一次函数的图像
《一次函数的图象和性质》PPT课件
![《一次函数的图象和性质》PPT课件](https://img.taocdn.com/s3/m/8638c6b501f69e3142329406.png)
(2)指出以下四个一次函数的共同之处.
①y=1 2 Nhomakorabeax+1;
②y =x+1;
③y =2x+1; ④y =-x+1.
tips:由组长指定除自己外的三名成员回答,每小
下列函数中:题2分
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
说出下列函数的增减性及经过的象限
(1) y =-3X+7 (2) y = πx
(3) y =3-X
(5) y = x 8
(4) y =5x+6 (6)y = -0.5x-1
tips:由老师指定该组某个组员回答,答错可由组员补 答,但得分减半,第一题6分,第二题3分。
(1)直线y =2x-3 与x 轴交点的坐标为(_1_._5_,__0_)_;
不同点.(4分钟)
③y=x-2 的图象。
相同点:函数的图象形状都是 直线 ,并
且倾斜程度_相__同___
y 4 3 2 1
-5 -4 -3 -2 -1 0 -1 -2 -3 -4 -5
不同点:
y=x+2 y=yx=x-2函点与数,y轴y函=交数x于的y=点图x_(+象_20_经的,__过图2_),原象
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
一次函数的图像及性质
![一次函数的图像及性质](https://img.taocdn.com/s3/m/0ff47ad39ec3d5bbfc0a7402.png)
3 x 1 上, 4
2.若 a 是非零实数 , 则直线 y=ax-a 一 定经过( A.第一、二象限 C.第三、四象限 B. 第二、三象限 D. 第一、四象限
)
拓展与应用
1、一次函数y=kx+b中,kb>0,且y随x的增大而 减小,则它的图象大致为( )
一次函数y=kx+b(k≠0,k、b为常数)有下列性质:
(1)当k>0时,y随x的增大而增大, 这时函数的图象从左到右上升; (2)当k<0时,y随x的增大而减小, 这时函数的图象从左到右下降。
性 质
y=kx+b (k≠0,k、 图 象 b为常数) y b>0
o
直线经过的象限
增减性
(0, b)
x
第一、二、三象限
y随x增大 而增大 y随x增大 而增大 y随x增大 而增大
K>0
b=0
y
o
x
第一、三象限
b<0
(o, b)
y
o
x
第一、三、四象限
性 质
y=kx+b (k≠0,k、 图 象 b为常数) y b>0
o
直线经过的象限
增减性
(0, b)
x
第一、二、四象限
y随x增大 而减小 y随x增大 而减小 y随x增大 而减小
k>0, b<0
上,试比较a和b的大小。你能想出几种判断的方法?
试一试
1、下列一次函数中,y的值随x的增大而减小 的有________ )
2、函数 y 1 x, y 5 x 4, y 3 x
(1) y 10 x 9 (3) y 5 x 4
一次函数
![一次函数](https://img.taocdn.com/s3/m/8dfd0c898762caaedd33d480.png)
5、例题
例1.已知如图所示,一个正比例函数和一个 一次函数的图像交于A(3,4),且OA=OB。 (1) 求正比例函数与一次函数的解析式 (2)求三角形AOB的面积
例2:已知一次函数 y=(3m+6)x+(4n+3), (1)m为何值时,y随x的增大而减小; (2)m,n满足什么条件时,函数图像与y 轴的交点在x轴下方; (3)m,n分别取何值时,函数图像经过原 点; (4)m,n满足什么条件时,函数图像不经 过第二象限.
一次函数
1、定义:
一次函数:①若两个变量X,Y间的关系式可 以表示成Y=KX+B(B为常数,K不等于0)的 形式,则称Y是X的一次函数。②当B=0时, 称Y是X的正比例函数。
2、表示法:
解析式法、列表法、图像法
3、图像:
正比例函数y=kx(k≠0)的图象是过坐 标原点的一条直线。所以说正比例函数是 一种特殊的一次函数,但不能说一次函数质:
①当两个一次函数表达式中的k相同,b也相 同时,则这两个一次函数的图像重合; ②当两个一次函数表达式中的k相同,b不相 同时,则这两个一次函数的图像平行; ③当两个一次函数表达式中的k不相同,b也 不相同时,则这两个一次函数的图像交; ④当两个一次函数表达式中的k互为负倒数时, 则这两个一次函数图像互相垂直。
一次函数图像与性质ppt课件
![一次函数图像与性质ppt课件](https://img.taocdn.com/s3/m/a0b5f55d78563c1ec5da50e2524de518964bd334.png)
图
象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是
一
条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .
一次函数图像和性质小结
![一次函数图像和性质小结](https://img.taocdn.com/s3/m/5c9cd1df26fff705cc170ac9.png)
一次函数图像和性质小结一般地,形如y=kx+b(k、b是常数,且k≠0•)的函数,•叫做一次函数(•linear function).一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k≠0•).所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定.一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b.一次函数的图像:k>0 b>0 函数经过一、三、二象限k>0 b<0 函数经过一、二、三象限k<0 b>0 函数经过一、二、四象限k<0 b<0 函数经过二、三、四象限上面性质反之也成立1.b的作用在坐标平面上画直线y=kx+b (k≠0),截距b相同的直线经过同一点(0,b). 2.k的作用k值不同,则直线相对于x轴正方向的倾斜程度不同.(1)k>0时,K值越大,倾斜角越大(2)k<0时,K值越大,倾斜角越大说明(1)倾斜角是指直线与x轴正方向的夹角;(2)常数k称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论.3.直线平移一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx的图像平移得到.当b>0时,向上平移b个单位;当b<0时,向下平移|b|个单位.4.直线平行如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行.如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 .1.一次函数与一元一次方程的关系一次函数y=kx+b的图像与x轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数y=kx+b的图像与x轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想.2.一次函数与一元一次不等式的关系由一次函数y=kx+b的函数值y大于0(或小于0),就得到关于x的一元一次不等式kx+b>0(或kx+b<0).在一次函数y=kx+b的图像上且位于x轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解.。
一次函数的图像和性质
![一次函数的图像和性质](https://img.taocdn.com/s3/m/83af1082c8d376eeafaa311f.png)
图象关系 图象平移得到,b>0,向上平移 b 个单位;b<0,向
下平移b个单位
图象确定
因为一次函数的图象是一条直线,由两点确定一条直 线可知画一次函数图象时,只要取两个点即可
第14讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限
k>0
_一__、__三__象__限_
一次函数图象的
解即两函数图象的交点坐标
交点坐标
一条直线与坐标 轴围成的三角形
的面积
直线y=kx+b与x轴交点坐标为-bk,0,与y轴交
点为(0,b),三角形面积为S△=12-kb
×
|b|
第14讲┃ 考点聚焦 考点5 由待定系数法求一次函数的表达式
因在一次函数y=kx+b(k≠0)中有两个未知系数k和b,所 以要确定其关系式,一般需要两个条件,常见的是已知两点
图 11-1
B.m<1
C.m<0
D.m>0
[解析] 根据函数的图象可知m-1<0,求出m的取 值范围为m<1.故选B.
第14讲┃ 归类示例
► 类型之二 一次函数的图象的平移 命题角度: 1.一次函数的图象的平移规律; 2.求一次函数的图象平移后对应的关系式. [2012·衡阳] 如图11-2,一次函数y=kx+b的图
y随x增 大而增大
_一__、__二__、__四__象__限__ _二__、__三__、__四__象__限__
y随x增 大而减小
第14相交
__k_1_≠__k_2_⇔l1 和 l2 相交
+b1 和 l2:y=k2x 平行 +b2 的位置关系
y=kx (k≠0)
k<0
一次函数图像及性质
![一次函数图像及性质](https://img.taocdn.com/s3/m/a4ca393c2e60ddccda38376baf1ffc4ffe47e2eb.png)
内容基本要求略高要求较高要求一次函数理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函数的性质会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解能用一次函数解决实际问题一、一次函数的概念一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.二、一次函数的图象⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线. ⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.三、一次函数的性质知识点睛中考要求一次函数的图象及性质(1)1.一次函数图象的位置在一次函数y kx b =+中:⑴当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.⑵当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴 交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号. 2.一次函数图象的增减性 在一次函数y kx b =+中:⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.四、含绝对值的一次函数对于含有绝对值的一次函数,其图象是由若干条线段和射线组成的折线,我们通常采用零点讨论法,即先找出绝对值的零解,然后将数轴划分为若干个区间,接下来就可以在各个区间中确定每个绝对值中式子的符号,进而去掉绝对值符号.我们知道,函数y x a =-,当x a =时,y 取最小值0.函数1212()y x a x a a a =-+-<,若2x a >,则121221()()2()y x a x a x a a a a =-+-=-+>-; 若1x a <,则121221()()()2y a x a x a a x a a =-+-=+->-;当12a x a ≤≤时,y 取最小值1221()()y x a a x a a =-+-=-. 在数学竞赛中,有这样一类问题非常普遍:设121n n a a a a -<<<<…,当x 为何值时,函数121n n y x a x a x a x a -=-+-++-+-…取最小值? 下面我们给出这类问题的一般性结论. 对于函数11n y x a x a =-+-,当1n a x a ≤≤时,1y 取得最小值1n a a -.同理,当21n a x a -≤≤时,函数221n y x a x a -=-+-取得最小值12n a a --;当32n a x a -≤≤时,332n y x a x a -=-+-取得最小值23n a a --;……于是我们得到:⑴ 若n 为奇数,当12n x a +=时,1122n n y x a ++=-取最小值0,此时,1212n y y y +,,…,都取得最小值,则1212n y y y y +=++…+取得最小值1112122n n n n a a a a a a -++⎛⎫⎛⎫+++-+++ ⎪ ⎪⎝⎭⎝⎭…….⑵ 若n 为偶数,当122n n a x a +≤≤时,1222n n ny x a x a +=-+-取得最小值122n n a a +-,此时,122n y y y ,,…, 都取得最小值,故122n y y y y =+++…取得最小值112122n n n n a a a a a a -+⎛⎫⎛⎫+++-+++ ⎪ ⎪⎝⎭⎝⎭…….这一点从图象上也不难看出.当1x a <或n x a >时,图象是向左右两边向上无限延伸的两条射线,而中间各段在区间[]1(121)i i a a i n +=-,,,…,上均为线段,它们首尾相连形成折线,在中间点或中间段处最低,此时函数有最小值.一、一次函数的概念【例1】 下列函数中,哪些是一次函数?哪些是正比例函数?⑴15x y +=-⑵5xy =- ⑶21y x =-- ⑷35xy =--⑸()()212y x x x =--- ⑹21x y -=【例2】 已知3a y ax -=,若y 是x 的正比例函数,则a 的值是 .【巩固】已知函数1(2)k y k x -=- (k 为常数)是正比例函数,则k = .【例3】 已知y +m 与x +n (m,n 为常数)成比例,试判断y 与x 成什么函数关系?【巩固】已知2y -与x 成正比例,当3x =时,1y =,求y 与x 之间的函数关系式,并判断它是不是正比例函例题精讲数.【巩固】已知y 是z 的正比例函数,z 是x 的一次函数.求证:y 是x 的一次函数.【例4】 函数已知28(3)1my m x -=-+,当m 为何值时,y 是x 的一次函数?【巩固】已知1(2)2m y m x m -=-++是一次函数,求它的解析式.三、一次函数的图象及性质【例5】 在坐标系中画出下列函数的图象.⑴2y x =;23y x =+;21y x =-;⑵12y x =-;122y x =-+;122y x =--【巩固】如图所示,在同一直角坐标系中,一次函数1y k x =,2y k x =,3y k x =,4y k x =的图像分别是1l ,2l ,3l ,4l ;那么1k ,2k ,3k ,4k 的大小关系是 .ll【例6】 一次函数(0)y kx b k =+≠的图像是 ;当0k >,0b >时,直线y kx b =+过 象限; 当0k >,0b <时,直线y kx b =+过 象限; 当0k <,0b >时,直线y kx b =+过 象限; 当0k <,0b <时,直线y kx b =+过 象限.(0)y kx b k =+≠的图像与x 轴、y 轴的交点分别为 、 ; 其中 、 分别叫做该一次函数在x 轴、y 轴上的截距.【例7】 已知一次函数(5)1y a x a =-+-的图象如图所示,则a 的取值范围是 .【巩固】如图,一次函数1y ax a=+的图象大致是( )A B C D【例8】 下列图形中,表示一次函数y mx n =+与正比例函数y mnx =(m 、n 为常数且0mn ≠)的图像是下图中的( )A B C D【巩固】函数y ax b =+①和y bx a =+②(0ab ≠)在同一坐标系中的图像可能是( )A .B .C .D .【例9】 一次函数(2)3y k x k =-+-的图象能否不经过第三象限?为什么?【巩固】若一次函数2(1)12ky k =-+-的图象不经过第一象限,则k 的取值范围是 .【巩固】若一次函数12(1)12y k x k =-+-的图像不过第一象限,则k 的取值范围是___________.【例10】 如果直线y ax b =+经过第一、二、三象限,那么ab 0(填“>”、“<”、“=”).【例11】 已知一次函数y kx b =+中,0kb <,则这样的一次函数的图像必经过的公共象限有 个,即第 象限.【例12】 如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )A .00k b >>,B .00k b ><,C .00k b <>,D .00k b <<,【例13】 若一次函数22222m m y x m --=+-的图象经过第一、第二、三象限,求m 的值.【巩固】已知一次函数(3)(2)y k x k =-+- (k 为常数)的图象经过一、二、三象限,求k 取值范围.【例14】 下面哪个正比例函数的图象经过一、三象限 ( )A .()23y x =- B .()3.14πy x =-C .π22y x ⎛⎫=- ⎪⎝⎭D .()526y x =-【例15】 已知一次函数y kx k =+,若y 随x 的减小而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【巩固】若0ab >,0bc <,则a ay x b c=-+经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【例16】 已知0abc =/,并且a b b c c ap c a b+++===,则直线y px p =+一定通过 象限.【巩固】已知a b c a b c a b ck c b a+--+-++===,且2596m n n +++=.问关于自变量x 的一次函数y kx m n =++的图像一定经过哪几个象限?【例17】 已知一次函数y kx b =+的图象经过(1x ,1y )和(2x ,2y )两点,且12x x <,12y y <,则( )A .0k >B .0k <,0b >C .0k <,0b <D .0k <【巩固】已知点()()1242y y -,,,都在直线122y x =-+上,则12y y ,大小关系是( ) A .12y y > B . 12y y = C .12y y < D .不能比较【巩固】若11,A x y (),22(,)B x y 为一次函数,31y x =-的图象上的两个不同点,且120x x ≠,设111y M x +=,221y N x +=,则( ) A . M N > B . M N < C . M N = D . 以上都不对课后作业1. 已知2(1)1y m x m =-+-,当m 取何值时,y 是x 的正比例函数?2.函数()2211m y m x mn -=-+在 条件下,y 是x 的一次函数;在 条件下,y 与x 成正比例函数.3.已知正比例函数y kx = (0k ≠,k 为常数),经过点(2,4),以下哪个点不在该正比例函数图图象上( ) A .(-2,-4)B .(0,0)C .(1,2)D .()1,2y x =4.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )ABCD5.如果直线y ax b=+不经过第四象限,那么ab0(填“≥”、“≤”、“=”).6.若0ab>,0bc<,则a ay xb c=--经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限7.已知函数y(32)(4)a x b=+--为正比例函数.⑴求a b、的取值范围;⑵a b、为何值时,此函数的图象过一、三象限.8.已知关于x的一次函数()372y a x a=-+-的图象与y轴交点在x轴的上方,且y随x的增大而减小,求a的取值范围.。
一次函数的性质和图像(一)课件
![一次函数的性质和图像(一)课件](https://img.taocdn.com/s3/m/d2b02a4a6d85ec3a87c24028915f804d2b168798.png)
经济问题中的应用
在经济学中,许多经济指标之间的关系可以用一次函数来描述,如价格与需求的 关系、成本与产量的关系等。通过这些实例,可以了解一次函数在经济分析中的 应用。
像会向右平移。
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济现象之间的关系,例如成本与产量的 关系、价格与需求量的关系等。
一次函数在物理学中的应用
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在工程领域的应用
02
一次函数的图像
一次函数图像的绘制
步骤二
在坐标系上选择一个点,例如 原点$(0,0)$。
步骤四
在坐标系上标出该点,即 $(0,1)$。
步骤一
确定函数表达式。例如,$y = 2x + 1$。
步骤三
使用一次函数的表达式,计算 出该点沿x轴和y轴的坐标值。 例如,$y = 2(0) + 1 = 1$。
一次函数的图像是一条直线,其斜率 为$a$,截距为$b$。
一次函数的图像可以通过平移得到, 向上平移$k$个单位得到$y = ax + b + k$,向下平移$k$个单位得到$y = ax + b - k$。
一次函数的单调性由斜率$a$决定, 当$a > 0$时,函数为增函数;当$a < 0$时,函数为减函数。
一次函数在概率统计问题中的应用
03
在概率统计问题中,一次函数可以用来描述概率分布、平均数
一次函数的图象(描点)
![一次函数的图象(描点)](https://img.taocdn.com/s3/m/00526b227f21af45b307e87101f69e314332fa31.png)
一次函数的表示方法
01
02
03
点斜式
通过已知的点$(x_1, y_1)$和斜率$k$,可以表 示为$y-y_1=k(x-x_1)$。
两点式
通过已知的两个点$(x_1, y_1)$和$(x_2, y_2)$,可 以表示为$frac{y-y_1}{xx_1}=frac{y_2-y_1}{x_2x_1}$。
一般式
一次函数的标准形式为 $y=kx+b$,其中$k$和 $b$是常数,且$k neq 0$。
02 一次函数的图象
一次函数图象的形状
线性形状
一次函数的图像是一条直线,这是因为一次函数的一般形式为y=kx+b,其中k 和b为常数,k不为0。
斜率与截距
一次函数的图像有确定的斜率和截距,斜率是k,截距是b。斜率决定了图像的 倾斜程度,截距决定了图像与y轴的交点位置。
实际问题举例
一次函数图象在经济学、物理学、工程学等领域都有广泛的应用。例如,在经济学中, 消费和收入之间的关系可以用一次函数来表示,通过分析这种关系可以了解消费者的消
费习惯和预测未来的消费趋势。
应用价值
一次函数图象能够直观地表示两个变量之间的线性关系,帮助人们更好地理解和分析实 际问题。
对未来研究的展望
一次函数图象可以用来描述物体在恒力作用下的匀速直线运 动,如速度与时间的关系。
弹簧问题
弹簧的伸长量与作用力之间的关系也可以用一次函数来表示 ,通过图象可以直观地分析弹簧的弹力与形变量之间的关系 。
一次函数图象在数学问题中的应用
线性规划
一次函数图象可以用来表示线性规划 问题中的约束条件和目标函数,通过 图象可以直观地分析最优解。
一次函数的图象(描点)
一次函数的图象和性质
![一次函数的图象和性质](https://img.taocdn.com/s3/m/8a115c7f590216fc700abb68a98271fe910eaf87.png)
周期性和对称性的应用
周期性在物理学中的应用:描述振动、波动等现象 周期性在数学分析中的应用:研究函数的性质和图像 对称性在几何学中的应用:研究图形的形状和性质 对称性在物理学中的应用:描述晶体结构和光学现象
周期性和对称性的证明
周期性证明:通过函数表达式和图像的观察,证明一次函数的周期性。 对称性证明:通过函数表达式和图像的观察,证明一次函数的对称性。 周期性和对称性的关系:探讨一次函数的周期性和对称性之间的关系。 实际应用:介绍一次函数的周期性和对称性在实际问题中的应用。
周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得当x取值时, f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为这个函数的周期。
周期函数的性质:周期函数的图像是具有规律性的重复图形,其性质与周期T 有关。例如,正弦函数和余弦函数是常见的周期函数,其周期分别为2π和π。
一次函数的周期性:一次函数y=kx+b(k≠0)的图像是一条直线,不具备周期 性。
一次函数的图象和 性质
单击此处添加副标题
汇报人:XX
目录
一次函数的图象 一次函数的奇偶性 一次函数的零点
一次函数的单调性
一次函数的周期性和对称 性
01
一次函数的图象
函数表达式和图象
函数表达式:y=kx+b,其中 k≠0
截距:表示函数图像与y轴的交点, b>0时,交点在y轴正半轴;b<0 时,交点在y轴负半轴
确定函数表达式 确定自变量的取值范围 计算对应的函数值 绘制点,连接成线
函数图象的性质
斜率表示函数的增减性
一次函数图象是一条直线
y截距表示函数与y轴交点 的位置
函数的图象可以平移和翻转
一次函数的图像课件
![一次函数的图像课件](https://img.taocdn.com/s3/m/5651d39051e2524de518964bcf84b9d528ea2cc8.png)
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
一次函数图像及其性质
![一次函数图像及其性质](https://img.taocdn.com/s3/m/5201a595e53a580216fcfe34.png)
一次函数图像及其性质一、一次函数图像1、一次函数y=kx+b 的k 、b 的值对一次函数图象的影响:① ② ③ ④①k ﹥0,b ﹥0, y =kx +b 的图象在一、二、三象限;②k ﹥0, b ﹤0, y =kx +b 的图象在一、三、四象限; ③k ﹤0,b ﹥0, y =kx +b 的图象在一、二、四象限;④k ﹤0, b ﹤0, y =kx +b 的图象在二、三、四象限。
2、一次函数的性质⑴正比例函数y=kx(k≠0)是特殊的一次函数,当k>0时,图象过一、三象限,y 随x 的增大而_增大__; 当k<0时,图象过__二、四__象限;y 随x 的增大而_减小___.⑵一次函数y=kx +b(k ≠ 0)的图象平行于直线y = kx ,可由它平移而得,当k>0时,y 随x 的增大而_增大_; 当k<0时,y 随x 的增大而__减小_k>0时,k 越大,y 增长得越快;k<0时,k 越大,减小得越快;⑴在一次函数y=kx +b 中,令y=0,得一元一次方程kx +b=0,它的根就是一次函数y=kx +b 的图象与x 轴交点的横坐标.⑵一元一次不等式kx +b>0(或kx +b<0)的解集可以看作一次函数y=kx +b 当函数值大于或小于0时相应的自变量x 值的取值范围.⑶两直线交点的坐标,就是由这两条直线的解析式组成的二元一次方程组的解.题型考点一:一次函数的增减性例1、已知关于x 的一次函数2(3)2y m x m =-++-.(1) m 为何值时,函数的图象和直线y=-x 平行? (2)m 为何值时,y 随x 的增大而减小?【变式】已知一次函数y=(3-k )x-2k 2+18. (1)k 为何值时,它的图象经过原点? (2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象与y 轴的交点在x 轴的上方? (4)k 为何值时,它的图象平行于直线y=x ? (5)k 为何值时,y 随x 的增大而减小?题型考点二:一次函数图像与象限关系例2、直线y=x+b (b>0)与直线y=kx (k<0)的交点位于()A 、第一象限B 、第二象限C 、第三象限D 、第四象限【练习】若实数a ,b 满足ab <0,且a <b ,则函数y=ax+b 的图象可能是( )题型考点三:一次函数图像的交点例3、如图,在平面直角坐标系中,线段AB 的坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是() A 、-5 B 、-2 C 、3 D 、5【练习】如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限, 则a 可能在()A 、1<a<2B 、-2<a<0C 、32a -≤≤-D 、-10<a<-4二、一次函数与一元一次方程的关系直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
第11节 一次函数的图象和性质
![第11节 一次函数的图象和性质](https://img.taocdn.com/s3/m/676c82a04b73f242336c5f9c.png)
,与 y 轴的截距为﹣ ,
由于该直线不通过第一象限,所以得到:
即
,
由①得到 a 与 b 同号;由②得到 b 与 c 同号.所以 a,b,c 同号. 故选 D
4.设 b>a,将一次函数 y=bx+a 与 y=ax+b 的图象画在同一平面直角坐标系内,则 有一组 a,b 的取值,使得下列 4 个图中的一个为正确的是( )
典例分析:
例 3:(1)直线 y=kx+b 通过第一、三、四象限,则有( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
解:若直线 y=kx+b 通过第一、三、四象限, 则必有 k>0,b<0, 故选:B.
(2)若 ac<0,bc<0,则直线 ax+by+c=0 的图形只能是( )
A.
B.
C.
D.
解:由题意知,函数的解析式即 y=﹣ x﹣ ,∵ac<0,bc<0,∴a•b>0,
∴﹣ <0,﹣ >0,故直线的斜率小于 0,在 y 轴上的截距大于 0,
故选 C.
练习:
1.若 a+b=0,则直线 y=ax+b 的图象可能是( )
A.
B.
C.
解:根据题意,得;
当 x=1 时,y=a+b=0,
(4)直线 y=kx+b(k≠0)与 x 轴的交点为(-kb,0),与 y 轴的交点为(0,b).
典例分析:
例 1:已知函数 y=(2m﹣1)x+1﹣3m,当 m 为何值时.
(1)这个函数为正比例函数; (2)这个函数为一次函数; 解:∵函数 y=(2m﹣1)x+1﹣3m, (3)函数值 y 随 x 的增大而减小(;1)当 1﹣3m=0,即 m= 时,这个函数为正比例函数; (4)这个函数图象与直线 y=x+(1 的2)交当点2m在﹣1x≠轴0,上即.m 时,这个函数为一次函数;
一次函数图像和性质ppt
![一次函数图像和性质ppt](https://img.taocdn.com/s3/m/e85421e84afe04a1b071de18.png)
y
0
x
黄沙窝学校
马晓燕
提问复习,引入新课
1、什么叫正比例函数、一次函数?它们之间有 什么关系?
一般地,形如 y=kx(k是常的数函,k数≠0,) 叫做正比 例函数; 一般地,形如 y=kx+b(k,的b是函常数数,,k≠叫0)做一次函 数。
当b=0时,y=kx+b就变成了 y=k,x所以说正比 例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状?
比一比:正比例函数y=-2x与一次函数y=- 2x+3 、y=-2x-3图象有什么异同点.
y 6
5
4
3
2
y=-2x+3
1
-6 -5 -4 -3 -2 -1 o 1 2 3 4
-1
y=-2x-3
-2
-3
-4
-5
y=-2x
-6
5 6x
观察:比较上面三个函数的相同点与不同点,根 据你的观察结果回答下列问题:
度而得到;
推广: (1) 所有一次函数y=kx+b的图象都是_一__条__直__线_ ;
(2)直线 y=kx+b与直线y=kx_互__相__平__行___;
(3)直线 y=kx+b可以看作由直线y=kx_平__移_b__个__单__位_
而得到
当b>0,向上平移b个单位; 当b<0,向下平移b个单位。
y=2x+1 y=-2x+1的图象.
-6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 x -1
-2
-3
-4
-5 -6
6.探究:观察上面四个一次函数的图象,类比正
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.3.2一次函数的图像农安县合隆中学徐亚惠一.选择题(共8小题)1.函数y=x﹣1的图象是()A.B.C.D.2.如图所示的计算程序中,y与x之间的函数关系所对应的图象(A.B.C.D.3.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.4.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.5.已知一次函数y=kx+b的图象如图所示,当x<0时,y的取值范围是()A.y>0 B.y<0 C.y>﹣2 D.﹣2<y<06.)一次函数y=﹣x﹣2的图象不经过()A.第一象限 B.第二象限C.第三象限D.第四象限7.已知一次函数y=kx+3,y随x的增大而减小,那么它的图象可能是()A.B.C.D.8.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>2二.填空题(共6小题)9.函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.10.已知一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是_________.11.如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是_________.12.一次函数y=mx+n的图象如图所示,则代数式|m+n|﹣|m﹣n|化简后的结果为_________.13.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_________.14.已知一次函数y=kx+b的图象经过点A(2,1)(如图),当x_________时,y≥1.三.解答题(共6小题)15.如图,在平面直角坐标系中,画出函数y=2x﹣4的图象,并写出图象与坐标轴交点的坐标.16.已知一次函数y=kx+b的图象如图所示(1)当x<0时,y的取值范围是_________;(2)求k,b的值.17.已知函数y=﹣2x+6与函数y=3x﹣4.(1)在同一平面直角坐标系内,画出这两个函数的图象;(2)求这两个函数图象的交点坐标;(3)根据图象回答,当x在什么范围内取值时,函数y=﹣2x+6的图象在函数y=3x﹣4的图象的上方?18.作出函数y=x﹣2的图象,求出:(1)与坐标轴的交点坐标;(2)x取何值时,y>0?x取何值时,y<0?(3)图象与坐标轴所围成的三角形面积.19.请画出一次函数y=﹣x﹣3的图象,并且求出该图象与x轴、y轴围成的三角形面积.20.作出函数y=x﹣4的图象,并根据图象回答问题:(1)当x取何值时,y>﹣4?(2)当﹣1≤x≤2时,求y的取值范围.17.3.2一次函数的图像参考答案与试题解析一.选择题(共8小题)1.函数y=x﹣1的图象是()A.B.C.D.考点:一次函数的图象.专题:数形结合.分析:根据函数解析式求得该函数图象与坐标轴的交点,然后再作出选择.解答:解:∵一次函数解析式为y=x﹣1,∴令x=0,y=﹣1.令y=0,x=1,即该直线经过点(0,﹣1)和(1,0).故选:D.点评:本题考查了一次函数图象.此题也可以根据一次函数图象与系数的关系进行解答.2.如图所示的计算程序中,y与x之间的函数关系所对应的图象(A.B.C. D.考点:一次函数的图象.分析:先根据程序框图列出正确的函数关系式,然后再根据函数关系式来判断其图象是哪一个.解答:解:根据程序框图可得y=(﹣x)×3+2=﹣3x+2,化简,得y=﹣3x+2,故选:C.点评:本题考查了一次函数图象,利用程序框图列出函数关系式、以及函数的图象等知识点,解题的关键是首先根据框图写出正确的解析式.3.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C. D.考点:一次函数的图象;正比例函数的图象.专题:数形结合.分析:根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.解答:解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.点评:此题考查一次函数,正比例函数中系数及常数项与图象位置之间关系.解题时需要“数形结合”的数学思想.4.一次函数y=kx﹣k(k<0)的图象大致是()A.B.C. D.考点:一次函数的图象.分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解答:解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.点评:此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.5.已知一次函数y=kx+b的图象如图所示,当x<0时,y的取值范围是()A.y>0 B.y<0 C.y>﹣2 D.﹣2<y<0专题:数形结合.分析:通过观察图象得到x<0时,图象在y轴的左边,即可得到对应的y的取值范围.解答:解:当x<0时,图象在y轴的左边,所以对应的y的取值范围为:y>﹣2.故选C.点评:本题考查了一次函数的图象:一次函数的图象是一条直线,只要过两个确定的点的直线就可得到一次函数图象.也考查了数形结合的思想的运用.6.一次函数y=﹣x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数的图象.分析:观察函数的解析式,找到k、b的值,结合一次函数中系数及常数项与图象分布之间关系,可得答案.解答:解:分析次函数y=﹣x﹣2,可得k=﹣1<0,b=﹣2<0,则其图象不经过第一象限;故选A.点评:此题考查一次函数中系数及常数项与图象分布之间关系.7.已知一次函数y=kx+3,y随x的增大而减小,那么它的图象可能是()A.B.C.D.考点:一次函数的图象.分析:根据y随x的增大而减小,得k<0,因为b=3,所以与y轴的正半轴相交,从而得出答案.解答:解:∵一次函数y=kx+3,y随x的增大而减小,∴k<0,∴图象过第二和第四象限,∵b=3,∴与y轴的正半轴相交,故选B.点评:本题考查了一次函数的图象,当k>0,图象过第一、三象限,k<0,图象过二、四象限.8.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>2考点:一次函数的图象.分析:根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解解答:解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.点评:此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解.二.填空题(共6小题)9.函数y=kx+b的图象如图所示,当y<0时,x的取值范围是x>2.考点:一次函数的图象.分析:根据函数图象与x轴的交点坐标,当y<0即图象在x轴下侧,求出即可.解答:解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知x>2时,当y<0即图象在x轴下侧,∴当y<0时,x>2.故答案为:x>2.点评:此题考查了一次函数的图象以及考查学生的分析能力和读图能力.运用观察法求自变量取值范围通常是从交点观察两边得解.10.已知一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是y<﹣2.考点:一次函数的图象.分析:根据一次函数过(2,0),(0,﹣4)求出k的值,得到一次函数解析式,然后用y表示x,再解关于x的不等式即可.解答:解:一次函数y=kx+b的图象与y轴交于点(0,﹣4),∴b=﹣4,与x轴点(2,0),∴0=2k﹣4,∴k=2,∴y=kx+b=2x﹣4,∴x=(y+4)÷2<1,∴y<﹣2.故答案为y<﹣2.点评:本题利用了一次函数与x轴y轴的交点坐标用待定系数法求出k、b的值.同时还考查了数形结合的应用.11.如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是x>2.考点:一次函数的图象.专题:压轴题;数形结合.分析:根据一次函数的图象可直接进行解答.解答:解:由函数图象可知,此函数是减函数,当y=3时x=2,故当y<3时,x>2.故答案为:x>2.点评:本题考查的是一次函数的图象,利用数形结合求出x的取值范围是解答此题的关键.12.一次函数y=mx+n的图象如图所示,则代数式|m+n|﹣|m﹣n|化简后的结果为2n.考点:一次函数的图象.专题:计算题.分析:根据一次函数图象的特点确定m﹣n的符号,代入原式计算即可.解答:解:由一次函数的性质可知,m>0,n>0,即m+n>0;且当x=﹣1时,y<0,即﹣m+n<0,∴m﹣n>0.所以|m+n|﹣|m﹣n|=m+n﹣(m﹣n)=2n.点评:主要考查一次函数的性质和绝对值性质,要会从图象上找到所需要的相等关系或不等关系.然后再把绝对值符号去掉.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简,即可求解.13.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是x<2.考点:一次函数的图象.专题:数形结合.分析:首先根据图象可知,该一次函数y=kx+b的图象经过点(2,0)、(0,3).因此可确定该一次函数的解析式为y=.由于y>0,根据一次函数的单调性,那么x的取值范围即可确定.解答:解:由图象可知一次函数y=kx+b的图象经过点(2,0)、(0,3).∴可列出方程组,解得,∴该一次函数的解析式为y=,∵<0,∴当y>0时,x的取值范围是:x<2.故答案为:x<2.点评:本题主要考查了一次函数的图象性质,要掌握一次函数的单调性以及x、y交点坐标的特殊性才能灵活解题.14.已知一次函数y=kx+b的图象经过点A(2,1)(如图),当x≤2时,y≥1.考点:一次函数的图象.专题:数形结合.分析:仔细读图,确定A点的坐标,直接判断即可.解答:解:根据题意和图示可知,当y≥1即直线在点A的上方时,x≤2.点评:主要考查了一次函数的图象性质和学生的分析能力和读图能力,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.三.解答题(共6小题)15.如图,在平面直角坐标系中,画出函数y=2x﹣4的图象,并写出图象与坐标轴交点的坐标.考点:一次函数的图象.解答:解:令x=0,y=﹣4,令y=0,则2x﹣4=0,解得x=2,所以,与坐标轴的交点为(0,﹣4),(2,0).点评:本题考查了一次函数的图象,主要利用了一次函数图象与坐标轴的交点的求法,以及两点法作一次函数图象.16.知一次函数y=kx+b的图象如图所示(1)当x<0时,y的取值范围是y<﹣4;(2)求k,b的值.考点:一次函数的图象;待定系数法求一次函数解析式.专题:计算题.分析:(1)由图得,当x=0时,y=﹣4,所以,当x<0时,y<﹣4;(2)函数图象过(2,0)和(0,﹣4)两点,代入可求出k、b的值;解答:解:(1)由图得,当x<0时,y<﹣4;(2)由图可得:函数图象过(2,0)和(0,﹣4)两点,代入得,,解得:k=2,b=﹣4,故答案为y<﹣4,k=2,b=﹣4.点评:本题考查了一次函数图象,用待定系数法,由图可选取两点代入求出k、b的值,应熟练运用.17.已知函数y=﹣2x+6与函数y=3x﹣4.(1)在同一平面直角坐标系内,画出这两个函数的图象;(2)求这两个函数图象的交点坐标;(3)根据图象回答,当x在什么范围内取值时,函数y=﹣2x+6的图象在函数y=3x﹣4的图象的上方?考点:一次函数的图象;一次函数与二元一次方程(组).专题:作图题.分析:(1)可用两点法来画函数y=﹣2x+6与函数y=3x﹣4的图象;(2)两函数相交,那么交点的坐标就是方程组的解;(3)函数y=﹣2x+6的图象在函数y=3x﹣4的图象的上方,即﹣2x+6>3x﹣4,解得x<2.解答:解:(1)函数y=﹣2x+6与坐标轴的交点为(0,6),(3,0)函数y=3x﹣4与坐标轴的交点为(0,﹣4),(,0)作图为:(2)解:根据题意得方程组解得即交点的坐标是(2,2)∴两个函数图象的交点坐标为(2,2)(3)由图象知,当x<2时,函数y=﹣2x+6的图象在函数y=3x﹣4的图象上方.点评:本题主要考查了一次函数的图象的画法及位置关系,难度不大.18.作出函数y=x﹣2的图象,求出:(1)与坐标轴的交点坐标;(2)x取何值时,y>0?x取何值时,y<0?(3)图象与坐标轴所围成的三角形面积.考点:一次函数的图象;一次函数的性质.分析:(1)令x=0时,y=﹣2,y=0时,x=4,可确定与坐标轴的交点坐标.(2)根据图示可以直接得到答案.(3)根据三角形的面积公式进行解答;解答:解:(1)当x=0时,y=﹣2,当y=0时,x=4,即直线y=x﹣2与坐标轴的交点坐标为(0,﹣2),(4,0),过这两点作直线即为y=x﹣2的图象,(2)根据图象知,当x>4时,y>0,当x<4时,y<0,(3)∵A(0,﹣2),B(4,0),∴OA=2,OB=4∴S△AOB=OA•OB=×2×4=4,即图象与坐标轴围成的三角形面积是4;点评:本题考查了直线与坐标轴的交点,一次函数的性质以及一次函数的图象.解题时,要求学生具备一定的读图能力.19.请画出一次函数y=﹣x﹣3的图象,并且求出该图象与x轴、y轴围成的三角形面积.考点:一次函数的图象;一次函数图象上点的坐标特征.分析:先根据直线y=﹣x﹣3求出直线与两坐标轴的交点,再根据三角形的面积公式即可解答.解答:解:如图所示,直线AB就是一次函数y=﹣x﹣3的图象;∵函数的解析式可知,函数图象与x轴的交点坐标为(﹣6,0),与y轴的交点坐标为(0,﹣3),∴直线y=﹣x﹣3与两坐标轴围成的三角形面积=×6×3=9.点评:此题属简单题目,解答此题的关键是熟知两坐标轴上点的坐标特点,及三角形的面积公式.20.作出函数y=x﹣4的图象,并根据图象回答问题:(1)当x取何值时,y>﹣4?(2)当﹣1≤x≤2时,求y的取值范围.考点:一次函数的图象.分析:(1)根据函数与不等式的关系,可得不等式的解集;(2)根据函数与不等式的关系,可得不等式组的解集.解答:解:如图:(1)观察图象:由y>﹣4,得x>0;(2)观察图象:由﹣1≤x≤2,得﹣4.5≤y≤﹣3.点评:本题考查了一次函数图象,利用了函数与不等式的关系,观察图象是解题关键.。