湖北省黄冈中学数学全等三角形章末练习卷(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省黄冈中学数学全等三角形章末练习卷(Word版含解析)
一、八年级数学轴对称三角形填空题(难)
1.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限
内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,1
2
),且
△ABP和△ABC的面积相等,则a=_____.
【答案】-8
3
.
【解析】
【分析】
先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的
面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=13
2
,故可得出a的值.
【详解】
∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2,
∴22
3+213
AB==,
∵△ABC是等腰直角三角形,∠BAC=90°,
∴
1113
•1313
222 ABC
S AB AC⨯⨯
===,
作PE⊥x轴于E,连接OP,
此时BE=2﹣a,
∵△ABP的面积与△ABC的面积相等,
∴
111
•••
222 ABP POA AOB BOP
S S S S OA OE OB OA OB PE ++
=﹣=﹣,
111113
3322
22222
a
⨯⨯+⨯⨯⨯⨯
=(﹣)﹣=,
解得a=﹣8
3
.
故答案为﹣8
3
.
【点睛】
本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S △ABP =S △POA +S △AOB -S △BOP 列出关于a 的方程.
2.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.
【答案】11()
802n -︒⋅.
【解析】
【分析】
先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.
【详解】
解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022
B ︒︒︒
-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,
∴∠CA 2A 1= 108022
BA A ︒
∠= =40°; 同理可得,
∠DA 3A 2=20°,∠EA 4A 3=10°,
∴第n 个等腰三角形的底角∠A n = 11()
802n -︒⋅.
【点睛】
本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.
3.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:
①AE=CF ;
②△EPF是等腰直角三角形;
③EF=AB;
④
1
2ABC
AEPF
S S
∆
=
四边形
,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).
【答案】①②④
【解析】
试题分析:∵∠APE、∠CPF都是∠APF的余角,
∴∠APE=∠CPF,
∵AB=AC,∠BAC=90°,P是BC中点,
∴AP=CP,
∴∠PAE=∠PCF,
在△APE与△CPF中,
{?
PAE PCF
AP CP
EPA FPC
∠=∠
=
∠=∠
,
∴△APE≌△CPF(ASA),
同理可证△APF≌△BPE,
∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=1
2
S△ABC,①②④正确;
而AP=
1
2
BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,
∴故③不成立.
故始终正确的是①②④.
故选D.
考点:1.全等三角形的判定与性质;2.等腰直角三角形.
4.如图,己知30
MON
∠=︒,点
1
A,
2
A,
3
A,…在射线ON上,点
1
B,
2
B,
3
B,…在射线OM上,112
A B A
∆,
223
A B A
∆,
334
A B A
∆,…均为等边三角形,若
1
2
OA=,则556
A B A
∆的边长为________.
【答案】32
【解析】
【分析】
根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.
【详解】
解:△112A B A 是等边三角形,
1121A B A B ∴=
,341260∠=∠=∠=︒,
2120∴∠=︒
,
30MON ∠=︒
,
11801203030∴∠=︒-︒-︒=︒
,
又360∠=︒,
5180603090∴∠=︒-︒-︒=︒
,
130MON ∠=∠=︒
,
1112OA A B ∴==
,
212A B ∴=
,
△223A B A 、△334A B A 是等边三角形,
111060∴∠=∠=︒
,1360∠=︒,
41260∠=∠=︒
,
112233////A B A B A B ∴
,1223//B A B A ,
16730∴∠=∠=∠=︒
,5890∠=∠=︒,
22122242A B B A =∴==
,33232B A B A =,
33312428A B B A ∴===
,
同理可得:444128216A B B A ===,
⋯
∴
△1n n n A B A +的边长为2n ,
∴
△556A B A 的边长为5232=.
故答案为:32.
【点睛】
本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.
5.如图,已知每个小方格的边长为1,A 、B 两点都在小方格的格点(顶点)上,请在图中找一个格点C ,使△ABC 是等腰三角形,这样的格点C 有________个。
【答案】8
【解析】
【分析】
分别以A 、B 点为圆心,AB 为半径作圆,找到格点即可(A 、B 、C 共线除外);此外加上在AB 的垂直平分线上有两个格点,即可得到答案.
【详解】
解:以A 点为圆心,AB 为半径作圆,找到格点即可,(A 、B 、C 共线除外);以B 点为圆心,AB 为半径作圆,在⊙B 上的格点为C 点;在AB 的垂直平分线上有两个格点.故使△ABC 是等腰三角形的格点C 有8个.
【点睛】
本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.
6.如图,已知,点E 是线段AB 的中点,点C 在线段BD 上,8BD =,2DC =,线段AC 交线段DE 于点F ,若AF BD =,则AC =__________.
【答案】10.
【解析】
【分析】
延长DE 至G ,使EG=DE ,连接AG ,证明BDE AGE ∆≅∆,而后证明AFG ∆、CDF ∆是等腰三角形,即可求出CF 的长,于是可求AC 的长.
【详解】
解:如图,延长DE 至G ,使EG=DE ,连接AG ,
∵点E 是线段AB 的中点,
∴AE=BE,
∴在BDE ∆和AGE ∆中,
BE AE BED AEG
DE EG =⎧⎪∠=∠⎨⎪=⎩
, ∴BDE AGE ∆≅∆,
∴AG=BD, BDE AGE ∠=∠,
∵AF=BD=8,
∴AG=AF,
∴AFG AGE ∠=∠
∵AFG DFC ∠=∠,
∴BDE DFC ∠=∠,
∴FC=DC,
∴FC=2,
∴AC=AF+FC=8+2=10.
【点睛】
本题考查了等腰三角形的性质与判定以及全等三角形的判定与性质,能利用中点条件作辅助线构造全等三角形是解题的关键.
7.在△ABC 中,∠ACB =90º,D 、E 分别在 AC 、AB 边上,把△ADE 沿 DE 翻折得到△FDE ,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形, 则∠BAC 的度数为_________.
【答案】45°或60°
【解析】
【分析】
根据题意画出图形,设∠BAC 的度数为x ,则∠B=90°-x ,∠EFB =135°-x ,∠BEF=2x-45°,
当△BFE 都是等腰三角形,分三种情况讨论,即可求解.
【详解】
∵∠ACB=90º,△CFD是等腰三角形,
∴∠CDF=∠CFD=45°,
设∠BAC的度数为x,
∴∠B=90°-x,
∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,
∴∠DFE=∠BAC=x,
∴∠EFB=180°-45°-x=135°-x,
∵∠ADE=∠FDE,
∴∠ADE=(180°-45°)÷2=67.5°,
∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,
∴∠DEF=∠AED=112.5°-x,
∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:
①当FE=FB时,如图1,
则∠BEF=∠B,
∴90-x=2x-45,解得:x=45;
②当BF=BE时,
则∠EFB=∠BEF,
∴135-x=2x-45,
解得:x=60,
③当EB=EF时,如图2,
则∠B=∠EFB,
∴135-x=90-x,无解,
∴这种情况不存在.
综上所述:∠BAC 的度数为:45°或60°.
故答案是:45°或60°.
图1 图 2
【点睛】
本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.
8.如图,已知AB AC =,AD 平分BAC ∠,60DEB EBC ∠=∠=︒,若3BE =,3DE =,则BC =____________.
【答案】33+
【解析】
【分析】
延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F.由已知条件推出△BEM 是等边三角形,△FDE 是等边三角形,在△DNM 中求出NM 的长度,即可求出BC 的长度.
【详解】
如图,延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F ,
∵AB AC =,AD 平分BAC ∠,∴AN ⊥BC ,BN=CN ,
∵60DEB EBC ∠=∠=︒,∴△BEM 是等边三角形,
∴△FDE 是等边三角形,
∵3BE =,3DE =33DM =-
∵△BEM 是等边三角形,∴∠EMB=60°,
∵AN ⊥BC ,∴∠DNM=90°,
∴∠NDM=30°,∴13322NM DM -=
=, ∴33333BN BM NM -+=-=-
=, ∴233BC BN ==+.
【点睛】 本题考查了等边三角形的性质,解题的关键是作出辅助线构造等边三角形.
9.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.
【答案】036
【解析】
【分析】
根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.
【详解】
∵∠ACB=1080,
∴∠A+∠B=1800-1080=720,
∵AC=AE,BC=BD,
∴∠ACE=∠AEC,∠BCD=∠BDC,
∴01(180)2AEC A ∠=-∠01902
A =-∠ 01(180)2BDC
B ∠=
-∠ =01902
B -∠ ∵∠DCE+∠CDE+∠DEC=1800,
∴0180DCE CDE CED ∠=-∠-∠
= 00011180(90)(90)22A B --
∠--∠ =1122
A B ∠+∠ =1()2
A B ∠+∠
=360
【点睛】
此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.
10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm ,△ABD 的周长为 15cm , 则△ABC 的周长为______
【答案】23cm .
【解析】
【分析】
根据线段垂直平分线的性质得到AC=2AE=8,DA=DC ,根据三角形的周长公式计算即可.
【详解】
解:∵DE 是AC 的垂直平分线,
∴AC=2AE=8,DA=DC ,
∵△ABD 的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,
∴△ABC 的周长=AB+BC+AC=15+8=23cm ,
故答案是:23cm .
【点睛】
本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
二、八年级数学轴对称三角形选择题(难)
11.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).
A .PA P
B =
B .PO 平分APB ∠
C .OA OB =
D .AB 垂直平分OP
【答案】D
【解析】
【分析】
根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.
【详解】
解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥
∴PA PB =,选项A 正确;
在△AOP 和△BOP 中,
PO PO PA PB =⎧⎨=⎩
, ∴AOP BOP ≅
∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;
由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .
【点睛】
本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.
12.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】 根据等边三角形的性质证出△BAE ≌△DAC ,可得BE =CD ,从而得出①正确;
过A 作AM ⊥BF 于M ,过A 作AN ⊥DC 于N ,由△BAE ≌△DAC 得出∠BEA =∠ACD ,由等角的补角相等得出∠AEM =∠CAN ,由AAS 可证△AME ≌△ANC ,得到AM =AN ,由角平分线的判定定理得到FA 平分∠EFC ,从而得出②正确;
在FA 上截取FG ,使FG =FE ,根据全等三角形的判定与性质得出△AGE ≌△CFE ,可得AG =CF ,即可求得AF =CF +EF ,从而得出④正确;
根据CF +EF =AF ,CF +DF =CD ,得出CD ≠AF ,从而得出FE ≠FD ,即可得出③错误.
【详解】
∵△ABD 和△ACE 是等边三角形,
∴∠BAD =∠EAC =60°,AE =AC =EC .
∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,
∴∠BAE=∠DAC,
在△BAE和△DAC中,
∵
AB AD
BAE DAC
AE AC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BAE≌△DAC(SAS),
∴BE=CD,①正确;
过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.
∵△BAE≌△DAC,
∴∠BEA=∠ACD,
∴∠AEM=∠ACN.
∵AM⊥BF,AN⊥DC,
∴∠AME=∠ANC.
在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,
∴AM=AN.
∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;
在FA上截取FG,使FG=FE,如图2.
∵∠BEA=∠ACD,∠BEA+∠AEF=180°,
∴∠AEF+∠ACD=180°,
∴∠EAC+∠EFC=180°.
∵∠EAC=60°,
∴∠EFC=120°.
∵FA平分∠EFC,
∴∠EFA=∠CFA=60°.
∵EF=FG,∠EFA=60°,
∴△EFG是等边三角形,
∴EF=EG.
∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,
∴∠AEG=∠CEF,
在△AGE和△CFE中,
∵
AE AC
AEG CEF
EG EF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△AGE≌△CFE(SAS),
∴AG=CF.
∵AF=AG+FG,
∴AF=CF+EF,④正确;
∵CF+EF=AF,CF+DF=CD,CD≠AF,
∴FE≠FD,③错误,
∴正确的结论有3个.
故选C.
【点睛】
本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.
13.如图,在△ABC中,分别以点A和点B为圆心,大于
1
2
AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC 的长为
A.5 B.6 C.7 D.8
【答案】A
【解析】
【分析】
根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为
AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.
【详解】
根据题意可得MN是直线AB的中点AD BD
∴=
ADC的周长为14
AC CD AD
++=
14
AC CD BD
++=
∴
BC BD CD
=+
14
AC BC=
∴+
已知8
BD=
6
AC
∴=,故选B
【点睛】
本题主要考查几何中的等量替换,关键在于MN是直线AB的中点,这样所有的问题就解决了.
14.等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?()
A.1个B.4个C.7个D.10个
【答案】D
【解析】
试题分析:根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.
解:由点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,
可知P点为等边△ABC的垂心;
因为△ABC是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,
每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.
故选D.
点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.
15.在坐标平面上有一个轴对称图形,其中A(3,﹣5
2
)和B(3,﹣
11
2
)是图形上的一
对对称点,若此图形上另有一点C(﹣2,﹣9),则C点对称点的坐标是()
A.(﹣2,1)B.(﹣2,﹣3
2
)C.(﹣
3
2
,﹣9)D.(﹣2,﹣1)
【答案】A
【解析】
【分析】
先利用点A和点B的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C关于直线y=-4的对称点即可.
【详解】
解:∵A(3,﹣5
2
)和B(3,﹣
11
2
)是图形上的一对对称点,
∴点A与点B关于直线y=﹣4对称,
∴点C(﹣2,﹣9)关于直线y=﹣4的对称点的坐标为(﹣2,1).
故选:A.
【点睛】
本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m对称,则两点的纵坐标相同,横坐标和为2m;关于直线y=n对称,则两点的横坐标相同,纵坐标和为2n.
16.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()
A.130°B.120°C.110°D.100°
【答案】B
【解析】
根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠H AA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:
如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,
则A′A″即为△AMN的周长最小值.作DA延长线AH.
∵∠BAD=120°,∴∠HAA′=60°.
∴∠AA′M+∠A″=∠HAA′=60°.
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,
∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.故选B.
17.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC
于F ,AD 交CE 于G .则下列结论中错误的是( )
A .AD =BE
B .BE ⊥A
C C .△CFG 为等边三角形
D .FG ∥BC 【答案】B
【解析】
试题解析:A.ABC 和CDE △均为等边三角形,
60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,
在ACD 与BCE 中,
{AC BC ACD BCE CD CF =∠=∠=,
ACD BCE ∴≌,
AD BE ∴=,正确.
B .据已知不能推出F 是A
C 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.
C.CFG 是等边三角形,理由如下:
180606060ACG BCA ∠=︒-︒-︒=︒=∠,
ACD BCE ≌, CBE CAD ∴∠=∠,
在ACG 和BCF 中,{CAG CBF
AC BC BCF ACG ∠=∠=∠=∠,
ACG BCF ∴≌, CG CH ∴=,
又∵∠ACG=60° CFG ∴是等边三角形,正确.
D.CFG 是等边三角形, 60CFG ACB ∴∠︒=∠﹦,
.FG BC ∴ 正确.
故选B.
18
.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结
论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第4
3
秒或第
8
3
秒时,△PBQ为直角三角形,正确的有几个 ( )
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
①等边三角形ABC中,AB=BC,而AP=BQ,所以BP=CQ.
②根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;
③由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠CMQ=60°;
④设时间为t秒,则AP=BQ=tcm,PB=(4-t)cm,当∠PQB=90°时,因为∠B=60°,所以PB=2BQ,即4-t=2t故可得出t的值,当∠BPQ=90°时,同理可得BQ=2BP,即t=2(4-t),由此两种情况即可得出结论.
【详解】
①在等边△ABC中,AB=BC.
∵点P、Q的速度都为1cm/s,
∴AP=BQ,
∴BP=CQ.
只有当CM=CQ时,BP=CM.
故①错误;
②∵△ABC是等边三角形
∴∠ABQ=∠CAP,AB=CA,
又∵点P、Q运动速度相同,
∴AP=BQ,
在△ABQ与△CAP中,
∵
AB CA
ABQ CAP AP BQ
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABQ≌△CAP(SAS).
故②正确;
③点P、Q在运动的过程中,∠QMC不变.
理由:∵△ABQ ≌△CAP ,
∴∠BAQ=∠ACP ,
∵∠QMC=∠ACP+∠MAC ,
∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.
故③正确;
④设时间为t 秒,则AP=BQ=tcm ,PB=(4-t )cm ,
当∠PQB=90°时,
∵∠B=60°,
∴PB=2BQ ,即4-t=2t ,t=
43
, 当∠BPQ=90°时,
∵∠B=60°,
∴BQ=2BP ,得t=2(4-t ),t=8
3, ∴当第
43
秒或第83秒时,△PBQ 为直角三角形. 故④正确.
正确的是②③④,
故选C .
【点睛】 此题是一个综合性题目,主要考查等边三角形的性质、全等三角形的判定与性质等知识.熟知等边三角形的三个内角都是60°是解答此题的关键.
19.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )
A .①②③
B .①②④
C .①③④
D .①②③④
【答案】B
【解析】
【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断;
②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;
③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;
④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.
【详解】
①正确,理由如下:
∵ACB DCE α∠=∠=,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
又∵CA=CB,CD=CE,
∴ACD BCE ≅△△(SAS),
∴AD=BE,
故①正确;
②正确,理由如下:
由①知,ACD BCE ≅△△,
∴∠CAD=∠CBE,
∵∠DOB 为ABO 的外角,
∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,
∴∠CBA+∠BAC=180°-α,
即∠DOB=180°-α,
故②正确;
③错误,理由如下:
∵点M 、N 分别是线段AD 、BE 的中点,
∴AM=
12AD,BN= 12
BE, 又∵由①知,AD=BE,
∴AM=BN,
又∵∠CAD=∠CBE,CA=CB,
∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,
∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,
∴MCN △为等腰三角形且∠MCN=α,
∴MCN △不是等边三角形,
故③错误;
④正确,理由如下:
如图所示,在AD 上取一点P 使得DP=EO,连接CP ,
由①知,ACD BCE ≅△△,
∴∠CEO=∠CDP ,
又∵CE=CD,EO=DP ,
∴CEO CDP ≅(SAS),
∴∠COE=∠CPD,CP=CO,
∴∠CPO=∠COP ,
∴∠COP=∠COE,
即OC 平分∠AOE,
故④正确;
故答案为:B.
【点睛】
本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.
20.如图, 在△DAE 中, ∠DAE =40°, B 、C 两点在直线DE 上,且∠BAE =∠BEA ,∠CAD =∠CDA ,则∠BAC 的大小是( )
A .100°
B .90°
C .80°
D .120°
【答案】A
【解析】
【分析】 由已知条件,利用了中垂线的性质得到线段相等及角相等,再结合三角形内角和定理求解.
【详解】
解:
如图,∵BG是AE的中垂线,CF是AD的中垂线,
∴AB=BE,ACECD
∴∠AED=∠BAE=∠BAD+∠DAE,∠CDA=∠CAD=∠DAE+∠CAE,
∵∠DAE+∠ADE+∠AED=180°
∴∠BAD+∠DAE+∠DAE+∠CAE+∠DAE=3∠DAE+∠BAD+∠EAC=120°+∠BAD+
∠EAC=180°
∴∠BAD+∠EAC=60°
∴.∠BAC=∠BAD+∠EAC+∠DAE=60°+40°=100°;
故选:A
【点睛】
本题考查了中垂线的性质、三角形内角和定理及等腰三角形的判定与性质;找着各角的关系利用内角和列式求解是正确解答本题的关键.。