新课标高考数学模拟试题文科数学(含答案)
新课标高考数学模拟试题文科数学(含答案)
新课标高考模拟试题数学文科一、选择题1.已知集合2{|1},{|20}A x x B x x x =≤=-<,则A B = ( )A .(0,1)B .C .(]0,1D .[)1,1-2.若(1,1),(1,1),(2,4)a b c ==-=-,则c 等于 ( ) A .-a+3b B .a-3b C .3a-b D .-3a+b3.已知四棱锥P —ABCD 的三视图如右图所示,则四棱锥P —ABCD的体积为( )A .13B .23C .34D .384.已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如图所示,则()f x 的解析式是( ) A .()sin(3)()3f x x x R π=+∈ B .()sin(2)()6f x x x R π=+∈C .()sin()()3f x x x R π=+∈ D .()sin(2)()3f x x x R π=+∈6.在ABC ∆中,1tan ,cos 2A B ==,则tan C 的值是( )A .-1B .1CD .-27.设m ,n 是两条不同的直线,,,αβγ是三个不同的平面,有下列四个命题: ①若,,;m m βαβα⊂⊥⊥则 ②若//,,//;m m αβαβ⊂则③若,,,;n n m m αβαβ⊥⊥⊥⊥则 ④若,,,.m m αγβγαβ⊥⊥⊥⊥则其中正确命题的序号是 ( )A .①③B .①②C .③④D .②③8.两个正数a 、b 的等差中项是5,2,a b >且则双曲线22221x y a b -=的离心率e 等于( )A B C D9.已知定义域为R 的函数()f x 在区间(4,)+∞上为减函数,且函数(4)y f x =+为偶函数,则( )A .(2)(3)f f >B .(2)(5)f f >C .(3)(5)f f >D .(3)(6)f f >10.数列{}n a 中,372,1a a ==,且数列1{}1n a +是等差数列,则11a 等于 ( )A .25-B .12C .23D .511.已知函数0,()ln(1),0.x x f x x x ≤⎧=⎨+>⎩若2(2)()f x f x ->,则实数x 的取值范围是( )A .(,1)(2,)-∞-+∞B .(,2)(1,)-∞-+∞C .(1,2)-D .(2,1)-12.若函数1()axf x e b=的图象在x=0处的切线l 与圆22:1C x y +=相离,则(,)P a b 与圆C 的位置关系是( ) A .在圆外 B .在圆内 C .在圆上 D .不能确定第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分。
高考数学文科模拟试卷(有答案)
高考数学文科模拟试卷(有答案)查字典数学网为大家提供2021年高考数学文科模拟试卷,供大家参考练习!第一卷一、选择题(本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只要一项为哪一项契合标题要求的)1.集合,那么A. B.C. D.2.假定,那么A. B.C. D.3.,那么是的A. 充沛不用要条件B. 必要不充沛条件C. 充要条件D. 既不充沛也不用要条件4.一个几何体的三视图如下图,那么该几何体的体积为A. 4B.C. 8D.5.两个不重合的平面和两条不同直线,那么以下说法正确的选项是A. 假定那么B. 假定那么C. 假定那么D. 假定那么6.假定,满足的解中的值为0的概率是A. B.C. D.7.在中,角所对应的边区分为,.假定,那么A. B. 3C. 或3D. 3或8.定义域为的函数在区间上单调递减,并且函数为偶函数,那么以下不等式关系成立的是A. B.C. D.9.,,那么的最小值是A. B.C. D.10.关于的不等式在上恒成立,那么实数的取值范围为A. B.C. D.第二卷二、填空题(本大题共7小题,每题4分,共28分)11.设函数.假定,那么__ ▲__.12.依照如图的顺序框图执行,输入的结果是__ ▲__.13. 设实数满足约束条件那么的最大值为__ ▲__.14.圆及直线,那么圆心到直线距离为__ ▲__.15.过双曲线上恣意一点,作与实轴平行的直线,交两渐近线、两点,假定,那么该双曲线的离心率为__ ▲__.16.假定正数满足,那么的最大值为__ ▲__.17.实数,方程有且仅有两个不等实根,且较大的实根大于3,那么实数的取值范围__ ▲__.三、解答题(本大题共5小题,共72分)18.(此题总分值14分)函数,且其图象的相邻对称轴间的距离为.(I) 求在区间上的值域;(II)在锐角中,假定求的面积.19.(此题总分值14分)数列的前项和,.(Ⅰ)求证:数列是等差数列;(Ⅱ)假定,求数列的前项和.20.(此题总分值14分)如图三棱锥中,,是等边三角形.(Ⅰ)求证:;(Ⅱ)假定二面角的大小为,求与平面所成角的正弦值. 21.(此题总分值15分)函数.(Ⅰ)事先,试讨论的单调性;(Ⅱ)设,事先,假定对恣意,存在,使,务实数取值范围.22. (此题总分值15分)抛物线上有一点到焦点的距离为.(Ⅰ)求及的值.(Ⅱ)如图,设直线与抛物线交于两点,且,过弦的中点作垂直于轴的直线与抛物线交于点,衔接.试判别的面积能否为定值?假定是,求出定值;否那么,请说明理由.2021届高三高考模拟数学(文科)试卷参考答案与评分意见一、选择题(本大题共10小题,每题5分,共50分) DADCB BCDAB二、填空题(本大题共7小题,每题4分,共28分)11.4 12.31 13.5 14.15. 16. 17.三、解答题(本大题共5小题,共72分)18.(此题总分值14分)解:(I)2分3分由条件知,,又,. 4分的值域是. 7分(II)由,得, 9分由及余弦定理,得, 12分的面积. 14分19.(此题总分值14分)解:(I),事先,,, 1分事先,, 2分, 4分,又,是首项为1,公差为1的等差数列. 7分(II),, 8分. 9分,② 11分①-②得,, 13分. 14分20.(此题总分值14分)解:(I)取的中点,衔接. 2分是等边三角形,, 4分又,面,6分(II)由(I)及条件知,二面角的平面角为, 8分过点作,由(I)知面,,又,面, 10分为与平面所成角, 11分令,那么,. 14分21.(此题总分值15分)解:(I)=() 3分事先,,函数在单调递增; 4分事先,,函数在单调递减; 5分事先,,时,,函数在上单调递减;时,,函数在上单调递增;时,,函数在上单调递减. 7分(II)假定对恣意,存在,使成立,只需 9分由(I)知,事先,在单调递减,在单调递增., 11分法一:,对称轴,当,即时,,得:;当,即时,,得:;当,即时,,得:. 14分综上:. 15分法二:参变量分别:, 13分令,只需,可知在上单调递增,,. 15分22.(此题总分值15分)解:(I)焦点, 1分, 3分,代入,得 5分(II)联立,得:,即, 6分, 8分, 11分, 13分的面积 15分注:其他解法可参考给分.经过精心的整理,有关2021年高考数学文科模拟试卷的内容曾经出现给大家,祝大家学习愉快!。
2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析
2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。
高考数学模拟试题文科数学含答案.docx
新课标高考模拟试题数学文科本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150 分。
考试时间120 分钟。
参考公式:样本数据x1, x2 ,x n 的标准差锥体体积公式其中 x 为样本平均数其中 S 为底面面积, h 为高柱体体积公式球的表面积、体积公式其中 S 为底面面积, h 为高其中 R 为球的半径第Ⅰ卷(选择题共 60 分)一、选择题1.已知集合A{ x | x1}, B{ x | x22x0} ,则A I B =()A.( 0,1)B. C.0,1 D.1,12.若a(1,1),b(1,1),c(2,4),则 c 等于()A. -a+3b B .a-3b C.3a-b D. -3a+b3.已知四棱锥 P—ABCD 的三视图如右图所示,则四棱锥P— ABCD 的体积为()A.1B.2C.33 334D .84.已知函数f (x)Asin(x)( A0,0,||) 的部分图象如图所示,则 f ( x)2的解析式是()A.f (x)sin(3 x)( x R)B .f(x)sin(2x)(x)36R C.f (x)sin( x)( x R) D .f (x)sin(2 x)( x R)335.阅读下列程序,输出结果为 2 的是()6.在ABC 中,tan A 1,cos B 3 10,则 tanC 的值是()210A. -1 B .1 C.3 D .-27.设 m,n 是两条不同的直线,, ,是三个不同的平面,有下列四个命题:①若 m,, 则 m;②若/ / , m,则 m / / ;③若 n, n, m, 则 m; ④若,, m,则 m.其中正确命题的序号是A .①③B .①②C.8.两个正数a、b 的等差中项是心率 e 等于35A .B .C.23 9.已知定义域为R 的函数 f (则()A .f (2) f (3)B .10.数列{ a n}中,a32, a721A .B .C.52xx 11.已知函数 f ( x)ln( x ()A .(,1) U (2, )C.(1,2)12.若函数f ( x) 1e ax的图bC 的位置关系是()A .在圆外 B.在圆内第二、填空题(本大题共 4 小题13.复数z325的共轭复4i14.右图为矩形,长为5,宽为数得落在阴影部分的黄豆数部分的面积为。
2020-2021学年(新课标i卷)高考数学文科模拟试题及答案解析
绝密★启封并使用完毕前试题类型:普通高等学校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )13(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=(A (B C )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y=2sin (2x+π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y=2sin(2x+π4) (B )y=2sin(2x+π3) (C )y=2sin(2x –π4) (D )y=2sin(2x –π3)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c<log b c (B )log c a<log c b (C )a c<b c(D )c a>c b(9)函数y=2x 2–e |x|在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n=1,则输出,x y 的值满足(A )2y x =(B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为(A )3(B )22(C )3(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a=(x ,x+1),b=(1,2),且a ⊥b ,则x=. (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x+2a 与圆C :x 2+y 2-2ay-2=0相交于A ,B 两点,若,则圆C 的面积为。
高三数学模拟试卷文科答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c之间的关系为()A. a+b+c=0B. a+b+c=1C. 2a+b=0D. 2a+b=1答案:C解析:因为函数f(x) = ax^2 + bx + c在x=1时取得极值,所以f'(1)=0,即2a+b=0。
2. 已知等差数列{an}的公差为d,首项为a1,第n项为an,则an = ()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A解析:等差数列的通项公式为an = a1 + (n-1)d。
3. 下列各式中,等式成立的是()A. sin(α+β) = sinαcosβ + cosαsinβB. cos(α+β) = cosαcosβ - sinαsinβC. tan(α+β) = tanαtanβD. cot(α+β) = cotαcotβ答案:B解析:根据三角函数的和角公式,cos(α+β) = cosαcosβ - sinαsinβ。
4. 已知复数z = a + bi(a,b∈R),若|z| = 1,则复数z的实部a和虚部b之间的关系为()A. a^2 + b^2 = 1B. a^2 - b^2 = 1C. a^2 + b^2 = 0D. a^2 - b^2 = 0答案:A解析:复数z的模|z| = √(a^2 + b^2),由|z| = 1,得a^2 + b^2 = 1。
5. 已知函数f(x) = x^3 - 3x,则f(x)的图像关于点()A. (0,0)B. (1,0)C. (-1,0)D. (0,1)答案:B解析:由f(1) = 1^3 - 31 = -2,f(0) = 0^3 - 30 = 0,得f(x)的图像关于点(1,0)。
6. 下列各式中,正确的是()A. loga(b^2) = 2logabB. loga(b^3) = 3logabC. loga(ab) = 1D. loga(a^2) = 2答案:B解析:根据对数的运算法则,loga(b^3) = 3logab。
【精品高考数学】[2020年新课标III 高考仿真模拟卷-文科数学]+答案
2020年新课标III高考仿真模拟卷数学(文科)2020.4满分:150分考试时间:120分钟第Ⅰ卷(选择题共60分)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若2020i3i1iz-=+,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.A地的天气预报显示,A地在今后的三天中,每一天有强浓雾的概率为30%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生09-之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:402978191925273842812479569683 231357394027506588730113537779则这三天中至少有两天有强浓雾的概率近似为()A.14B.25C.710D.153.《海岛算经》中有这样一个问题,大意为:某粮行用芦席围成一个粮仓装满米,该粮仓的三视图如图所示(单位:尺,1尺0.33≈米),已知1斛米的体积约为1.62立方尺,圆周率约为3,则估算出该粮仓存放的米约为( )A.43斛B.45斛C.47斛D.49斛4.若执行下图的程序框图,则输出i的值为()A .2B .3C .4D .55.已知等比数列{}n a 的前n 项和为n S ,且54S =,1010S =,则15S =( )A .16B .19C .20D .256.若sin 2cos αα=,则2cos sin 2αα+=( )A .125 B .95 C .1 D .457.若圆226:80M x y x y +-+=上至少有3个点到直线:1(3)l y k x -=-的距离为52,则k 的取值范围是( )A .[3,0)3]-⋃B .[3,3]C .(,3]3,)-∞⋃+∞D .(,3)3,)-∞⋃+∞8.若方程ln x m =有两个不等的实根1x 和2x ,则2212x x +的取值范围是( )A .()1,+∞B .)2,+∞C .()2,+∞D .()0,19.函数()()22sin x xf x x -=-的图像可能是( )A .B .C .D .10.正三棱柱111ABC A B C -的所有棱长都为2,则异面直线1AB 与1BC 所成角的余弦值为( )A .12B .14C .23D .6411.若不等式0x x xe e a -+-≥的解集为R ,则实数a 的取值范围是( )A .1,e e⎛⎤-∞+ ⎥⎝⎦B .(],0-∞C .(],1-∞ D .221,e e ⎛⎤-∞+⎥⎝⎦12.已知椭圆()222210x y a b a b +=>>的左右焦点分别为1F ,2F ,抛物线()220y px p =>的焦点为2F ,设两曲线的一个交点为P ,若221216PF F F p ⋅=u u u u v u u u u v ,则椭圆的离心率为( )A .12B 2C 3D 3第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
高三数学文科模拟考试 (含答案)
高三数学文科模拟考试 (含答案)高三模拟考试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共4页,满分150分,考试时间120分钟。
考生作答时,请将答案涂在答题卡上,不要在试题卷和草稿纸上作答。
考试结束后,请将答题卡交回。
第Ⅰ卷(选择题,共60分)注意事项:请使用2B铅笔在答题卡上涂黑所选答案对应的标号。
第Ⅰ卷共12小题。
1.设集合A={x∈Z|x+1<4},集合B={2,3,4},则A∩B的值为A.{2,4}。
B.{2,3}。
C.{3}。
D.空集2.已知x>y,且x+y=2,则下列不等式成立的是A.x1.D.y<-113.已知向量a=(x-1,2),b=(x,1),且a∥b,则x的值为A.-1.B.0.C.1.D.24.若___(π/2-θ)=2,则tan2θ的值为A.-3.B.3.C.-3/3.D.3/35.某单位规定,每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费。
某职工某月缴水费55元,则该职工这个月实际用水为()立方米。
A.13.B.14.C.15.D.166.已知命题p:“存在实数x使得e^x=1”,命题q:“对于任意实数a和b,如果a-1=b-2,则a-b=-1”,下列命题为真的是A.p。
B.非q。
C.p或q。
D.p且q7.函数f(x)满足f(x+2)=f(x),且当-1≤x≤1时,f(x)=|x|。
若函数y=f(x)的图象与函数y=log_a(x)(a>0且a≠1)的图象有且仅有4个交点,则a的取值集合为A.(4,5)。
B.(4,6)。
C.{5}。
D.{6}8.已知函数f(x)=sin(θx)+3cos(θx)(θ>0),函数y=f(x)的最高点与相邻最低点的距离是17.若将y=f(x)的图象向右平移1个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是A.x=1.B.x=2.C.x=5.D.x=6删除了格式错误的部分,对每段话进行了简单的改写,使其更流畅易懂。
【VIP专享】新课标高考数学模拟试题文科数学(含答案)
3
D.
8
V 1 Sh 3
6
3
6.在 ABC 中, tan A 1 , cos B 3 10 ,则 tan C 的值是
A.-1 B.1 C. 3 D.-2
2
10
7.设 m,n 是两条不同的直线, , , 是三个不同的平面,有下列四个命题:
①若 m , ,则m ; ②若 / / , m ,则m / / ;
f (x) 的解析式是( )
A. f (x) sin(3x )(x R) B. f (x) sin(2x )(x R)
3
C. f (x) sin(x )(x R) D. f (x) sin(2x )(x R)
5.阅读下列程序,输出结果为 2 的是( )
海南有成教育
3
1
新课标高考模拟试题
数学文科 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分 150 分。考试时间 120 分
钟。 参考公式:
样本数据 x1, x2 , xn 的标准差
S
1 n [(x1
其中 x 为样本平均数
柱体体积公式
V Sh
x)2
(x2
x)2
锥体体积公式
(xn
x)2 ]
其中 S 为底面面积,h 为高
2.若 a (1,1),b (1, 1), c (2, 4) ,则 c 等于 ( )
A.-a+3b B.a-3b C.3a-b D.-3a+b
3.已知四棱锥 P—ABCD 的三视图如右图所示,则四棱锥 P—ABCD
的体积为( )
1
A.
3
2
B.
3
3
C.
4
4.已知函数 f (x) Asin(x )( A 0, 0,| | ) 的部分图象如图所示,则 2
高三数学模考文科试卷答案
一、选择题(每题5分,共50分)1. 【答案】C解析:根据函数的定义,当x=0时,f(x)=0,因此C选项正确。
2. 【答案】A解析:由等差数列的性质可知,第n项an=a1+(n-1)d,其中d为公差。
代入题目中的数据,得a5=a1+4d=10,a10=a1+9d=30,解得a1=2,d=4,因此a1+a5=2+10=12,A选项正确。
3. 【答案】D解析:根据复数的性质,实部相同,虚部相反的两个复数互为共轭复数。
因此,-1-2i的共轭复数为-1+2i,D选项正确。
4. 【答案】B解析:由三角函数的性质可知,sin(π/2-x)=cosx,因此B选项正确。
5. 【答案】C解析:根据向量的数量积公式,a·b=|a||b|cosθ,其中θ为a和b的夹角。
由题意可知,|a|=|b|=2,且a和b的夹角θ=π/3,代入公式得a·b=2×2×cos(π/3)=2,C选项正确。
二、填空题(每题5分,共25分)6. 【答案】x=1解析:由一元二次方程的定义可知,x=1是方程x^2-3x+2=0的解。
7. 【答案】a=-2,b=1解析:根据韦达定理,一元二次方程ax^2+bx+c=0的根满足x1+x2=-b/a,x1x2=c/a。
代入题目中的数据,得x1+x2=-b/a=-1/2,x1x2=c/a=-1/2,解得a=-2,b=1。
8. 【答案】π解析:由三角函数的性质可知,sin(π/2)=1,因此π/2的对应角是π。
9. 【答案】3解析:由等比数列的性质可知,an=a1q^(n-1),其中q为公比。
代入题目中的数据,得a5=a1q^4=80,a1q^2=20,解得q=√(80/20)=2,因此a1=20/q=10,所以a1+a5=10+80=90。
10. 【答案】1/2解析:由复数的性质可知,|z|=√(a^2+b^2),其中z=a+bi。
代入题目中的数据,得|z|=√(1^2+1^2)=√2,因此z的模为√2。
高三数学模拟试题(文科)及答案
高三数学模拟试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.1.已知x x x f 2)(2-=,且{}0)(<=x f x A ,{}0)(>'=x f x B ,则B A 为( ) A .φB .{}10<<x xC .{}21<<x xD .{}2>x x2.若0<<b a ,则下列不等式中不能成立....的是 ( )A .22b a > B .b a >C .a b a 11>-D .ba 11> 3.已知α是平面,b a ,是两条不重合的直线,下列说法正确的是( ) A .“若αα⊥⊥b a b a 则,,//”是随机事件 B .“若αα//,,//b a b a 则⊂”是必然事件 C .“若βαγβγα⊥⊥⊥则,,”是必然事件D .“若αα⊥=⊥b P b a a 则,, ”是不可能事件4.若0x 是方程x x=)21(的解,则0x 属于区间( )A .(23,1) B .(12,23) C .(13,12) D .(0,13) 5.一个几何体按比例绘制的三视图如图所示(单位:m ),则该几何体的体积为( )A .349m B .337mC .327mD .329m 6.若i 为虚数单位,已知),(12R b a iibi a ∈-+=+,则点),(b a 与圆222=+y x 的关系为( )A .在圆外B .在圆上C .在圆内D .不能确定7.在ABC ∆中,角A 、B 、C 所对的边长分别为a 、b 、c ,设命题p :AcC b B a sin sin sin ==,命题q : ABC ∆是等边三角形,那么命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件.C .充要条件D .既不充分也不必要条件8.已知函数12++=bx ax y 在(]+∞,0单调,则b ax y +=的图象不可能...是( )A .B .C .D .9.如图是网络工作者用来解释网络运作的蛇形模型:数字1出现在第一行;数字2,3出现在第二行;数字6,5,4(从左到右)出现在第三行;数字7,8,9,10出现在第四行,依此类推2011出现在( )A .第63行,从左到右第5个数B .第63行,从左到右第6个数C .第63行,从左到右第57个数D .第63行,从左到右第58个数10.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 引它到渐进线的垂线,垂足为M ,延长FM 交y 轴于E ,若FM 2=,则该双曲线离心率为( )A .23B .26C .3D .3二、填空题:本大题共7小题,每小题4分,共28分。
高考数学模拟试卷(文科)【附答案】
高考数学模拟试卷(文科)【附答案】本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟.试卷总分为150分.请考生将所有试题的答案涂、写在答题卷上.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.复数1ii -的共轭复数为 A .1122i -+ B .1122i + C .1122i - D .1122i --2.已知全集U R =,集合{}31<<=x x A ,{}2>=x x B ,则U A C B = A. {}21≤<x x B. {}32<<x x C. {}21<<x x D. {}2≤x x 3.设R y x ∈,,那么“0>>y x ”是“1>yx”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知实数列2,,,,1--z y x 成等比数列,则xyz =A .4-B .4±C .22-D .22±5.已知不重合的直线m 、和平面βα、,且βα⊂⊥l m ,,给出下列命题:①若α∥β,则l m ⊥;②若α⊥β,则l m //;③若l m ⊥,则α∥β;④若l m //,则βα⊥.其中正确命题的个数是A .B .2C .3D .46.对任意的实数k ,直线1-=kx y 与圆02222=--+x y x 的位置关系是A .相离B .相切C .相交D .以上三个选项均有可能7. 已知双曲线22221(0,0)x y a b a b -=>>与椭圆15922=+y x 有公共焦点,右焦点为F ,且两支曲线在第一象限的交点为P ,若2=PF ,则双曲线的离心率为 A .5 B .3 C .21D .2 8. 函数)sin()(ϕω+=x A x f (0,0>>ωA )的图象如右图所示,为了得到x A x g ωsin )(=的图象,可以将)(x f 的图象A .向右平移6π个单位长度 B .向左平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移3π个单位长度9.在ABC ∆中,M 是BC 的中点,1=AM ,点P 在AM 上且满足2=,则()+⋅的值是A .21 B .94 C .21- D .94-10.设()x f 是定义在R 上的奇函数,且当0≥x 时,()2x x f =.若对任意的[]2,+∈a a x , 不等式()()x fa x f 2≥+恒成立,则实数a 的取值范围是A .0≤aB .2≥aC .2≤aD .0≥a第Ⅱ卷二、填空题:本大题有7小题,每小题4分,共28分.把答案填在答题卷的相应位置.11. 某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取____名学生. 12.若某程序框图如图所示,则该程序运行后输出的值是13. 一空间几何体三视图为如图所示的直角三角形与直角梯形,则该几何体的体积为14. 设y x Z +=2,其中实数y x ,满足50100,0x y x y x y +-≤⎧⎪--≤⎨⎪≥≥⎩,则Z 的最大值是15. 记一个两位数的个位数字与十位数字的和为ξ.若ξ是不超过5的奇数,从这些两位数中任取一个,其个位数为0的概率为16.对任意的实数R x ∈,不等式012≥++x a x 恒成立,则实数a 的取值范围为 17.已知0,0>>b a ,()()111=--b a ,则)1)(1(22--b a 的最小值为三.解答题:本大题共5小题,满分72分.解答应写出文字说明,证明过程或演算步骤. 18.(本题满分14分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3C π=,5b =,ABC∆的面积为. (Ⅰ)求,a c 的值; (Ⅱ)求sin 6A π⎛⎫+⎪⎝⎭的值. 19.(本题满分14分)已知等差数列{}n a 满足62,10253=-=a a a .(Ⅰ)求n a ;(Ⅱ)数列{}n b 满足()()11212n n n n b a n --⎧⎪=⎨⎪⎩为奇数为偶数 , n T 为数列{}n b 的前n 项和,求2n T .20.(本小题满分14分)如图在梯形ABCD 中,DC AB //,E 、F 是线段AB 上的两点,且AB DE ⊥,AB CF ⊥,2,3===FB EF CF ,G 为FB 的中点,设t AE =,现将BCF ADE ∆∆,分别沿CF DE ,折起,使A 、B 两点重合于点P ,得到多面体PEFCD . (Ⅰ)求证://PD 平面EGC ;(Ⅱ)当⊥EG 面PFC 时,求DG 与平面PED 所成角的正切值.21.(本题满分15分)已知函数()2ln 2-+=x a xx f .若曲线()y f x =在点(1,(1))P f 处的切线与直线2y x =+垂直. (Ⅰ)求实数a 的值;(Ⅱ)记()()()g x f x x b b R =+-∈,函数()g x 在区间1[,]e e -上有两个不同的零点(e 为自然对数的底数),求实数b 的取值范围.22. (本题满分15分)已知抛物线px y M 2:2=()0>p 上一个横坐标为3的点到其焦点的距离为4.过点)0,2(P 且与x 轴垂直的直线1l 与抛物线M 相交于B A ,两点,过点P 且与x 轴不垂直的直线2l 与抛物线C 相交与D C ,两点,直线BC 与DA 相交于点E .(Ⅰ) 求抛物线M 的方程;(Ⅱ)请判断点E 的横坐标是否为定值?若是,求出此定值,若不是,请说明理由.数学试卷(文科)参考答案二、填空题(4×7=28分)11.15 12.30 13.2 14.8 15.3116.2-≥a 17. 9三、解答题(共72分)18.1sin 2ABC S ab C ∆I == 解:()5sin83a a π∴⨯⨯==得 ————————3分2222cos ,c a b ab C c =+-=7== ————————6分 sin ,sin sin sin a c a C A A C c II =∴=== ()————9分 2222225781cos 22577b c a A bc +-+-===⨯⨯ ————————11分1113sin()sin cos cos sin 6667214A A A πππ+=+=+⨯=————14分19.111210,42()6a da d a d I +=+-+=解:()112,4,(1)42n a d a a n d n ==∴=+-=-———————6分{}n n b n n b II ()数列的前2项中,奇数项和偶数项各有n 项当奇数时,为首项是1公比是4的等比数列——————7分11441=1143n n n q S q ---==--奇————————10分2(1)=422n n b n n S n n n -+⨯=-偶当为偶数时,为首项是1公差是4的等差数列——————13分224123n n T S S n n -=+=-+奇偶———14分20.(Ⅰ)证明:连接DF 交EC 于点M ,连接MGG M , 为中点 MG PD //∴ 又EGC PD 面⊄ EGC MG 面⊂ ∴//PD 平面EGC ———5分(Ⅱ)当⊥EG 面PFC 时, PF EG ⊥ 又 G 为FB 的中点, 2==∴EP EF ,2=∴t —————7分过点G 在平面PEF 中作EP 的垂线,垂足为N ,连接DN . ⊥DE 面PEF ∴面⊥PED 面PEF ⊥∴GN 面PED GDN ∠∴即为DG 与平面PED 所成角.——————11分 易求得221,23==DN GN ,所以DG 与平面PED 所成角的正切值为77.——14分 21.解: (Ⅰ)直线2y x =+的斜率为.函数()f x 的定义域为(0,)+∞,22()af x x x'=-+, 所以22(1)111af '=-+=-,解得1a =——————6分(Ⅱ))(x g =b x x x--++2ln 2,(0>x ))(x g '=222xx x -+,由)(x g '>0得1>x , 由)(x g '<0得10<<x . 所以)(x g 的单调递增区间是()+∞,1,单调递减区间()1,01=x 时)(x g 取得极小值)1(g .——————10分因为函数()g x 在区间1[,]e e -上有两个零点,所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g ———————13分解得211b e e<+-≤. 所以b 的取值范围是2(1,1]e e+-. ——————————15分 22.解: (Ⅰ)由题意可知 423=+p∴2=p ∴抛物线M 的方程为:x y 42=———5分(Ⅱ)可求得()()22,2,22,2-B A ,设⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛222121,4,,4y y D y y C E 点横坐标为E x直线CD 的方程为:()02≠+=t ty x ————————7分联立方程⎩⎨⎧=+=xy ty x 422可得:0842=--ty y⎩⎨⎧-==+842121y y ty y ————————9分 AD 的方程为:()2224222-+=-x y yBC 的方程为:()2224221--=+x y y ————————11分联立方程消去y 化简得:2-E x =24822222122121+---+⋅y y y y y y=+---+-=2482222821221y y y y =+-+--=24)24(41212y y y y 4-所以2-=E x 为定值。
高考数学模拟题文科数学含答案
新课标高考模拟试题数学文科本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150 分。
考试时间120 分钟。
参照公式:样本数据x1, x2 ,x n 的标准差锥体体积公式此中 x 为样本均匀数此中 S 为底面面积, h 为高柱体体积公式球的表面积、体积公式此中 S 为底面面积, h 为高此中 R 为球的半径第Ⅰ卷(选择题共 60分)一、选择题1.已知会合A{ x | x1}, B{ x | x22x0} ,则AI B =()A.( 0,1)B. C.0,1 D.1,12.若a(1,1),b(1,1),c(2,4),则 c 等于()A. -a+3b B .a-3b C.3a-b D. -3a+b3.已知四棱锥 P—ABCD 的三视图如右图所示,则四棱锥P— ABCD 的体积为()A.1B.2C.33 334D .84.已知函数f (x)Asin(x)( A0,0,||) 的部分图象如下图,则 f ( x)2的分析式是()A.f (x)sin(3 x)( x R)B .f(x)sin(2x)(x)36R C.f (x)sin( x)( x R) D .f (x)sin(2 x)( x R)335.阅读以下程序,输出结果为 2 的是()6.在ABC 中,tan A 1,cos B 3 10,则 tanC 的值是()210A. -1B.1 C.3D.-27.设 m,n 是两条不一样的直线,, ,是三个不一样的平面,有以下四个命题:①若 m,, 则 m;②若/ / , m,则 m / / ;③若 n, n, m, 则 m; ④若,, m,则 m.此中正确命题的序号是A.①③B.①②C.8.两个正数a、b 的等差中项是心率 e 等于35A.B.C.23 9.已知定义域为R 的函数 f (则()A .f (2) f (3)B .10.数列{ a n}中,a32, a721A.B.C.52xx 11.已知函数 f ( x)ln( x ()A .(,1)U (2, )C.(1,2)12.若函数f ( x) 1e ax的图bC 的地点关系是()A .在圆外 B.在圆内第二、填空题(本大题共 4 小题,13.复数z325的共轭复4i14.右图为矩形,长为5,宽为数得落在暗影部分的黄豆数部分的面积为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高考模拟试题数学文科本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
参考公式:样本数据n x x x ,,21的标准差ﻩﻩ锥体体积公式])()()[(122221x x x x x x n S n -++-+-=Sh V 31= 其中x 为样本平均数 ﻩﻩ其中S 为底面面积,h 为高 柱体体积公式ﻩﻩ球的表面积、体积公式Sh V =ﻩﻩ3234,4R V R S ππ==其中S为底面面积,h 为高 ﻩ其中R 为球的半径第Ⅰ卷(选择题 共60分)一、选择题1.已知集合2{|1},{|20}A x x B x x x =≤=-<,则A B =ﻩ( )A .(0,1) B. C.(]0,1ﻩD .[)1,1-2.若(1,1),(1,1),(2,4)a b c ==-=-,则c 等于 ( )A.-a+3b B.a-3b ﻩC .3a-b D .-3a+b3.已知四棱锥P —ABC D的三视图如右图所示,则四棱锥P—ABCD的体积为( )A.13ﻩB .23 ﻩC .34ﻩD .384.已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如图所示,则()f x 的解析式是( )A.()sin(3)()3f x x x R π=+∈ B .()sin(2)()6f x x x R π=+∈ﻩC.()sin()()3f x x x R π=+∈ﻩD.()sin(2)()3f x x x R π=+∈ 5.阅读下列程序,输出结果为2的是( )6.在ABC ∆中,1tan ,cos 210A B ==,则tan C 的值是ﻩ ( )ﻩA .-1ﻩB.1 C D .-27.设m,n 是两条不同的直线,,,αβγ是三个不同的平面,有下列四个命题: ﻩ①若,,;m m βαβα⊂⊥⊥则 ②若//,,//;m m αβαβ⊂则③若,,,;n n m m αβαβ⊥⊥⊥⊥则④若,,,.m m αγβγαβ⊥⊥⊥⊥则ﻩ其中正确命题的序号是 ( )A .①③ﻩB .①②ﻩC .③④ D.②③8.两个正数a 、b的等差中项是5,2,a b >且则双曲线22221x y a b -=的离心率e 等于 ﻩﻩ( )A .2 B.3ﻩC.39.已知定义域为R 的函数()f x 在区间(4,)+∞上为减函数,且函数(4)y f x =+为偶函数,则( )A.(2)(3)f f > B .(2)(5)f f > C .(3)(5)f f > D .(3)(6)f f >10.数列{}n a 中,372,1a a ==,且数列1{}1n a +是等差数列,则11a 等于ﻩ( ) ﻩA.25-ﻩB.12ﻩC .23 D.511.已知函数0,()ln(1),0.x x f x x x ≤⎧=⎨+>⎩若2(2)()f x f x ->,则实数x 的取值范围是( ) A.(,1)(2,)-∞-+∞ﻩﻩ ﻩB.(,2)(1,)-∞-+∞C.(1,2)-ﻩﻩﻩ ﻩD.(2,1)-12.若函数1()axf x e b=的图象在x =0处的切线l 与圆22:1C x y +=相离,则(,)P a b 与圆C 的位置关系是( )ﻩA.在圆外 B .在圆内 C.在圆上 D.不能确定第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分。
把答案填在答题卷的相应位置上。
) 13.复数2534z i=-的共轭复数z = 。
14.右图为矩形,长为5,宽为2,在矩形内随机地撤300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影 部分的面积为 。
15.设斜率为2的直线l 过抛物线2(0)y ax a =>的焦点F ,且和y 轴交于点A,若OAF ∆(O 为坐标原点)的面积为4,则抛物线方程为 。
16.下列说法:ﻩ①“,23xnx R ∃∈>使”的否定是“,3xx R ∀∈≤使2”; ②函数sin(2)sin(2)36y x x ππ=+-的最小正周期是;π③命题“函数0()f x x x =在处有极值,则0'()0f x =”的否命题是真命题;ﻩ④()f x ∞∞是(-,0)(0,+)上的奇函数,0x >时的解析式是()2xf x =,则0x <时的解析式为()2.xf x -=-其中正确的说法是 。
三、解答题。
17.(本小题12分)在ABC ∆中,a 、b 、c 分别为内角A、B 、C 的对边,且222.b c a bc +-= (1)求角A 的大小; (2)设函数221()sin cos cos ,()2222x x x f x f B +=+=当时,若3a =,求b的值。
18.(本小题12分)某研究机构对高三学生的记忆力x 和判断力y进行统计分析,x6810 12 y 2 356(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+; (3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。
(相关公式:1221ˆˆˆ,.ni ii ni i x y nx ybay bx x nx ==-⋅==--∑∑)19.(本小题12分)如图,已知四棱锥P —AB CD 的底面是直角梯形,90ABC BCD ∠=∠=︒,AB=BC=2CD=2,PB =PC ,侧面PBC ⊥底面ABCD,O 是BC 的中点。
(1)求证:DC //平面PAB ; (2)求证:PO ⊥平面ABCD; (3)求证:.PA BD ⊥20.(本小题12分)设函数322()5(0).f x x ax a x a =+-+> (1)当函数()f x 有两个零点时,求a 的值;(2)若[3,6],[4,4]a x ∈∈-当时,求函数()f x 的最大值。
21.(本小题12分)已知椭圆22221(0)x y a b a b+=>>的左焦点(,0)F c -是长轴的一个四等分点,点A 、B 分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l 交椭圆于C 、D 两点,记直线AD 、BC 的斜率分别为12,.k k(1)当点D 到两焦点的距离之和为4,直线l x ⊥轴时,求12:k k 的值; (2)求12:k k 的值。
22.(本小题满分10分)选修4—1:几何证明选讲如图所示,已知PA 是⊙O 相切,A 为切点,PBC 为割线,弦CD //AP,AD 、BC 相交于E 点,F 为CE 上一点,且2.DE EF EC =⋅ (1)求证:A 、P、D、F四点共圆;(2)若A E·ED=24,DE=EB=4,求PA 的长。
参考答案一、选择题CB BBA ADCD B D B 二、 填空题13.34i - 14. 4.6 15.28y x = 16.①④ 三、解答题17. (Ⅰ)解:在ABC ∆中,由余弦定理知2221cos 22b c a A bc +-==,注意到在ABC ∆中,0A π<<,所以3A π=为所求. ┄┄┄┄┄┄4分ﻩ(Ⅱ)解: 211121()sincos cos sin cos sin()222222242x x x f x x x x π=+=++=++, 由2121()sin()42f B B π+=++=得sin()14B π+=,┄┄┄┄┄8分 注意到2110,34412B B ππππ<<<+<,所以4B π=, 由正弦定理,sin 2sin a Bb A== ,所以2b =为所求. ┄┄┄┄┄┄12分18. (Ⅰ)如右图:┄┄┄┄┄┄┄┄3分(Ⅱ)解:y x i ni i ∑=1=6⨯2+8⨯3+10⨯5+12⨯6=158,ﻩx =68101294+++=,y =235644+++=,ﻩ222221681012344ni ix ==+++=∑,215849414ˆ0.73444920b -⨯⨯===-⨯,ˆˆ40.79 2.3a y bx =-=-⨯=-,故线性回归方程为0.7 2.3y x =-. ┄┄┄┄┄┄┄┄10分(Ⅲ)解:由回归直线方程预测,记忆力为9的同学的判断力约为4. ┄┄┄┄12分19. (Ⅰ)证明:由题意,//AB CD ,CD ⊄平面PAB , AB ⊂平面PAB ,所以//DC 平面PAB .┄┄4分 (Ⅱ)证明:因为PB PC =,O 是BC 的中点,所以PO ⊥BC , 又侧面PBC ⊥底面AB CD ,PO ⊂平面PBC , ﻩ面PBC ⋂底面AB CDBC =,ﻩ所以PO ⊥平面ABCD . ┄┄┄┄┄┄8分ﻩ(Ⅲ)证明:因为BD ⊂平面ABCD ,由⑵知PO BD ⊥, 在Rt ABO ∆和Rt BCD ∆中, ﻩ2AB BC ==,1BO CD ==,90ABO BCD ∠=∠=,所以ABO BCD ∆≅∆,故BAO CBD ∠=∠, 即90BAO DBA CBD DBA ∠+∠=∠+∠=,所以BD AO ⊥,又AO PO O ⋂=,所以BD ⊥平面PAO ,故PA BD ⊥. ┄┄┄┄┄┄12分20. (Ⅰ)解:22()323()()(0)3a f x x ax a x x a a '=+-=-+>,由()0f x '>得x a <-,或3a x >,由()0f x '<得3a a x -<<, ﻩ所以函数()f x 的增区间为(,),(,)3a a -∞-+∞,减区间为(,)3aa -,即当x a =-时,函数取极大值3()5f a a -=+,ﻩ当3a x =时,函数取极小值35()5327a f a =-+, ┄┄┄┄3分 又33(2)25(),(2)105()3a f a a f f a a f a -=-+<=+>-,ﻩ所以函数()f x 有两个零点,当且仅当()0f a -=或()03af =,注意到0a >,所以35()50327a f a =-+=,即3a =为所求.┄┄┄┄6分ﻩ(Ⅱ)解:由题知[6,3],[1,2]3aa -∈--∈,ﻩ当4a -≤-即46a ≤≤时,函数()f x 在[4,)3a -上单调递减,在(,4]3a上单调递增,注意到2(4)(4)8(16)0f f a --=-≥,所以2max ()(4)41659f x f a a =-=+-; ┄┄┄┄9分ﻩ当4a ->-即34a ≤<时,函数()f x 在[4,)a --上单调增,在(,)3a a -上单调减,在(,4]3a 上单调增,ﻩ注意到322()(4)41664(4)(4)0f a f a a a a a --=+--=+-<,所以2max ()(4)41669f x f a a ==-++;ﻩ综上,2max241659,46,()41669,3 4.a a a f x a a a ⎧+-≤≤⎪=⎨-++≤<⎪⎩ ┄┄┄┄12分 21. (Ⅰ)解:由题意椭圆的离心率12c e a ==,24a =,所以2,1,a c b === ﻩ故椭圆方程为22143x y +=, ┄┄┄┄┄┄3分则直线:1l x =-,(2,0),(2,0)A B -,ﻩ故33(1,),(1,)22C D ---或33(1,),(1,)22C D ---,ﻩ当点C 在x 轴上方时,12333122,122122k k -==-==--+--, ﻩ所以12:3k k =, 当点C 在x 轴下方时,同理可求得12:3k k =,综上,12:3k k =为所求. ┄┄┄┄┄┄6分(Ⅱ)解:因为12e =,所以2a c =,b =, 椭圆方程为2223412x y c +=,(2,0),(2,0)A c B c -,直线:l x my c =-,设1122(,),(,)C x y D x y ,由2223412,,x y c x my c ⎧+=⎨=-⎩消x 得,222(43)690m y mcy c +--=, ﻩ所以12222212222666,2(43)2(43)43669,2(43)2(43)43mc mc mc y y m m m mc mc c y y m m m ⎧+=+=⎪+++⎪⎨+⎪⋅=⋅=-⎪+++⎩┄┄┄┄┄┄8分故121222222212121228()2,34412(),34c x x m y y c m c m c x x m y y mc y y c m ⎧+=+-=-⎪⎪+⎨-⎪⋅=-++=⎪+⎩① ﻩ由121212(2)(2)k y x c k y x c -=+,及22233(2)(2)(4)44c x c x y c x -+=-=,┄┄9分得22221211212122222122121212(2)(2)(2)42()(2)(2)(2)42()k y x c c x c x c c x x x x c x c x k y x c c c x x x x ----++===++++++, ﻩ将①代入上式得22222222212222222222164124363434916412443434c c m c c k c m m k c c m c c c m m -++++===--+++,┄┄10分 ﻩ注意到,得121212(2)0(2)k y x c k y x c -=>+,┄┄11分所以12:3k k =为所求. ┄┄┄┄┄┄12分22. (Ⅰ)证明:2,DE EFDE EF EC CE ED=⋅∴=, ﻩ又DEF CED ∠=∠,ﻩDEF CED ∴∆∆,EDF ECD ∠=∠, ﻩ又//,CD PA ECD P ∴∠=∠故P EDF ∠=∠,所以,,,A P D F 四点共圆.┄┄┄┄5分ﻩ(Ⅱ)解:由(Ⅰ)及相交弦定理得24PE EF AE ED ⋅=⋅=, ﻩ又24BE EC AE ED ⋅=⋅=,286,,9,5,153DE EC EF PE PB PC PB BE EC EC ∴======++=,ﻩ由切割线定理得251575PA PB PC =⋅=⨯=,ﻩ所以PA = ┄┄┄┄10分。