八年级上册轴对称填空选择(篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册轴对称填空选择(篇)(Word 版 含解析)
一、八年级数学全等三角形填空题(难)
1.如图,MN ∥PQ ,AB ⊥PQ ,点A ,D ,B ,C 分别在直线MN 和PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB =_____.
【答案】7
【解析】
由MN ∥PQ ,AB ⊥PQ ,可知∠DAE=∠EBC=90°,可判定△ADE ≌△BCE ,从而得出AE=BC ,则AB=AE+BE=AD+BC=7.
故答案为:7.
点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.
2.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.
【答案】(-4,2)或(-4,3)
【解析】
【分析】
【详解】
把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.
故答案为(-4,2)或(-4,3).
3.如图,△ABC 中,AC =BC =5,∠ACB =80°,O 为△ABC 中一点,∠OAB =10°,∠OBA =30°,则线段AO 的长是_____.
【答案】5
【解析】
【分析】
作∠CAO 的平分线AD ,交BO 的延长线于点D ,连接CD ,由等边对等角得到∠CAB =∠CBA =50°,再推出∠DAB =∠DBA ,得到AD =BD ,然后可证△ACD ≌△BCD ,最后证△ACD ≌△AOD ,即可得AO =AC =5.
【详解】
解:如图,作∠CAO 的平分线AD ,交BO 的延长线于点D ,连接
CD ,
∵AC =BC =5,
∴∠CAB =∠CBA =50°,
∵∠OAB =10°,
∴∠CAD =∠OAD =1(CAB OAB)2∠-∠=()
150102︒︒-=20°, ∵∠DAB =∠OAD+∠OAB =20°+10°=30°,
∴∠DAB =30°=∠DBA ,
∴AD =BD ,∠ADB =120°,
在△ACD 与△BCD 中
AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩
∴△ACD ≌△BCD (SSS )
∴∠CDA =∠CDB ,
∴∠CDA =∠CDB =()1360ADB 2︒-∠=()
13601202
︒︒-=120°, 在△ACD 与△AOD 中 CDA ADO 120AD AD
CAD OAD ︒
⎧∠=∠=⎪=⎨⎪∠=∠⎩
∴△ACD ≌△AOD (ASA )
∴AO=AC=5,
故答案为5.
【点睛】
本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.
4.如图,直角三角形ABC与直角三角形BDE中,点B,C,D在同一条直线上,已知
AC=AE=CD,∠BAC和∠ACB的角平分线交于点F,连DF,EF,分别交AB、BC于M、N,已知点F到△ABC三边距离为3,则△BMN的周长为____________.
【答案】6
【解析】
【分析】
由角平分线和三角形的内角和定理可得∠AFC=135°,由△AFC≌△DFC可得
∠DFC=∠AFC=135°,可得∠AFD=90°.同理可得∠CFE=90°,可求得∠MFN=45°,过点F作FP⊥AB于点P,FQ⊥BC于点Q,由正方形的半角模型可得MN=MP+NQ,由此即可得出答案.
【详解】
解:过点F作FP⊥AB于点P,FQ⊥BC于点Q,过点F作FG⊥FM,交BC于点G.
∵点F是∠BAC和∠BCA的角平分线交点,
∴FP=FQ=3,
∵∠ABC=90°,
∴四边形BPFQ是正方形,
∴BP=BQ=3.
在Rt△ABC中,∠BAC+∠BCA=90°,
∵AF、CF是角平分线,
∴∠FAC+∠FCA=45°,
∴∠AFC =180°-45°=135°.
易证△AFC ≌△DFC (SAS ),
∴∠AFC =∠DFC =135°,
∴∠ADF =90°,
同理可得∠EFC =90°,
∴∠MFN =360°-90°-90°-135°=45°.
∵∠PFM +∠MFN =90°,∠MFN +∠QFG =90°,
∴∠PMF =∠QFG ,
∵∠FPM =∠FQG =90°,FP =FQ ,
∴△FPM ≌△FQG (ASA ),
∴PM =QG ,FM =FG .
在△FMN 和△FGN 中
45FM FG MFN GFN FN FN =⎧⎪∠=∠=⎨⎪=⎩
∴△FMN ≌△FGN (SAS ),
∴MN =NG ,
∴MN =NG =NQ +QG =PM +QN ,
∴△BMN 的周长为:
BM +BN +MN
= BM +BN + PM +QN
=BP +BQ
=3+3
=6.
故答案为:6.
【点睛】
本题是一道全等三角形的综合题,主要考查了全等三角形的判定和性质的应用,角平分线的性质,以及全等三角形常用辅助线的作法,作出辅助线,准确的找出全等三角形是解决此题的关键.
5.在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,∠CDE =55°.如图,则∠EAB 的度数为_________
【答案】35°
【解析】
过点E 作EF ⊥AD 于F ,根据角平分线上的点到角的两边的距离相等可得CE =EF ,再根据到角的两边距离相等的点在角的平分线上可得AE 是∠BAD 的平分线,然后求出∠AEB ,再根据直角三角形两锐角互余求解即可.
【详解】
过点E 作EF ⊥AD 于F .
∵DE 平分∠ADC ,∴CE =EF .
∵E 是BC 的中点,∴CE =BE ,∴BE =EF ,∴AE 是∠BAD 的平分线,∴∠EAB =∠FAE . ∵∠B =∠C =90°,∴∠CDA +∠DAB =180°,∴2∠CDE +2∠EAB =180°,
∴∠CDE +∠EAB =90°,∴∠EAB =90°-∠CDE =90°-55°=35°.
故答案为:35°.
【点睛】
本题考查了角平分线上的点到角的两边的距离相等的性质,角平分线的判定,熟记性质并作辅助线是解题的关键.
6.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________
【答案】33
【解析】
【分析】
过点D 作DF 1∥BE ,求出四边形BEDF 1是菱形,根据菱形的对边相等可得BE=DF 1,然后根据等底等高的三角形的面积相等可知点F 1为所求的点,过点D 作DF 2⊥BD ,求出
∠F 1DF 2=60°,从而得到△DF 1F 2是等边三角形,然后求出DF 1=DF 2,再求出∠CDF 1=∠CDF 2,利用“边角边”证明△CDF 1和△CDF 2全等,根据全等三角形的面积相等可得点F 2也是所求的点,然后在等腰△BDE 中求出BE 的长,即可得解.
如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=
1
2
∠ABC=30°,∠F2DB=90°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,
∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=
1
2
×60°=30°,
∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF2=360°-150°-60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,
12
12
DF DF
CDF CDF
CD CD
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=
1
2
×60°=30°,
又∵BD=6,
∴BE=
1
2
×6÷cos30°
3
3
∴BF1=BF2=BF1+F1F2=23+23=43,
故BF的长为23或43.
故答案为:23或43.
【点睛】
本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.
7.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在_____.
【答案】∠BAC的平分线上,与A相距1cm的地方.
【解析】
【分析】
由已知条件及要求满足的条件,根据角平分线的性质作答,注意距A1cm处.
【详解】
工厂的位置应在∠BAC的平分线上,与A相距1cm的地方;
理由:角平分线上的点到角两边的距离相等.
【点睛】
此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.作图题一定要找到相关的知识为依托,同时满足多个要求时,要逐个满足.
8.如图,三角形△ABO中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B(6,0).OC平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN的最小值是______.
【答案】3
【解析】
【分析】
在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.易证△N’OM≌△NOM,可得
MN’=MN,则MA+MN的最小值即为MA+MN’的最小值,由于A点固定,故当N’点与D点重合时,MA+MN’的值最小,即MA+MN的值最小.
【详解】
解:在x轴正半轴上取点N’,使ON’=ON,作AD⊥x轴于D点.
∵ON’=ON,∠N’OM=∠NOM,OM=OM,
∴△N’OM≌△NOM,
∴MN’=MN,
∴MA+MN=MA+MN’,
∵A点固定,
∴MA+MN’的最小值为当N’与D点重合时的MA+MN’值,
∴MA+MN’的最小值为AD,
∵∠OAB=∠AOB=15°,OB=6,
∴∠ABD=30°,AB=6,
∴AD=0.5×6=3,
∴MA+MN的最小值为3,
故答案为3.
【点睛】
理解A点是固定点,而M和N均为动点,然后运用三点共线及点到直线的最短距离概念进行解答是本题的关键.
9.如图,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,点D是AB的中点,E, F在射线AC与射线CB上运动,且满足AE=CF,∠EDF=90°;当点E运动到与点C的距离为1时,则△DEF的面积为___________.
【答案】5
2
或
13
2
【解析】
解:①E在线段AC上.在△ADE和△CDF中,
∵AD=CD,∠A=∠DCF,AE=CF,∴△ADE≌△CDF(SAS),∴同理△CDE≌△BDF,∴四边形CEDF面积是△ABC面积的一半.∵CE=1,∴CF=4﹣1=3,∴△CEF的面积
=1
2
CE•CF=
3
2
,∴△DEF的面积=1
2
×22×22﹣
3
2
=
5
2
.
②E'在AC延长线
上.∵AE'=CF',AC=BC=4,∠ACB=90°,∴CE'=BF',∠ACD=∠CBD=45°,CD=AD=BD=22,∴∠DCE'=∠DBF'=135°.在△CDE'和△BDF'中,
∵CD=BD,∠DCE′=DBF′,CE′=BF′,∴△CDE'≌△BDF'(SAS),∴DE'=DF',∠CDE'=∠BDF'.∵∠CDE'+∠BDE'=90°,∴∠BDE'+∠BDF'=90°,即
∠E'DF'=90°.∵DE'2=CE'2+CD2﹣2CD•CE'cos135°=1+8+2×22×2
2=13,∴S△E'DF'=
1
2
DE'2=
13 2.故答案为
13
2
或
5
2
.
点睛:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADE≌△CDF和△CDE≌△BCF是解题的关键.
10.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.
【答案】4
【解析】
试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,
∵AB∥CD,
∴MN⊥CD,
∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,
∴OM=OE=2,
∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,
∴ON=OE=2,
∴MN=OM+ON=4,
即AB与CD之间的距离是4.
点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.
二、八年级数学全等三角形选择题(难)
11.如图,点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,BF=CE,添加一个适当的条件后,仍不能使得△ABC≌△DEF()
A.AC=DF B.AC∥DF C.∠A=∠D D.AB=DE
【答案】A
【解析】
【分析】
根据AB∥DE证得∠B=∠E,又已知BF=CE证得BC=EF,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.
【详解】
∵AB∥DE,
∴∠B=∠E,
∵BF=CE,
∴BF+FC=CE+FC,
∴BC=EF,
若添加AC=DF,则不能判定△ABC≌△DEF,故选项A符合题意;
若添加AC∥DF,则∠ACB=∠DFE,可以判断△ABC≌△DEF(ASA),故选项B不符合题意;
若添加∠A=∠D,可以判断△ABC≌△DEF(AAS),故选项C不符合题意;
若添加AB=DE,可以判断△ABC≌△DEF(SAS),故选项D不符合题意;
故选:A.
【点睛】
此题考查三角形全等的判定定理,熟练掌握定理,并能通过定理去判断条件是否符合全等是解决此题的关键.
12.如图,将一个等腰Rt △ABC 对折,使∠A 与∠B 重合,展开后得折痕CD ,再将∠A 折叠,使C 落在AB 上的点F 处,展开后,折痕AE 交CD 于点P ,连接PF 、EF ,下列结论:①tan ∠CAE=2﹣1;②图中共有4对全等三角形;③若将△PEF 沿PF 翻折,则点E 一定落在AB 上;④PC=EC ;⑤S 四边形DFEP =S △APF .正确的个数是( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
【详解】 ①正确.作EM ∥AB 交AC 于M .
∵CA=CB ,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∵∠CAE=∠BAE=
12
∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°, ∴∠CME=45°=∠CEM ,设CM=CE=a ,则2,
∴tan ∠CAE=212CE AC a a
==+,故①正确, ②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF ,
∴∠PCE=∠PFE=45°,
∵∠EFA=∠ACE=90°,
∴∠PFA=∠PFE=45°,
∴若将△PEF 沿PF 翻折,则点E 一定落在AB 上,故③正确.
④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,
∴∠CPE=∠CEP ,
∴CP=CE ,故④正确,
⑤错误.∵△APC ≌△APF ,
∴S △APC =S △APF ,
假设S △APF =S 四边形DFPE ,则S △APC =S 四边形DFPE ,
∴S △ACD =S △AEF ,
∵S△ACD=1
2
S△ABC,S△AEF=S△AEC≠
1
2
S△ABC,
∴矛盾,假设不成立.
故⑤错误.
.
故选D.
13.已知等边三角形ABC的边长为12,点P为AC上一点,点D在CB的延长线上,且BD=AP,连接PD交AB于点E,PE⊥AB于点F,则线段EF的长为()
A.6 B.5
C.4.5 D.与AP的长度有关
【答案】A
【解析】
【分析】
作DQ⊥AB,交直线AB的延长线于点Q,连接DE,PQ,根据全等三角形的判定定理得出△APE≌△BDQ,再由AE=BQ,PE=QD且PE∥QD,可知四边形PEDQ是平行四边形,进而
可得出EF=1
2
AB,由等边△ABC的边长为12可得出DE=6.
【详解】
解;如图,作DQ⊥AB,交AB的延长线于点F,连接DE,PQ,
又∵PE ⊥AB 于E ,
∴∠BQD=∠AEP=90°,
∵△ABC 是等边三角形,
∴∠A=∠ABC=∠DBQ=60°,
在△APE 和△BDQ 中,
A DBQ AEP BQD AP BD ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△APE ≌△BDQ (AAS ),
∴AE=BQ ,PE=QD 且PE ∥QD ,
∴四边形PEDQ 是平行四边形, ∴EF=12
EQ , ∵EB+AE=BE+BQ=AB , ∴EF=
12AB , 又∵等边△ABC 的边长为12,
∴EF=6.
故选:A.
【点睛】
本题主要考查全等三角形的判定与性质,平行四边形的判定与性质,解此题的关键在于根据题中PE ⊥AB 作辅助线构成全等的三角形.
14.如图,在△ABC 中,P 是BC 上的点,作PQ ∥AC 交AB 于点Q ,分别作PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若PR=PS ,则下面三个结论:①AS=AR ;②AQ=PQ ;
③△PQR ≌△CPS ;④AC ﹣AQ=2SC ,其中正确的是( )
A.②③④B.①②C.①④D.①②③④
【答案】B
【解析】
【分析】
连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得
△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.
【详解】
解:如图
连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,
AP是∠BAC的平分线,∠1=∠2,
△APR≌△APS.
AS=AR,
又QP/AR,
∠2 = ∠3又∠1 = ∠2,
∠1=∠3,
AQ=PQ,
没有办法证明△PQR≌△CPS,③不成立,
没有办法证明AC-AQ=2SC,④不成立.
所以B选项是正确的.
【点睛】
本题主要考查三角形全等及三角形全等的性质.
15.如图,在等腰直角△ABC中,∠ACB=90°,点O为斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:
①图中全等三角形有三对;②△ABC的面积等于四边形CDOE面积的倍;
③DE2+2CD•CE=2OA2;④AD2+BE2=2OP•OC.正确的有()个.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
结论(1)正确.因为图中全等的三角形有3对;
结论(2)错误.由全等三角形的性质可以判断;
结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.
结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.【详解】
结论(1)正确,理由如下:
图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.
由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.
∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.
在△AOD与△COE中,
∴△AOD≌△COE(ASA),
同理可证:△COD≌△BOE.
结论(2)错误.理由如下:
∵△AOD≌△COE,
∴S△AOD=S△COE,
∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC
即△ABC的面积等于四边形CDOE的面积的2倍.
结论(3)正确,理由如下:
∵△AOD≌△COE,
∴CE=AD,
∴CD+CE=CD+AD=AC=OA,
∴(CD+CE)2=CD2+CE2+2CD•CE=DE2+2CD•CE=2OA2;
结论(4)正确,理由如下:
∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.
在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.
∵△AOD≌△COE,∴OD=OE,
又∵OD⊥OE,∴△DOE为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
∴,
即OP•OC=OE2.
∴DE2=2OE2=2OP•OC,
∴AD2+BE2=2OP•OC.
综上所述,正确的结论有3个,
故选C.
【点睛】
本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.
16.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如图,那么下列各条件中,不能使Rt△AB C≌Rt△A′B′C′的是( )
A.AB=A′B′=5,BC=B′C′=3
B.AB=B′C′=5,∠A=∠B′=40°
C.AC=A′C′=5,BC=B′C′=3
D.AC=A′C′=5,∠A=∠A′=40°
【答案】B
【解析】
∵在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°
A选项:AB=A′B′=5,BC=B′C′=3,
符合直角三角形全等的判定条件HL,
∴A选项能使Rt△ABC≌Rt△A′B′C′;
B选项:AB=B′C′=5,∠A=∠B′=40°,
不符合符合直角三角形全等的判定条件,
∴B选项不能使Rt△ABC≌Rt△A′B′C′;
C选项符合Rt△ABC和Rt△A′B′C全等的判定条件SAS;
∴C选项能使Rt△ABC≌Rt△A′B′C′;
D选项符合Rt△ABC和Rt△A′B′C全等的判定条件ASA,
∴D选项能使Rt△ABC≌Rt△A′B′C′;
故选:B.
点睛:此题主要考查学生对直角三角全等的判定的理解和掌握,解答此题不仅仅是掌握直角三角形全等的判定,还要熟练掌握其它判定三角形全等的方法,才能尽快选出此题的正
确答案.
17.如图,把ΔABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN 上,直线MN∥AB.在ΔABC中,若∠AOB=125°,则∠ACB的度数为()
A.70°B.65°C.60°D.85°
【答案】A
【解析】
【分析】
利用平行线间的距离处处相等,可知点O到BC、AC、AB的距离相等,得出O为三条角平分线的交点,根据三角形内角和定理和角平分线的定义即可得出结论.
【详解】
如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F.
∵MN∥AB,∴OD=OE=OF(平行线间的距离处处相等).
如图2:过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F'.
由题意可知:OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点.
∵∠AOB=125°,∴∠OAB+∠OBA=180°-125°=55°,
∴∠CAB+∠CBA=2×55°=110°,∴∠ACB=180°-110°=70°.
故选A.
【点睛】
本题考查了三角形的内心,平行线间的距离处处相等,角平分线定义,解答本题的关键是判断出OD=OE=OF.
18.如图,在△ABC中,∠ABC=45°, BC=4,以AC为直角边,点A为直角顶点向△ABC 的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .
A.8 B.10 C.42D.82
【答案】A
【解析】
【分析】
将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF
⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.
【详解】
解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,
根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,
∴△ABE是等腰直角三角形,
∴∠ABE=45°,
又∵∠ABC=45°,
∴∠EBC=90°,
∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,
∴∠BDF=∠ECB
在△EBC和△BFD中
EBC=BFD=90
ECB=BDF
EC=BD
⎧∠∠
⎪
∠∠
⎨
⎪
⎩
∴△EBC≌△BFD(AAS)
∴DF=BC=4
∴△DBC的面积=
11
BC DF=44=8
22
⋅⨯⨯
故选A.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.
19.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,
BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;
④∠BCE+∠BCD=180°.其中正确的是()
A.①②③B.①②④C.①③④D.②③④
【答案】C
【解析】
已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,
BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由
∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得
∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.
点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.
20.下列命题中的假命题是()
A.等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等
B.等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等
C.等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等
D.直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等
【答案】D
【解析】
【分析】
根据等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定进行判定即可.【详解】
解:A、等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等,正
确,是真命题;
B、等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等,正确,是真命题;
C、等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等,正确,是真命题;
D、直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等,错误,是假命题,
故答案为D.
【点睛】
本题考查了等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定,其中灵活应用所学知识是解答本题的关键.
21.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()
A.0个B.1个C.2个D.3个
【答案】D
【解析】
分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.
详解:①∵四边形ABCD和EFGC都为正方形,
∴CB=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,
∴△BCE≌△DCG,
∴BE=DG,
故结论①正确.
②如图所示,设BE交DC于点M,交DG于点O.
由①可知,△BCE≌△DCG,
∴∠CBE=∠CDG,即∠CBM=∠MDO.
又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,
∴∠DOM=∠MCB=90°,
∴BE⊥DG.
故②结论正确.
③如图所示,连接BD、EG,
由②知,BE⊥DG,
则在Rt△ODE中,DE2=OD2+OE2,
在Rt△BOG中,BG2=OG2+OB2,
在Rt△OBD中,BD2=OD2+OB2,
在Rt△OEG中,EG2=OE2+OG2,
∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.
在Rt△BCD中,BD2=BC2+CD2=2a2,
在Rt△CEG中,EG2=CG2+CE2=2b2,
∴BG2+DE2=2a2+2b2.
故③结论正确.
故选:D.
点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.
22.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正确的是( )
A.①③B.①②④C.①③④D.①②③④
【答案】C
【解析】
【分析】
由题意可证点A,点C,点B,点D四点共圆,可得∠ADC=∠ABC=45°;由角平分线的性质和外角性质可得∠AFD=∠BDF+∠DBF>∠ADF,可得AD≠AF;如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,由“SAS”可证△ADF≌△HDF,可得∠DHF=
∠DAF=30°,AF=HF,由等腰三角形的性质可得BH=AF,可证BD=BH+DH=AF+AD;由“SAS”可证△BDG≌△BDE,可得∠BGD=∠BED=75°,由三角形内角和定理和等腰三角形的性质可得BC=BG=2DE+EC.
【详解】
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,且∠ACD=15°,
∵∠BCD=30°,
∵∠BAC=∠BDC=90°,
∴点A,点C,点B,点D四点共圆,
∴∠ADC=∠ABC=45°,故①符合题意,
∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,
∵DF为∠BDA的平分线,
∴∠ADF=∠BDF,
∵∠AFD=∠BDF+∠DBF>∠ADF,
∴AD≠AF,故②不合题意,
如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,
∵DH=AD,∠HDF=∠ADF,DF=DF,
∴△ADF≌△HDF(SAS)
∴∠DHF=∠DAF=30°,AF=HF,
∵∠DHF=∠HBF+∠HFB=30°,
∴∠HBF=∠BFH=15°,
∴BH=HF,
∴BH=AF,
∴BD=BH+DH=AF+AD,故③符合题意,
∵∠ADC=45°,∠DAB=30°=∠BCD,
∴∠BED=∠ADC+∠DAB=75°,
∵GD=DE,∠BDG=∠BDE=90°,BD=BD,
∴△BDG≌△BDE(SAS)
∴∠BGD=∠BED=75°,
∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,
∴∠GBC =∠BGC =75°,
∴BC =BG ,
∴BC =BG =2DE+EC ,
∴BC ﹣EC =2DE ,故④符合题意,
故选:C.
【点睛】
本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,
23.具备下列条件的两个三角形,可以证明它们全等的是( ).
A .一边和这一边上的高对应相等
B .两边和第三边上的中线对应相等
C .两边和其中一边的对角对应相等
D .直角三角形的斜边对应相等
【答案】B 【解析】
【分析】
根据判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL 分别进行分析.
【详解】
解:A 、一边和这边上的高对应相等,无法得出它们全等,故此选项错误;
B 、两边和第三边上的中线对应相等,通过如图所示方式(倍长中线法)可以证明它们全等(△AB
C ≌△A ′B ′C ′),故此选项正确. .
C 、两边和其中一边的对角对应相等,无法利用ASS 得出它们全等,故此选项错误;
D 、直角三角形的斜边对应相等,无法得出它们全等,故此选项错误.
故选:B .
【点睛】
本题考查三角形全等的判定方法,注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
24.如图,在△ABC 中,AB=BC ,90ABC ∠=︒,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()
A .∠1=∠3
B .∠2=∠3
C .∠3=∠4
D .∠4=∠5
【答案】A
【解析】
【分析】 如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,先根据直角三角形两锐角互余可得BAD CBG ∠=∠,再根据三角形全等的判定定理与性质推出1G ∠=∠,又根据三角形全等的判定定理与性质推出3G ∠=∠,由此即可得出答案.
【详解】
如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,即90BCG ∠=︒ ,90AB BC ABC =∠=︒
45BAC ACB ∠∴∠==︒
904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒
BF AD ⊥
1190BAD CBG ∴∠+∠=∠+∠=︒
BAD CBG ∴∠=∠
在BAD ∆和CBG ∆中,90BAD CBG AB BC ABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩
()BAD CBG ASA ∴∆≅∆
,1BD CG G ∴=∠=∠
点D 是BC 的中点
CD BD CG ∴==
在CDF ∆和CGF ∆中,45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩
()CDF CGF SAS ∴∆≅∆
3G ∴∠=∠
13∠∠∴=
故选:A .
【点睛】
本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知
识点,通过作辅助线,构造两个全等的三角形是解题关键.
25.如图,AD 是ABC 的角平分线,DE AC ⊥;垂足为,//E BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.给出下列三个结论:①DE DF =;②DB DC =;③AD BC ⊥.其中正确的结论共有( )个
A .0
B .1
C .2
D .3
【答案】D
【解析】
【分析】 由BF ∥AC ,AD 是ABC 的角平分线,BC 平分ABF ∠得∠ADB=90︒;利用AD 平分∠CAB 证得△ADC ≌△ADB 即可证得DB=DC ;根据DE AC ⊥证明△CDE ≌△BDF 得到DE DF =.
【详解】
∵DE AC ⊥,BF ∥AC,
∴EF ⊥BF ,∠CAB+∠ABF=180︒,
∴∠CED=∠F=90︒,
∵AD 是ABC 的角平分线,BC 平分ABF ∠,
∴∠DAB+∠DBA=
12
(∠CAB+∠ABF)=90︒, ∴∠ADB=90︒,即AD BC ⊥,③正确; ∴∠ADC=∠ADB=90︒,
∵AD 平分∠CAB,
∴∠CAD=∠BAD,
∵AD=AD,
∴△ADC ≌△ADB,
∴DB=DC ,②正确;
又∵∠CDE=∠BDF ,∠CED=∠F ,
∴△CDE ≌△BDF,
∴DE=DF ,①正确;
故选:D.
【点睛】
此题考查平行线的性质,三角形全等的判定及性质,角平分线的定义.
26.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.
A .1
B .1或3
C .1或7
D .3或7 【答案】C
【解析】
【分析】 分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.
【详解】
解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE , 由题意得:BP=2t=2,
所以t=1,
因为AB=CD ,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS 证得△BAP ≌△DCE ,
由题意得:AP=16-2t=2,
解得t=7.
所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.
故选C .
【点睛】
本题考查全等三角形的判定,判定方法有:ASA ,SAS ,AAS ,SSS ,HL .
27.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG
=( )
A .73
B .83
C .113
D .133
【答案】D
【解析】
【分析】
过点F作FD⊥AG,交AG的延长线于点D, 设BC=5x,利用AAS证出△FAD≌△AEB,从而用x表示出AD,BD,然后利用AAS证出△FDG≌△CBG,即可用x表示出BG,AG 从而求出结论.
【详解】
解:过点F作FD⊥AG,交AG的延长线于点D
∵
5
3
BC
CE
=
设BC=5x,则CE=3x
∴BE=BC+CE=8x
∵5
AB BC x
==,90
ABC
∠=︒,
∴∠BAC=∠BCA=45°
∴∠BCA=∠CAE+∠E=45°
由旋转可知∠EAF=90°,AF=EA
∴∠CAE+∠FAD=∠EAF-∠BAC=45°
∴∠FAD=∠E
在△FAD和△AEB中
90
FAD E
D ABE
AF EA
∠=∠
⎧
⎪
∠=∠=︒
⎨
⎪=
⎩
∴△FAD≌△AEB
∴AD=EB=8x,FD=AB
∴BD=AD-AB=3x,FD=CB
在△FDG和△CBG中
90
FDG CBG
FGD CGB
FD CB
∠=∠=︒
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△FDG≌△CBG
∴DG=BG=1 2
BD=
3
2
x
∴AG=AB+BG=
13
2
x
∴
13
13
2
33
2
x
AG
x
BG
==
故选D.
【点睛】
此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.
28.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.
有以下结论:
①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ
②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ
③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ
④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ
其中所有正确结论的序号是( )
A.②③B.③④C.②③④D.①②③④
【答案】C
【解析】
【分析】
分别在以上四种情况下以P为圆心,PQ的长度为半径画弧,观察弧与直线AM的交点即为Q点,作出PAQ
∆后可得答案.
【详解】
如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.
如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.
如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.
如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.
综上:②③④正确.
故选C .
【点睛】
本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.
29.如图,在△ABC中,AB=AC,高BD,CE交于点O,AO交BC于点F,则图中共有全等三角形()
A.8对B.7对C.6对D.5对
【答案】B
【解析】
【分析】
易证△ABC是关于AF对称的图形,其中的小三角形也关于AF对称,共可找出7对三角形.【详解】
全等的三角形有:①△AFB≌△AFC;②△CEB≌△BDC;③△AEO≌△ADO;
④△EOB≌△DOC;⑤△OBF≌△O FC;⑥△AOB≌△AOC;⑦△AEC≌△ADB
证明①△AFB≌△AFC
∵AB=AC,CE⊥AB,BD⊥AC
又∵
11
22
ABC
S AB CE AC BD
==
∴CE=BD
∴在Rt△BCE和Rt△CBD中
BC BC
CE BD
=
⎧
⎨
=
⎩
∴△BCE≌△CBD
∴BE=CD,∴AE=AD
在Rt△AEO和Rt△ADO中
AE AD
AO AO
=
⎧
⎨
=
⎩
∴△AEO≌△ADO
∴∠EOD=∠DOA
在△BAF和△CAF中
AB AC
BAF CAF
AF AF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△BAF≌△CAF,得证
其余全等证明过程类似
故选:B。