全国中考数学锐角三角函数的综合中考真题汇总含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国中考数学锐角三角函数的综合中考真题汇总含答案解析
一、锐角三角函数
1.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
【答案】(1)证明见解析(2)4(3)20
【解析】
试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;
(2)利用锐角三角函数,即勾股定理即可.
试题解析:(1)∵∠ABC=∠ACB,
∴AB=AC,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,
∵∠CAB=2∠BCP,
∴∠BCP=∠CAN,
∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,
∵点D在⊙O上,
∴直线CP是⊙O的切线;
(2)如图,作BF⊥AC
∵AB=AC,∠ANC=90°,
∴CN=CB=,
∵∠BCP=∠CAN,sin∠BCP=,
∴sin∠CAN=,

∴AC=5,
∴AB=AC=5,
设AF=x,则CF=5﹣x,
在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,
在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,
∴25﹣x2=2O﹣(5﹣x)2,
∴x=3,
∴BF2=25﹣32=16,
∴BF=4,
即点B到AC的距离为4.
考点:切线的判定
2.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点
F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin
31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)
【答案】2.5m.
【解析】
试题分析:设DF=x,在Rt△DFC中,可得CF=DF=x,则BF=4-x,根据线段的和差可得AN=5-x,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,利用∠EAB的正切值解得x的值.
试题解析:解:设DF=,在Rt△DFC中,∠CDF=,
∴CF=tan·DF=,
又∵CB=4,
∴BF=4-,
∵AB=6,DE=1,BM= DF=,
∴AN=5-,EN=DM=BF=4-,
在Rt△ANE中,∠EAB=,EN=4-,AN=5-,
tan==0.60,
解得=2.5,
答:DM和BC的水平距离BM为2.5米.
考点:解直角三角形.
3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.
(1)求证:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
【答案】(1)证明见解析;(2
15
-+
;(3
758
+
【解析】
试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;
(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;
(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.
试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°,
∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;
(2)∵∠A=∠ABD=36°,
∴AD=BD,
∵BD=BC,
∴AD=BD=CD=1,
设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,
∴AB BC BD CD
=
,即
11
1
x
x
+
=,
整理得:x2+x-1=0,
解得:x1=
15
2
-+
,x2=
15
2
--
(负值,舍去),
则x=
15
-+

(3)过B作BE⊥AC,交AC于点E,
∵BD=CD,
∴E为CD中点,即15
-+
在Rt△ABE中,cosA=cos36°=
15
151
4
15
1
AE
AB
-+
++ ==
-+
+
在Rt△BCE中,cosC=cos72°=
15
15
4
14
EC
BC
-+
-+
==,
则cos36°-cos72°=
51
4
=-
15
4
-+
=
1
2

【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角
形.
4.如图,反比例函数() 0k y k x
=≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒.
(1)求k 的值及点B 的坐标;
(2)求tanC 的值.
【答案】(1)2k =,()1,2B --;(2)2.
【解析】
【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数
()0k y k x
=≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;
(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出C tan 即可.
【详解】(1)∵点A (1,a )在2y x =上,
∴a =2,∴A (1,2),
把A (1,2)代入 k y x =
得2k =, ∵反比例函数()0k y k x
=≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,
∴()1
2B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,

90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,
∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=, ∴AD 22OD 1
tanC tan AOD =∠===.
【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD 是关键.
5.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)
已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5
AOC ∠=.设OP x =,CPF ∆的面积为y .
(1)求证:AP OQ =;
(2)求y 关于x 的函数关系式,并写出它的定义域;
(3)当OPE ∆是直角三角形时,求线段OP 的长.
【答案】(1)证明见解析;(2)236030050(10)13
x x y x x -+=<<;(3)8OP = 【解析】
【分析】
(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;
(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5
AOC ∠=
、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去.
【详解】
(1)联结OD ,∵OC OD =,
∴OCD ODC ∠=∠,
∵//CD AB ,
∴OCD COA ∠=∠,
∴POA QDO ∠=∠.
在AOP ∆和ODQ ∆中,
{OP DQ
POA QDO OA DO
=∠=∠=,
∴AOP ∆≌ODQ ∆,
∴AP OQ =;
(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=
, ∴4455OH OP x ==,35
PH x =, ∴132AOP S AO PH x ∆=
⋅=. ∵//CD AB ,
∴PFC ∆∽PAO ∆, ∴2210()()AOP y
CP x S OP x
∆-==, ∴2360300x x y x
-+=,当F 与点D 重合时, ∵42cos 210165CD OC OCD =⋅∠=⨯⨯
=, ∴101016x x =-,解得5013
x =, ∴2360300x x y x
-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085
OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25
OC CQ QCO AOC ====∠∠, ∴252OP DQ CD CQ CD ==-=-
2571622=-=,
∵501013
OP <<, ∴72OP =
(舍去); ③当90PEO ∠=o 时,∵//CD AB ,
∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆,
∴DQO APO ∠=∠,
∴AOQ APO ∠=∠,
∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.
6.如图,将一副直角三角形拼放在一起得到四边形ABCD ,其中∠BAC=45°,∠ACD=30°,点E 为CD 边上的中点,连接AE ,将△ADE 沿AE 所在直线翻折得到△AD′E ,D′E 交AC 于F 点.若AB=6cm .
(1)AE 的长为 cm ;
(2)试在线段AC 上确定一点P ,使得DP+EP 的值最小,并求出这个最小值;
(3)求点D′到BC 的距离.
【答案】(1)
;(2)12cm ;(3)cm .
【解析】 试题分析:(1)首先利用勾股定理得出AC 的长,进而求出CD 的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:
∵∠BAC=45°,∠B=90°,∴AB=BC=6cm ,∴AC=12cm .
∵∠ACD=30°,∠DAC=90°,AC=12cm ,∴
(cm ).
∵点E 为CD 边上的中点,∴AE=DC=cm . (2)首先得出△ADE 为等边三角形,进而求出点E ,D′关于直线AC 对称,连接DD′交AC 于点P ,根据轴对称的性质,此时DP+EP 值为最小,进而得出答案.
(3)连接CD′,BD′,过点D′作D′G ⊥BC 于点G ,进而得出△ABD′≌△CBD′(SSS ),则∠D′BG=45°,D′G=GB ,进而利用勾股定理求出点D′到BC 边的距离.
试题解析:解:(1).
(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,
∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.
∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.
∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.
∴点E,D′关于直线AC对称.
如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.
∵△ADE是等边三角形,AD=AE=,
∴,即DP+EP最小值为12cm.
(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,
∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,
∵AE=EC,∴AD′=CD′=.
在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′
(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.
设D′G长为xcm,则CG长为cm,
在Rt△GD′C中,由勾股定理得,
解得:(不合题意舍去).
∴点D′到BC边的距离为cm.
考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.
7.如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD .中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)
参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,2 1.4142≈.
【答案】塔高AB 约为32.99米.
【解析】
【分析】
过点D 作DH ⊥AB ,垂足为点H ,设AB =x ,则 AH =x ﹣3,解直角三角形即可得到结论.
【详解】
解:过点D 作DH ⊥AB ,垂足为点H .
由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°,
∠ADH = 32°.
设AB = x ,则 AH = x – 3.
在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451AB AEB EB ∠=︒=
=. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15.
在Rt △AHD 中,由 ∠AHD = 90°,得 tan AH ADH HD ∠=
. 即得 3tan3215x x -︒=
+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒
. ∴ 塔高AB 约为32.99米.
【点睛】
本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
8.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.
(1)求证:DF⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.
【答案】(1)证明见解析; (2) tan∠
3
【解析】
试题分析:(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.
(2)过O作OF⊥BD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.
试题解析:证明:连接OD
∵DE为⊙O的切线, ∴OD⊥DE
∵O为AB中点, D为BC的中点
∴OD‖AC
∴DE⊥AC
(2)过O作OF⊥BD,则BF=FD
在Rt△BFO中,∠ABC=30°
∴OF=1
2OB, BF=3
2
∵BD=DC, BF=FD,∴FC=3BF=33
2
OB
在Rt△OFC中,tan∠BCO=
1
3
2
33
OB
OF
FC
OB
==.
点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识
点,有一定的综合性,根据已知得出OF=1
2
OB,
3

33
OB是解题关
键.
9.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等
水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)
【答案】215.6米.
【解析】
【分析】
过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,
根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.
【详解】
解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点
在Rt △ACM 中,∵45ACF ∠=︒,
∴AM=CM=200米,
又∵CD=300米,所以100MD CD CM =-=米,
在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60
BN DN =≈o 米, ∴215.6MN MD DN AB =+=≈米
即A ,B 两点之间的距离约为215.6米.
【点睛】
本题主要考查三角函数,正确做辅助线是解题的关键.
10.如图,在△ABC 中,∠A=90°,∠ABC=30°,AC=3,动点D 从点A 出发,在AB 边上以每秒1个单位的速度向点B 运动,连结CD ,作点A 关于直线CD 的对称点E ,设点D 运动时间为t (s ).
(1)若△BDE 是以BE 为底的等腰三角形,求t 的值;
(2)若△BDE为直角三角形,求t的值;
(3)当S△BCE≤9
2
时,所有满足条件的t的取值范围(所有数据请保留准确值,参考
数据:tan15°=2
【答案】(1)
2
;(2秒或3秒;(3)6﹣
【解析】
【分析】
(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直
平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由,可得t 的值;
(2)分两种情况:
①当∠DEB=90°时,如图2,连接AE,根据t的值;
②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;
(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,
①当△BCE在BC的下方时,
②当△BCE在BC的上方时,
分别计算当高为3时对应的t的值即可得结论.
【详解】
解:(1)如图1,连接AE,
由题意得:AD=t,
∵∠CAB=90°,∠CBA=30°,
∴BC=2AC=6,

∵点A、E关于直线CD的对称,
∴CD垂直平分AE,
∴AD=DE,
∵△BDE是以BE为底的等腰三角形,
∴DE=BD,
∴AD=BD,
∴t=AD=
2

(2)△BDE为直角三角形时,分两种情况:
①当∠DEB=90°时,如图2,连接AE,
∵CD垂直平分AE,
∴AD=DE=t,
∵∠B=30°,
∴BD=2DE=2t,
∴AB=3t=33,
∴t=3;
②当∠EDB=90°时,如图3,
连接CE,
∵CD垂直平分AE,
∴CE=CA=3,
∵∠CAD=∠EDB=90°,
∴AC∥ED,
∴∠CAG=∠GED,
∵AG=EG,∠CGA=∠EGD,
∴△AGC≌△EGD,
∴AC=DE,
∵AC∥ED,
∴四边形CAED是平行四边形,
∴AD=CE=3,即t=3;
综上所述,△BDE为直角三角形时,t的值为3秒或3秒;
(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,
①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,
此时S△BCE=1
2
AE•BH=
1
2
×3×3=
9
2

易得△ACG≌△HBG,
∴CG=BG,
∴∠ABC=∠BCG=30°,
∴∠ACE=60°﹣30°=30°,
∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,
∴∠ACD=∠DCE=15°,
tan∠ACD=tan15°=t
3
=23,
∴t=6﹣3
由图形可知:0<t<6﹣3时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,
此时S△BCE=1
2
CE•DE=
1
2
×3×3=
9
2
,此时t=3,
综上所述,当S△BCE≤9
2
时,t的取值范围是6﹣33≤t≤3.
【点睛】
本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.
11.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是»AC上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,¼¼
AP BP
=,求PD的长.
【答案】(1)证明见解析;(2
310
【解析】
【分析】
(1)根据AB⊥CD,AB是⊙O的直径,得到¶¶
AD AC
=,∠ACD=∠B,由∠FPC=∠B,得到∠ACD=∠FPC,可得结论;
(2)连接OP ,由¶¶AP
BP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED
=,然后根据勾股定理即可得到结果.
【详解】
(1)证明:连接AD ,
∵AB ⊥CD ,AB 是⊙O 的直径,
∴¶¶AD
AC =, ∴∠ACD =∠B =∠ADC ,
∵∠FPC =∠B ,
∴∠ACD =∠FPC ,
∴∠APC =∠ACF ,
∵∠FAC =∠CAF ,
∴△PAC ∽△CAF ;
(2)连接OP ,则OA =OB =OP =1522
AB =, ∵¶¶AP
BP =, ∴OP ⊥AB ,∠OPG =∠PDC ,
∵AB 是⊙O 的直径,
∴∠ACB =90°,
∵AC =2BC ,
∴tan ∠CAB =tan ∠DCB =BC AC
, ∴
12
CE BE AE CE ==, ∴AE =4BE ,
∵AE+BE =AB =5, ∴AE =4,BE =1,CE =2,
∴OE =OB ﹣BE =2.5﹣1=1.5,
∵∠OPG =∠PDC ,∠OGP =∠DGE ,
∴△OPG ∽△EDG ,∴
OG OP GE ED
=, ∴ 2.52
OE GE OP GE CE -==, ∴GE =23,OG =56,
∴PG =225OP OG 6+=
, GD =2223DE GE +=
, ∴PD =PG+GD =3102

【点睛】
本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG ∽△EDG 是解题的关键.
12.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .
(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)
(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )
【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm .
【解析】
【分析】 (1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .
(2)用扇形面积公式即可求得.
【详解】
(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒.
∵cos DE ODE DO
∠=,
∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.
., 答:半径OA 的长约为24.5cm .
(2)∵67ODE ∠=︒,
∴157BOC ∠=︒,
∴2360
BOC n r S π=扇形 2
157 3.1424.52360
⨯⨯≈ ()2822cm ≈.
答:扇形BOC 的面积约为2822cm .
【点睛】
此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.
13.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y 轴交于点C .
(1)求抛物线表达式;
(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 下方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30,
①求点P 坐标;
②过此二点的直线交y 轴于F, 此直线上一动点G,当GB+2GF 最小时,求点G 坐标. (3)如图2,⊙O1过点A 、B 、C 三点,AE 为直径,点M 为 上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值
【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313【解析】
【分析】
(1)把点A (1,-1),B (5,-1)代入抛物线y=ax 2+bx+4解析式,即可得出抛物线的表达式;
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式
为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2
×(−t+4−t2+6t−4)×5=
15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求
得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为GB+
2 2
GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;
(3)先用面积法求出sin∠ACB=213
13
,tan∠ACB=
2
3
,在Rt△ABE中,求得圆的直径,
因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MB
BN

2
3
,所以BN=
3
2
MB,当MB为
直径时,BN的长度最大.
【详解】
(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),

14
12554
a b
a b
-++


-++




解得
1
6
a
b


-




∴抛物线表达式为y=x²﹣6x+4.
(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,
设直线BC的解析式为y=kx+m,
∵B(5,-1),C(0,4),

15
4
k m
m
-+





,解得
1
4
k
m



-



∴直线BC的解析式为:y=-x+4,
设点P(t,t2-6t+4),R(t,-t+4),∵▱CBPQ的面积为30,
∴S△PBC=1
2
×(−t+4−t2+6t−4)×5=15,解得t=2或t=3,
当t=2时,y=-4
当t=3时,y=-5,
∴点P坐标为(2,-4)或(3,-5);
②当点P为(2,-4)时,
∵直线BC解析式为:y=-x+4, QP∥BC,
设直线QP的解析式为:y=-x+n,
将点P代入,得-4=-2+n,n=-2,
∴直线QP的解析式为:y=-x-2,
∴F(0,-2),∠GOR=45°,
∴GB+2
2
GF=GB+GR
当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,
同理可得点G的坐标为(0,-2),
(3) )∵A(1,-1),B(5,-1)C(0,4),
∴AC=26,BC=52,
∵S△ABC=1
2AC×BCsin∠ACB=
1
2
AB×5,
∴sin∠ACB=213,tan∠ACB=2
3
,∵AE为直径,AB=4,
∴∠ABE=90°,
∵sin∠AEB=sin∠ACB=213=4
AE
,∴AE=213,
∵MB⊥NB,∠NMB=∠EAB,
∴∠N=∠AEB=∠ACB,
∴tanN=MB
BN =
2
3

∴BN=3
2
MB,
当MB为直径时,BN的长度最大,为313.
【点睛】
题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.
14.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D
(1)求证:PC是⊙O的切线;
(2)求证:PA AD PC CD

(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=3
5
,CF=5,求BE
的长.
【答案】(1)见解析;(2)BE=12.
【解析】
【分析】
(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到
∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到
CF=AF,在R t△AFD中,AF=5,sin∠FAD=3
5
,求得FD=3,AD=4,CD=8,在R t△OCD中,
设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为
⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=3
5,得到
BE
AB

3
5
,于是求得
结论.
【详解】
(1)证明:连接OC,
∵PC切⊙O于点C,∴OC⊥PC,
∴∠PCO=90°,
∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,
∴∠ABC+∠OAC=90°,∵OC=OA,
∴∠OCA=∠OAC,
∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,
∵AB⊥CG,
∴弧AC=弧AG,
∴∠ACF=∠ABC,
∵∠PCA=∠ABC,
∴∠ACF=∠CAF,
∴CF=AF,
∵CF=5,
∴AF=5,
∵AE∥PC,
∴∠FAD=∠P,
∵sin∠P=3
5

∴sin∠FAD=3
5

在R t△AFD中,AF=5,sin∠FAD=3
5

∴FD=3,AD=4,∴CD=8,
在R t△OCD中,设OC=r,
∴r2=(r﹣4)2+82,
∴r=10,
∴AB=2r=20,
∵AB为⊙O的直径,
∴∠AEB=90°,在R t△ABE中,
∵sin∠EAD=3
5,∴
3
5
BE
AB

∵AB=20,
∴BE=12.
【点睛】
本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接
OC 构造直角三角形.
15.如图,半圆O 的直径AB =20,弦CD ∥AB ,动点M 在半径OD 上,射线BM 与弦CD 相交于点E (点E 与点C 、D 不重合),设OM =m .
(1)求DE 的长(用含m 的代数式表示);
(2)令弦CD 所对的圆心角为α,且sin 4=25
α
. ①若△DEM 的面积为S ,求S 关于m 的函数关系式,并求出m 的取值范围; ②若动点N 在CD 上,且CN =OM ,射线BM 与射线ON 相交于点F ,当∠OMF =90° 时,求DE 的长.
【答案】(1)DE =10010m m -;(2)①S =2360300m m m
-+,(5013<m <10),②DE =
52
. 【解析】
【分析】 (1)由CD ∥AB 知△DEM ∽△OBM ,可得DE DM OB OM
=,据此可得; (2)①连接OC 、作OP ⊥CD 、MQ ⊥CD ,由OC =OD 、OP ⊥CD 知∠DOP =
12∠COD ,据此可得sin ∠DOP =sin ∠DMQ =
45、sin ∠ODP =35,继而由OM =m 、OD =10得QM =DM sin ∠ODP =35
(10﹣m ),根据三角形的面积公式即可得;如图2,先求得PD =8、CD =16,证△CDM ∽△BOM 得CD DM BO OM =,求得OM =5013
,据此可得m 的取值范围; ②如图3,由BM =OB sin ∠BOM =10×
35=6,可得OM =8,根据(1)所求结果可得答案.
【详解】
(1)∵CD ∥AB ,
∴△DEM ∽△OBM ,
∴DE DM OB OM =,即1010DE m m
-=,
∴DE =10010m m -; (2)①如图1,连接OC 、作OP ⊥CD 于点P ,作MQ ⊥CD 于点Q ,
∵OC =OD 、OP ⊥CD ,
∴∠DOP =
12∠COD , ∵sin 2α=45
, ∴sin ∠DOP =sin ∠DMQ =
45,sin ∠ODP =35, ∵OM =m 、OD =10,
∴DM =10﹣m ,
∴QM =DM sin ∠ODP =35
(10﹣m ), 则S △DEM =12DE •MQ =12×10010m m -×35(10﹣m )=2360300m m m
-+, 如图2,
∵PD =OD sin ∠DOP =10×
45=8, ∴CD =16,
∵CD ∥AB ,
∴△CDM ∽△BOM ,
∴CD DM BO OM =,即1610=10OM OM
-, 解得:OM =
5013,
∴5013<m <10, ∴S =2360300m m m
-+,(5013<m <10). ②当∠OMF =90°时,如图3,
则∠BMO =90°,
在Rt △BOM 中,BM =OB sin ∠BOM =10×
35=6, 则OM =8,
由(1)得DE =
100108582
-⨯=. 【点睛】
本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.。

相关文档
最新文档