少,而且每个乘积项中的因子也不能再减少时,则称此与-或式为最简与-或式。
最简“与或”式的标准是:(1)乘积项的个数最少; (2)每一个乘积项中变量的个数最少。
如果只有与非门一种器件,则必须将逻辑函数式变换成全部由与非门组成的逻辑式—与-非式。
前面对与-或式最简形式的定义对其他形式的逻辑式同样也适用,即
函数式中相加的乘积项不能再减少,而且每项中相乘的因子不能再减少时,函数式为最简形式。
化简逻辑函数的目的就是消去多余的乘积项和每个乘积项中多于的因子,以得到逻辑函数式的最简形式。
例1:将逻辑函数化为最简与-非式。
解:首先将Y化成最简与-或式
再根据=Y,并利用公式和定律化为最简与-非式。