安徽省黄山市黟县中学高中物理电磁感应现象压轴题易错题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省黄山市黟县中学高中物理电磁感应现象压轴题易错题
一、高中物理解题方法:电磁感应现象的两类情况
1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)
(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;
(3)在两根杆相互作用的过程中,求回路中产生的电能.
【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】
(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v
设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有
2h x v g =2h x s v g
+=根据动量守恒
012mv mv mv =+
求得:
210m/s v =
(2)ab 杆运动距离为d ,对ab 杆应用动量定理
1BIL t BLq mv ==
设cd 杆运动距离为d x +∆
22BL x
q r r
∆Φ∆=
= 解得
1
22
2rmv x B L ∆=
cd 杆运动距离为
1
22
27m rmv d x d B L
+∆=+
= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能
222
012111100J 222
Q mv mv mv =
--=
2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒
ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度
为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的
过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大?
【答案】(1)2sin mgR B L v
θ=2)sin sin t gvt v v CgR θθ=+ 【解析】
试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E
I R
=
,棒所受的安培力F BIL =
联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2
mgRsin B L v
θ
(2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力.
设棒下滑的速度大小为v ',经历的时间为t
则电容器板间电压为 U E BLv ='= 此时电容器的带电量为
Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q
则电路中电流
Q C U CBL v i t t t ∆∆∆===∆∆∆,又v a t
∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθ
θ
=
=++
所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θ
θ
'==
+.
考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化
【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.
3.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:
(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。
【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】
解:(1)t=2s 内MN 杆上升的距离为
21 2
h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为
BLh ∆Φ=
产生的平均感应电动势为
E t ∆Φ
=
产生的平均电流为
E I R
=
流过MN 杆的电量
q It =
代入数据解得
25C 2BLat q R
==
(2)EF 杆刚要离开平台时有
BIL Mg =
此时回路中的电流为
E I R
=
MN 杆切割磁场产生的电动势为
E BLv =
MN 杆运动的时间为
v t a
=
代入数据解得
224s MgR
t B L a
==
4.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度
0.8m L =,质量0.2kg M =,框架电阻不计。
边界相距 1.2m d =的两个范围足够大的磁
场I 、Ⅱ,方向相反且均垂直于金属框架,磁感应强度均为0.5T B =。
导体棒ab 垂直放置在框架上,且可以无摩擦的滑动。
现让棒从MN 上方相距0.5m x =处由静止开始沿框架下滑,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =(此时框架恰能保持静止)。
已知棒与导轨始终垂直并良好接触,棒的电阻0.16R =Ω,质量0.4kg m =,重力加速度210m/s g =,试求:
(1)棒由静止开始沿框架下滑到磁场边界MN 处的过程中,流过棒的电量q ; (2)棒运动到磁场Ⅰ、Ⅱ的边界MN 和PQ 时,棒的速度1v 和2v 的大小;
(3)通过计算分析:棒在经过磁场边界MN 以后的运动过程中,U 型金属框架能否始终保持静止状态?
【答案】(1) 1.25C q =;(2)12m/s v =,24m/s v =;(3)框架能够始终保持静止状态 【解析】 【分析】
本题考查导体棒在磁场中的运动,属于综合题。
【详解】 (1)平均电动势为
BLx
E t t
∆Φ=
=∆∆ 平均电流
E
I R
=
则流过棒的电量为
BLx
q I t R
=∆=
代入数据解得 1.25C q =。
(2)棒向下加速运动时,U 形框所受安培力沿斜面向下,静摩擦力向上,当棒运动到磁场边界MN 处时,框架与斜面间摩擦力刚好达到最大值3N m f =,由平衡条件,有
221
sin m B L v Mg f R
θ+=
解得12m/s v =。
棒经过MN 后做匀加速直线运动,加速度
3sin 5m/s a g θ==
由2
2
212v v ad -=,解得
24m/s v =
(3)棒在两边界之间运动时,框架所受摩擦力大小为
1sin 1N m f Mg f θ==<
方向沿斜面向上棒进入PQ 时,框架受到的安培力沿斜面向上,所受摩擦力大小为
222
2sin 3N m B L v f Mg f R
θ=-==
向沿斜面向下以后,棒做加速度减小的减速运动,最后做匀速运动。
匀速运动时,框架所受安培力为
22sin 2N B L v F mg R
θ===安
方向沿斜面向上。
摩擦力大小为
223sin 1N m B L v f Mg f R
θ=-=<
方向沿斜面向下。
综上可知,框架能够始终保持静止状态。
5.如图所示,光滑导线框abfede 的abfe 部分水平,efcd 部分与水平面成α角,ae 与ed 、bf 与cf 连接处为小圆弧,匀强磁场仅分布于efcd 所在平面,方向垂直于efcd 平面,线框边ab 、cd 长均为L ,电阻均为2R ,线框其余部分电阻不计。
有一根质量为m 、电阻为R 的金属棒MN 平行于ab 放置,让它以初速水平向右运动在到达最高点的过程中,ab 边产生的热量为Q 。
求:
(1)金属棒MN 受到的最大安培力的大小; (2)金属棒MN 刚进入磁场时,ab 边的发热功率; (3)金属棒MN 上升的最大高度。
【答案】(1)220A 2B L v F R =;(2)222
08ab B L v P R
=;(3)2082mv Q h mg -=
【解析】 【分析】 【详解】
(1)金属棒MN 刚冲上斜面时,速度最大,所受安培力最大。
此时电路中总电阻为
22222R R
R R R R R
⋅=
+=+总
最大安培力
2200
A 2BLv
B L v F BIL B L R R
===总
由楞次定律知,MN 棒受到的安培力方向沿导轨向下。
(2)金属棒MN 刚进入磁场时,MN 棒中的电流
02BLv E I R R
=
=总 则
024ab BLv I I R
=
=,2ab ab ab P I R = 解得
222
08ab B L v P R
=
(3)当金属棒MN 上升到最大高度的过程中,ab 边、cd 边产生的热量相等,即
cd ab Q Q Q ==
ab 边产生的热量
2·2Q I Rt =
金属棒MN 产生的热量
2(2)MN Q I Rt =
得
2MN Q Q =
ab 边、cd 边及MN 棒上产生的总热量
4Q Q =总
由动能定理
2
01402
mgh Q mv --=-
解得
2082mv Q h mg
-=
6.如图所示空间存在有界匀强磁场,磁感应强度B =5T ,方向垂直纸面向里,上下宽度为d =0.35m.现将一边长L =0.2m 的正方形导线框自磁场上边缘由静止释放经过一段时间,导线框到达磁场下边界,之后恰好匀速离开磁场区域.已知导线框的质量m =0.1kg ,电阻
2R =Ω.(g 取10m/s 2)求:
(1)导线框匀速穿出磁场的速度;
(2)导线框进入磁场过程中产生的焦耳热;
(3)若在导线框进入磁场过程对其施加合适的外力F 则可以使其匀加速地进入磁场区域,且之后的运动同没施加外力F 时完全相同。
请写出F 随时间t 变化的函数表达式. 【答案】(1)2m/s (2)0.15J (3)F =0.75-1.25t (0<t <0.4s) 【解析】 【详解】
(1)导线框匀速穿出磁场过程中,感应电动势:
E BLv =
感应电流:BLv
I R
=
, 线框受到的安培力:22=B L v
F BIL R =安培
线框匀速穿出磁场,由平衡条件得:22g B R
m L v
=
解得:v =2m/s
(2)自导线框刚要进入磁场至刚要离开磁场的过程中,仅进人磁场过程中有焦耳热产生,由能量守恒得:2
12
mgd mv Q =+ 得:Q =0.15J
(3)导线框刚好完全进入磁场至刚好要离开磁场的过程
()22
02v v g d L -=-
得:导线框刚好完全进入磁场的速度v 0=1m/s 导线框进入磁场的过程由2
02v aL = 得:a =2.5m/s 2
2012
L at =
得:t 0=0.4s
取向下为正方向有:22'
'B L v mg F mav at R
--==
得:F =0.75-1.25t (0<t <0.4s)
7.某同学在学习电磁感应后,认为电磁阻尼能够承担电梯减速时大部分制动的负荷,从而减小传统制动器的磨损.如图所示,是该同学设计的电磁阻尼制动器的原理图.电梯箱与配重质量都为M ,通过高强度绳子套在半径1r 的承重转盘上,且绳子与转盘之间不打滑.承重转盘通过固定转轴与制动转盘相连.制动转盘上固定了半径为2r 和3r 的内外两个金属圈,金属圈内阻不计.两金属圈之间用三根互成120︒的辐向导体棒连接,每根导体棒电阻均为R .制动转盘放置在一对励磁线圈之间,励磁线圈产生垂直于制动转盘的匀强磁场(磁感应强度为B ),磁场区域限制在120︒辐向角内,如图阴影区所示.若电梯箱内放
置质量为m 的货物一起以速度v 竖直上升,电梯箱离终点(图中未画出)高度为h 时关闭动力系统,仅开启电磁制动,一段时间后,电梯箱恰好到达终点.
(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E 为多少?此时a 与b 之间的电势差有多大?
(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?
(3)若要提高制动的效果,试对上述设计做出二处改进.
【答案】(1)22321()2Bv r r E r -=
,22321
()6Bv r r U r -= (2)2
1()2Q M m v mgh =+-(3) 若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r 3或减小内金属圈的半径r 2 【解析】 【分析】 【详解】
(1)在开启电磁制动瞬间,承重转盘的线速度为v ,所以,角速度
1
v r ω=
所以,制动转盘的角速度1
v
r ω=,三根金属棒的位置刚好在图2所示位置,则fe 切割磁感线产生电动势
22321
()2Bv r r B S E t t r -∆Φ⋅∆===∆∆
所以干路中的电流
223E E
I R R R R R
=
=+
+ 那么此时a 与b 之间的电势差即为路端电压
22321
()
6Bv r r U E IR r -=-=
(2)电梯箱与配重用绳子连接,速度相同;由能量守恒可得
21
(2)()2
m M v m M gh Mgh Q +=+-+
解得:
21
()2
Q M m v mgh =
+- (3)若要提高制动的效果,那么在相同速度下,要使h 减小,则要使制动转盘产生的热量增加,即在相同速度下电功率增大,,速度为v 时的电功率
222223221()362
B v r r E P Rr R
-== 所以,若要提高制动的效果,可增加外金属圈的半径r 3或减小内金属圈的半径r 2或减小金属棒的电阻或减小承重盘的半径r 1.
8.磁场在xOy 平面内的分布如图所示,其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反,每个同向磁场区域的宽度均为L 0,整个磁场以速度v 沿x 轴正方向匀速运动。
若在磁场所在区间内放置一由n 匝线圈组成的矩形线框abcd ,线框的bc =L B 、ab =L 、L B 略大于L 0,总电阻为R ,线框始终保持静止。
求: (1)线框中产生的总电动势大小和导线中的电流大小; (2)线框所受安培力的大小和方向。
【答案】(1)2nB 0Lv ;02nB Lv R (2)22204n B L v
R
,方向沿x 轴正方向
【解析】 【详解】
(1)线框相对于磁场向左做切割磁感线的匀速运动,切割磁感线的速度大小为v ,任意时刻线框ab 边切割磁感线产生的感应电动势大小为
E 1=nB 0Lv ,
cd 边切割磁感线产生的感应电动势大小为
E 2=nB 0Lv ,
ab 边和cd 边所处的磁场方向总是相反的,故ab 边和cd 边中产生的感应电动势方向总是相同的,所以总的感应电动势大小
E =2nB 0Lv ,
由闭合电路欧姆定律得导线中的电流大小
02nB Lv
I R
=
(2)线框所受安培力的大小
2220042n B L v
F nB LI R
==
, 由左手定则判断,线框所受安培力的方向始终沿x 轴正方向。
9.一种可测速的跑步机的测速原理如图所示。
该机底面固定有间距为L 、宽度为d 的平行金属电极。
电极间充满磁感应强度为B ,方向垂直纸面向里的匀强磁场,左侧与电压表和电阻R 相连接。
绝缘橡胶带上每隔距离d 就嵌入一个电阻为r 的平行细金属条,跑步过程中,绝缘橡胶带跟随脚步一起运动,金属条和电极之间接触良好且任意时刻仅有一根金属条处于磁场中。
现在测出t 时间内电压表读数为恒为U ,设人与跑步机间无相对滑动,求:
(1)判断电阻R 的电流方向;
(2)该人跑步过程中,是否匀速?给出定性判断理由;
(3)求t 时间内的平均跑步速度;
(4)若跑步过程中,人体消耗的能量有20%用于克服磁场力做功,求t 时间内人体消耗的能量。
【答案】(1)电阻R 的电流方向向下;(2)是匀速;(3)R r v U BLR +=
;(4)2
5()R r t E UR += 【解析】
【分析】
【详解】 (1)由题意且根据右手定则可知,流经电阻R 的电流方向向下;
(2)(3)金属条做切割磁感线运动产生的电动势大小为E BLv =, 回路中的电流大小为E I R r
=+, 伏特表的示数为U IR =,
解得
R r v U BLR
+= 由于伏特表示数恒定,所以速度也恒定,说明该人跑步过程中,是匀速;速度为 R r v U BLR +=
(4)金属条中的电流为
I r
BLv R =
+ 金属条受的安培力大小为 A F BIL =
时间t 内金属条克服安培力做功为
22222()A B L v t R r U t W F vt R r R
+===+ 所以t 时间内人体消耗的能量
22
5()0.2W R r U t E R +==
10.如图甲,abcd 是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一匀强磁场区域, MN 、PQ 是匀强磁场区域的上、下水平边界,并与线框的bc 边平行,磁场方向垂直于线框平面向里.现使金属线框从MN 上方某一髙度处由静止开始下落(bc 边始终与MN 平行),并以此时为计时起点,图乙是金属线框由开始下落到离开匀强磁场的过程中,线框中感应电流随时间变化的i -t 图象(图中t 1、t 2、t 3未知).已知金属线框边长为L ,质量为m ,电阻为R ,匀强磁场的磁感应强度为B ,重力加速度为g ,不计空气阻力.求:
(1)金属线框进入磁场时,线框中感应电流的方向;
(2)金属线框开始下落时,bc 边距离边界MN 的高度h ;
(3)在t 1—t 2时间内,流过线框导线截面的电量q ;
(4)在t 1—t 3时间内,金属线框产生的热量Q .
【答案】(1) 逆时针方向 (2) 22
442m gR B L (3) 2BL R
(4)2mgL 【解析】
【分析】
本题考查电磁感应的综合问题。
【详解】
(1)楞次定律可知电流方向 abcda “逆时针方向”)
(2)根据i -t 图象可知,线框进入磁场区域时,做匀速运动.受力满足
=F mg 安
线框进入磁场区域过程中,感应电动势大小为
E BLv =
因为感应电流大小为
E I R
=
安培力大小
=F BIL 安
联系以上各式得,线框进入磁场时速度大小为
22
mgR v B L =
线框进入磁场前自由下落,所以 22v gh =
解得:
22
44
2m gR h B L = (3)流过线框导线截面的电量
q=It
在t 1—t 2时间内,线框中感应电流大小
2
BL I Rt
= 联立以上两式可得,在t 1—t 2时间内,流过线框导线截面的电量
2
=BL q R
(4)从i -t 图象可知,线框匀速进入磁场,并匀速离开.根据功能关系,在t 1—t 3时间内,线框中产生的热量Q 等于线框bc 边进入磁场至ad 边离开磁场的过程中,线框下落减少的重力势能,即:
Q=2mgL。