备战中考数学压轴题之平行四边形(备战中考题型整理,突破提升)含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战中考数学压轴题之平行四边形(备战中考题型整理,突破提升)含答案解析
一、平行四边形
1.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.
【答案】(1)见解析;
(2)存在,理由见解析;
(3)不成立.理由如下见解析.
【解析】
试题分析:(1)由b=2a,点M是AD的中点,可得AB=AM=MD=DC=a,又由四边形ABCD 是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°;
(2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形的对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等的实数根,且两根均大于零,符合题意;
(3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情况,即可求得答案.
试题解析:(1)∵b=2a,点M是AD的中点,
∴AB=AM=MD=DC=a,
又∵在矩形ABCD中,∠A=∠D=90°,
∴∠AMB=∠DMC=45°,
∴∠BMC=90°.
(2)存在,
理由:若∠BMC=90°,
则∠AMB+∠DMC=90°,
又∵∠AMB+∠ABM=90°,
∴∠ABM=∠DMC,
又∵∠A=∠D=90°,
∴△ABM∽△DMC,
∴AM AB
CD DM
=,
设AM=x,则x a
a b x =
-

整理得:x2﹣bx+a2=0,
∵b>2a,a>0,b>0,
∴△=b2﹣4a2>0,
∴方程有两个不相等的实数根,且两根均大于零,符合题意,
∴当b>2a时,存在∠BMC=90°,
(3)不成立.
理由:若∠BMC=90°,
由(2)可知x2﹣bx+a2=0,
∵b<2a,a>0,b>0,
∴△=b2﹣4a2<0,
∴方程没有实数根,
∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.
考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质
2.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.
(1)求证:△AED≌△CEB′
(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.
【答案】(1)证明见解析;(2).
【解析】
【分析】
(1)由折叠的性质知,,,,则由得到;
(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.
【详解】
(1)四边形为矩形,
,,
又,

(2),



在中,,
过点作于,
,,

,,

、、共线,

四边形是矩形,

.
【点睛】
此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.
3.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系是;
结论2:DM、MN的位置关系是;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.
【解析】
试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出
MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.
试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF
是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,
∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,
AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,
∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,
∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又
∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的
中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,
∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.
考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.
4.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,
3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.
(1)如图①,当点D落在BC边上时,求点D的坐标;
(2)如图②,当点D落在线段BE上时,AD与BC交于点H.
①求证△ADB≌△AOB;
②求点H的坐标.
(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
【答案】(1)D(1,3);(2)①详见解析;②H(17
5
,3);(3)
30334
-
≤S≤30334
+

【解析】
【分析】
(1)如图①,在Rt△ACD中求出CD即可解决问题;
(2)①根据HL证明即可;
②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;
【详解】
(1)如图①中,
∵A(5,0),B(0,3),
∴OA=5,OB=3,
∵四边形AOBC是矩形,
∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,
∵矩形ADEF是由矩形AOBC旋转得到,
∴AD=AO=5,
在Rt△ADC中,CD=22
AD AC
-=4,
∴BD=BC-CD=1,
∴D(1,3).
(2)①如图②中,
由四边形ADEF是矩形,得到∠ADE=90°,
∵点D在线段BE上,
∴∠ADB=90°,
由(1)可知,AD=AO,又AB=AB,∠AOB=90°,
∴Rt△ADB≌Rt△AOB(HL).
②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,
∴∠CBA=∠OAB,
∴∠BAD=∠CBA,
∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,
在Rt△AHC中,∵AH2=HC2+AC2,
∴m2=32+(5-m)2,
∴m=17
5

∴BH=17
5

∴H(17
5
,3).
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=1
2
•DE•DK=
1
2
×3×
(34

30334
-
当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=1
2
×D′E′×KD′=
1
2
×3×
(5+34
2
)=
30334
4
+

综上所述,30334
4
-
≤S≤
30334
4
+

【点睛】
本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
5.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
【答案】(1)见解析;
(2)见解析.
【解析】
【分析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.
【详解】
(1)证明:∵AE∥BC,DE∥AB,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
【点睛】
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.
(1)连结CG,请判断四边形DBCG的形状,并说明理由;
(2)若AE=BD,求∠EDF的度数.
【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.
【解析】
【分析】
(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;
(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.
【详解】
解:(1)四边形BCGD是矩形,理由如下,
∵四边形ABCD是平行四边形,
∴BC∥AD,即BC∥DG,
由折叠可知,BC=DG,
∴四边形BCGD是平行四边形,
∴∠CBD=90°,
∴四边形BCGD是矩形;
(2)由折叠可知:EF垂直平分BD,
∴BD⊥EF,DP=BP,
∵AD⊥BD,
∴EF∥AD∥BC,
∴AE PD1
==
BE BP
∴AE=BE,
∴DE是Rt△ADB斜边上的中线,
∴DE=AE=BE,
∵AE=BD,
∴DE=BD=BE,
∴△DBE是等边三角形,
∴∠EDB=∠DBE=60°,
∵AB∥DC,
∴∠DBC=∠DBE=60°,
∴∠EDF=120°.
【点睛】
本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度
7.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且=,连接DE,DF,EF. FH平分EFB
CF AE
∠交BD于点H.
⊥;
(1)求证:DE DF
=:
(2)求证:DH DF
⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并(3)过点H作HM EF
证明.
【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.
【解析】
【分析】
(1)根据正方形性质, CF AE =得到DE DF ⊥.
(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于
45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.
(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得
222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得
HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒
,得22EF AB HM =-. 【详解】
(1)证明:∵四边形ABCD 是正方形,
∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.
∴90EAD FCD ∠=∠=︒.
∵CF AE =。

∴AED CFD △△≌.
∴ADE CDF ∠=∠.
∴90EDF EDC CDF EDC ADE ADC ∠=∠+∠=∠+∠=∠=︒.
∴DE DF ⊥.
(2)证明:∵AED CFD △△≌,
∴DE DF =.
∵90EDF ∠=︒,
∴45DEF DFE ∠=∠=︒.
∵90ABC ∠=︒,BD 平分ABC ∠,
∴45DBF ∠=︒.
∵FH 平分EFB ∠,
∴EFH BFH ∠=∠.
∵45DHF DBF BFH BFH ∠=∠+∠=︒+∠,
45DFH DFE EFH EFH ∠=∠+∠=︒+∠,
∴DHF DFH ∠=∠.
∴DH DF =.
(3)22EF AB HM =-.
证明:过点H 作HN BC ⊥于点N ,如图,
∵正方形ABCD 中,AB AD =,90BAD ∠=︒, ∴222BD AB AD AB =+=.
∵FH 平分,
EFB HM EF HN BC ∠⊥⊥,,
∴HM HN =. ∵4590HBN HNB ∠=︒∠=︒,
, ∴22sin 45HN BH HN HM ===︒
. ∴22DH BD BH AB HM =-=
. ∵22cos 45DF EF DF DH ===︒
, ∴22EF AB HM =-.
【点睛】
本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.
8.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:
(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;
(2)如图②,当α=60°时,求点B′的坐标;
(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).
【答案】(1)(662,6)-;(2)(333,333)-+;(3)323323AP -+剟.
【解析】
【分析】
(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626-,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;
(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;
(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12
OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】
解:(1)∵A (﹣6,0)、C (0,6),O (0,0),
∴四边形OABC 是边长为6的正方形,
当α=45°时,
如图①,延长OA′经过点B ,
∵OB =62,OA′=OA =6,∠OBC =45°,
∴A′B =626-,
∴BD =(626-)×21262=-,
∴CD =6﹣(1262-)=626-,
∴BC 与A′B′的交点D 的坐标为(662-,6);
(2)如图②,过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,
∵∠OC′B′=90°,
∴∠OC′M =90°﹣∠B′C′N =∠C′B′N ,
∵OC′=B′C′,∠OMC′=∠C′NB′=90°,
∴△OMC′≌△C′NB′(AAS ),
当α=60°时,
∵∠A′OC′=90°,OC′=6,
∴∠C′OM =30°,
∴C′N =OM =33,B′N =C′M =3,
∴点B′的坐标为()333,333-+;
(3)如图③,连接OB ,AC 相交于点K ,
则K 是OB 的中点,
∵P 为线段BC′的中点,
∴PK =1
2OC′=3,
∴P 在以K 为圆心,3为半径的圆上运动,
∵AK =32,
∴AP 最大值为323+,AP 的最小值为323-,
∴AP 长的取值范围为323323AP -+剟.
【点睛】
本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(
3)问解题的关键是
利用中位线定理得出点P 的轨迹.
9.如图,抛物线交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;
(2)当点D恰好落在抛物线上时,求n的值;
(3)记CD与抛物线的交点为E,连接AE,BE,当△AEB的面积为7时,
n=___________.(直接写出答案)
【答案】(1), A(3,0);(2)
【解析】
试题解析:(1)把点B的坐标代入抛物线的解析式中,即可求出a的值,令y=0即可求出点A的坐标.
(2)求出点D的坐标即可求解;
(3)运用△AEB的面积为7,列式计算即可得解.
试题解析:(1)当时,
由,得(舍去),(1分)
∴A(3,0)
(2)过D作DG⊥轴于G,BH⊥轴于H.
∵CD∥AB,CD=AB
∴,
∴,

(3)
10.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.
求证:AE=AF.
【答案】见解析
【解析】
【分析】
根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,
∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得
AF=AE.
【详解】
∵AF⊥AE,
∴∠BAF+∠BAE=90°,
又∵∠DAE+∠BAE=90°,
∴∠BAF=∠DAE,
∵四边形ABCD是正方形,
∴AB=AD,∠ABF=∠ADE=90°,
在△ABF和△ADE中,

∴△ABF≌△ADE(ASA),
∴AF=AE.
【点睛】
本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.
11.已知边长为1的正方形ABCD中, P是对角线AC上的一个动点(与点A、C不重合),过点P作PE⊥PB ,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F.
(1)当点E落在线段CD上时(如图),
①求证:PB=PE;
②在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;
(2)当点E落在线段DC的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);
(3)在点P的运动过程中,△PEC能否为等腰三角形?如果能,试求出AP的长,如果不能,试说明理由.
【答案】(1)①证明见解析;②点PP在运动过程中,PF的长度不变,值为
2
2
;(2)
画图见解析,成立;(3)能,1.
【解析】
分析:(1)①过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;②连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.
(2)根据条件即可画出符合要求的图形,同理可得(1)中的结论仍然成立.
(3)可分点E在线段DC上和点E在线段DC的延长线上两种情况讨论,通过计算就可求出符合要求的AP的长.
详解:(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.
∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,
∴∠GPC=∠ACB=∠ACD=∠HPC=45°.
∴PG=PH,∠GPH=∠PGB=∠PHE=90°.
∵PE⊥PB即∠BPE=90°,
∴∠BPG=90°﹣∠GPE=∠EPH.
在△PGB和△PHE中,
PGB PHE PG PH
BPG EPH ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△PGB ≌△PHE (ASA ),
∴PB=PE .
②连接BD ,如图2.
∵四边形ABCD 是正方形,∴∠BOP=90°.
∵PE ⊥PB 即∠BPE=90°,
∴∠PBO=90°﹣∠BPO=∠EPF .
∵EF ⊥PC 即∠PFE=90°,
∴∠BOP=∠PFE .
在△BOP 和△PFE 中,
PBO EPF BOP PFE PB PE ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△BOP ≌△PFE (AAS ),
∴BO=PF .
∵四边形ABCD 是正方形,
∴OB=OC ,∠BOC=90°,
∴2OB .
∵BC=1,∴OB=
22, ∴PF=22
. ∴点PP 在运动过程中,PF 2. (2)当点E 落在线段DC 的延长线上时,符合要求的图形如图3所示.
同理可得:PB=PE,PF=2

(3)①若点E在线段DC上,如图1.
∵∠BPE=∠BCE=90°,∴∠PBC+∠PEC=180°.
∵∠PBC<90°,∴∠PEC>90°.
若△PEC为等腰三角形,则EP=EC.
∴∠EPC=∠ECP=45°,
∴∠PEC=90°,与∠PEC>90°矛盾,
∴当点E在线段DC上时,△PEC不可能是等腰三角形.②若点E在线段DC的延长线上,如图4.
若△PEC是等腰三角形,
∵∠PCE=135°,
∴CP=CE,
∴∠CPE=∠CEP=22.5°.
∴∠APB=180°﹣90°﹣22.5°=67.5°.
∵∠PRC=90°+∠PBR=90°+∠CER,
∴∠PBR=∠CER=22.5°,
∴∠ABP=67.5°,
∴∠ABP=∠APB.
∴AP=AB=1.
∴AP的长为1.
点睛:本题主要考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、角平分线的性质、勾股定理、四边形的内角和定理、三角形的内角和定理及外角性质等知识,有一定的综合性,而通过添加辅助线证明三角形全等是解决本题的关键.
12.如图,点E是正方形ABCD的边A B上一点,连结CE,过顶点C作CF⊥CE,交AD延长线于F.求证:BE=DF.
【答案】证明见解析.
【解析】
分析:根据正方形的性质,证出BC=CD,∠B=∠CDF,∠BCD=90°,再由垂直的性质得到∠BCE=∠DCF,然后根据“ASA”证明△BCE≌△BCE即可得到BE=DF
详解:证明:∵CF⊥CE,
∴∠ECF=90°,
又∵∠BCG=90°,
∴∠BCE+∠ECD =∠DCF+∠ECD
∴∠BCE=∠DCF,
在△BCE与△DCF中,
∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,
∴△BCE≌△BCE(ASA),
∴BE=DF.
点睛:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.
13.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.
(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;
(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;
(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.
【答案】(1)见解析;
(2)EF⊥BC仍然成立;
(3)EF=BC
【解析】
试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;
(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;
(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和
AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.
试题解析:(1)连接AH,如图1,
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF,
∵△ABC是等边三角形,
∴AB=BC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2,
∴AH==BC,
∵OA=AE,OH=HF,
∴AH是△OEF的中位线,
∴AH=EF,AH∥EF,
∴EF⊥BC,BC=EF,
∴EF⊥BC,EF=BC;
(2)EF⊥BC仍然成立,EF=BC,如图2,
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF,
∵△ABC是等腰三角形,
∴AB=BC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,
∴AH=BH=BC,
∵OA=AE,OH=HF,
∴AH是△OEF的中位线,
∴AH=EF,AH∥EF,
∴EF⊥BC,BC=EF,
∴EF⊥BC,EF=BC;
(3)如图3,
∵四边形OBFC是平行四边形,
∴BH=HC=BC,OH=HF,
∵△ABC是等腰三角形,
∴AB=kBC,AH⊥BC,
在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2-)BC2,
∴AH=BH=BC,
∵OA=AE,OH=HF,
∴AH是△OEF的中位线,
∴AH=EF,AH∥EF,
∴EF⊥BC,BC=EF,
∴EF=BC.
考点:四边形综合题.
14.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN 与△ABC重叠部分图形的面积为S(平方单位).
(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).
(2)当点M落在边BC上时,求t的值.
(3)求S与t之间的函数关系式.
(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH.设MH将正方形PQMN分成的两部分图形面积分别为S1、S2(平方单位)(0<S1<S2),直接写出当S2≥3S1时t的取值范围.
【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,
.当4<t<7时,.(4)或或

【解析】
试题分析:(1)分两种情况讨论:当点Q在线段AC上时,当点Q在线段BC上时.(2)根据AP+PN+NB=AB,列出关于t的方程即可解答;
(3)当0<t≤时,当<t≤4,当4<t<7时;
(4)或或.
试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.
当点Q在线段BC上时,PQ=7-t.
(2)当点M落在边BC上时,如图③,
由题意得:t+t+t=7,
解得:t=.
∴当点M落在边BC上时,求t的值为.
(3)当0<t≤时,如图④,
S=
. 当<t≤4,如图⑤,

当4<t <7时,如图⑥,

(4)或或..
考点:四边形综合题.
15.已知ABC V ,以AC 为边在ABC V 外作等腰ACD V ,其中AC AD =.
(1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数.
(2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.
①若30α=︒,60β=︒,AB 的长为______.
②若改变,αβ的大小,但90αβ+=︒,ABC V 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.
【答案】(1)120°;(2)55【解析】
试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;
(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可
证∠EBC=90°,EC=BD=6,因为BC=4,在Rt△BCE中,由勾股定理求BE即可;
②过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK,仿照(2)利用旋转法证明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出结论.
试题解析:
解:(1)∵AE=AB,AD=AC,
∵∠EAB=∠DAC=60°,
∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,
∴∠EAC=∠DAB,
在△AEC和△ABD中{AE AB
EAC BAD AC AD
=
∠=∠
=
∴△AEC≌△ABD(SAS),
∴∠AEC=∠ABD,
∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,
∴∠BFC=∠AEB+∠ABE=120°,
故答案为120°;
(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.
由(1)可知△EAC≌△BAD.
∴EC=BD.
∴EC=BD=6,
∵∠BAE=60°,∠ABC=30°,
∴∠EBC=90°.
在RT△EBC中,EC=6,BC=4,
∴22
EC BC
-22
64
-

②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,
以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.
∵AH⊥BC于H,
∴∠AHC=90°.
∵BE∥AH,
∴∠EBC=90°.
∵∠EBC=90°,BE=2AH,
∴EC2=EB2+BC2=4AH2+BC2.
∵K为BE的中点,BE=2AH,
∴BK=AH.
∵BK∥AH,
∴四边形AKBH为平行四边形.
又∵∠EBC=90°,
∴四边形AKBH为矩形.∠ABE=∠ACD,
∴∠AKB=90°.
∴AK是BE的垂直平分线.
∴AB=AE.
∵AB=AE,AC=AD,∠ABE=∠ACD,
∴∠EAB=∠DAC,
∴∠EAB+∠EAD=∠DAC+∠EAD,
即∠EAC=∠BAD,
在△EAC与△BAD中
{AB AE
EAC BAD AC AD
=
∠=∠
=
∴△EAC≌△BAD.∴EC=BD=6.
在RT△BCE中,
∴AH=1 2
∴S△ABC=1 2
考点:全等三角形的判定与性质;等腰三角形的性质。

相关文档
最新文档