人教版物理高一下册 圆周运动章末训练(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第六章 圆周运动易错题培优(难)
1.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。
则下列说法正确的是( )
A .当ω=2rad/s 时,T 3+1)N
B .当ω=2rad/s 时,T =4N
C .当ω=4rad/s 时,T =16N
D .当ω=4rad/s 时,细绳与竖直方向间夹角
大于45° 【答案】ACD 【解析】 【分析】 【详解】
当小球对圆锥面恰好没有压力时,设角速度为0ω,则有
cos T mg θ=
2
0sin sin T m l θωθ=
解得
053
2
rad/s 3
ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则
cos sin T N mg θθ+=
2sin cos sin T N m l θθωθ-=
代入数据整理得
(531)N T =
A 正确,
B 错误;
CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则
cos T mg α= 2sin sin T m l αωα=
解得
16N T =,o 5
arccos 458
α=>
CD 正确。
故选ACD 。
2.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )
A .a 、b 所受的摩擦力始终相等
B .b 比a 先达到最大静摩擦力
C .当2kg
L
ω=a 刚要开始滑动 D .当23kg
L
ω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】
AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即
kmg +F =mω2•2L ①
而a 受力为
f′-F =2mω2L ②
联立①②得
f′=4mω2L -kmg
综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有
2kmg+kmg =2mω2L +mω2•2L
解得
34kg
L
ω=
选项C 错误;
D. 当b 恰好达到最大静摩擦时
2
02kmg m r ω=⋅
解得
02kg
L
ω=
因为
32432kg kg kg
L L L >>
,则23kg
L
ω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
3.如图所示,一个竖直放置半径为R 的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是( )
A .小球在最高点时速度v gR
B .小球在最高点时速度v 由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大
C .当小球在水平直径上方运动时,小球对圆管内壁一定有压力
D .当小球在水平直径下方运动时,小球对圆管外壁一定有压力 【答案】BD 【解析】 【分析】 【详解】
A .小球恰好通过最高点时,小球在最高点的速度为零,选项A 错误;
B .在最高点时,若v gR <
2
v mg N m R
-=
可知速度越大,管壁对球的作用力越小; 若v gR >
2
v N mg m R
+=
可知速度越大,管壁对球的弹力越大。
选项B 正确;
C .当小球在水平直径上方运动,恰好通过最高点时,小球对圆管内外壁均无作用力,选项C 错误;
D .当小球在水平直径下方运动时,小球受竖直向下的重力,要有指向圆心的向心力,则小球对圆管外壁一定有压力作用,选项D 正确。
故选BD 。
4.如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是( )
A .当23Kg
L
ω>
时,A 、B 相对于转盘会滑动 B 223Kg Kg
L L
ω<
C .ω在223Kg Kg
L L ω<<
B 所受摩擦力变大 D .ω223Kg Kg
L L
ω<
A 所受摩擦力不变 【答案】A
B 【解析】 【分析】 【详解】
A .当A 所受的摩擦力达到最大静摩擦力时,A 、
B 相对于转盘会滑动,对A 有
21Kmg T m L ω-=
对B 有
212Kmg T m L ω+=⋅
解得
123Kg
L
ω=
当23Kg
L
ω>
时,A 、B 相对于转盘会滑动,故A 正确; B .当B 达到最大静摩擦力时,绳子开始出现弹力
2
22Kmg m L ω=⋅
解得
22Kg
L
ω=
当
223Kg Kg
L L
ω<<
时,绳子具有弹力,故B 正确; C .当ω在02Kg
L
ω<<
范围内增大时,B 所受的摩擦力变大;当2Kg
L
ω=时,B 受到的摩擦力达到最大;当ω在223Kg Kg
L L
ω<<
范围内增大时,B 所受摩擦力不变,故C 错误;
D .当ω在203Kg
L
ω<<范围内增大时,A 所受摩擦力一直增大,故D 错误。
故选AB 。
5.如图甲所示,半径为R 、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内做圆周运动,当其运动到最高点A 时,小球受到的弹力F 与其过A 点速度平方(即v 2)的关系如图乙所示。
设细管内径略大于小球直径,则下列说法正确的是( )
A .当地的重力加速度大小为R b
B .该小球的质量为
a b
R C .当v 2=2b 时,小球在圆管的最高点受到的弹力大小为a D .当0≤v 2<b 时,小球在A 点对圆管的弹力方向竖直向上 【答案】BC 【解析】 【分析】 【详解】
AB .在最高点,根据牛顿第二定律
2
mv mg F R
-= 整理得
2
mv F mg R
=- 由乙图斜率、截距可知
a mg =, m a R b
=
整理得
a m R
b =
,b g R
= A 错误,B 正确;
C .由乙图的对称性可知,当v 2=2b 时
F a =-
即小球在圆管的最高点受到的弹力大小为a ,方向竖直向下,C 正确; D .当0≤v 2<b 时,小球在A 点对圆管的弹力方向竖直向下,D 错误。
故选BC 。
6.荡秋千是大家喜爱的一项体育活动。
某秋千的简化模型如图所示,长度均为L 的两根细绳下端拴一质量为m 的小球,上端拴在水平横杆上,小球静止时,细绳与竖直方向的夹角均为θ。
保持两绳处于伸直状态,将小球拉高H 后由静止释放,已知重力加速度为g ,忽略空气阻力及摩擦,以下判断正确的是( )
A .小球释放瞬间处于平衡状态
B .小球释放瞬间,每根细绳的拉力大小均为
2
cos 2cos L H
mg L θθ
- C .小球摆到最低点时,每根细绳的拉力大小均为2cos θ
mg
D .小球摆到最低点时,每根细绳的拉力大小均为2
cos 2cos mgH mg
L θθ
+ 【答案】BD 【解析】 【分析】 【详解】
AB .设每根绳的拉力大小为T ,小球释放瞬间,受力分析如图1,所受合力不为0 由于速度为0,则有
2cos cos 0T mg θα-=
如图2,由几何关系,有
cos cos cos L H
L θαθ
-=
联立得
2cos 2cos L H
T mg L θθ
-=
A 错误,
B 正确;
CD .小球摆到最低点时,图1中的0α=,此时速度满足
2112
mgH mv =
由牛顿第二定律得
2
12cos v T mg m R
θ'-=
其中cos R L θ= 联立解得
22cos 2cos mgH mg
T L θθ
'=
+
C 错误,
D 正确。
故选BD 。
7.一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方
2
L
处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则( )
A .小球的角速度突然增大
B .小球的线速度突然减小到零
C .小球的向心加速度突然增大
D .小球的向心加速度不变 【答案】AC 【解析】 【分析】 【详解】
由于悬线与钉子接触时小球在水平方向上不受力,故小球的线速度不能发生突变,由于做圆周运动的半径变为原来的一半,由v =ωr 知,角速度变为原来的两倍,A 正确,B 错误;由a =
2T
π
知,小球的向心加速度变为原来的两倍,C 正确,D 错误.
8.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R , 小球半径为r ,则下列说法中正确的是( )
A .小球通过最高点时的最小速度min v Rg =
B .小球通过最高点时的最小速度min 0v =
C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力
D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 【答案】BC 【解析】 【详解】
AB.因是在圆形管道内做圆周运动,所以在最高点时,内壁可以给小球沿半径向外的支持力,所以小球通过最高点时的最小速度可以为零.所以选项A 错误,B 正确;
C.小球在水平线ab 以下的管道中运动时,竖直向下的重力沿半径方向的分力沿半径方向向外,小球的向心力是沿半径向圆心的,小球与外壁一定会相互挤压,所以小球一定会受到外壁的作用力,内壁管壁对小球一定无作用力,所以选项C 正确;
D.小球在水平线ab 以上的管道中运动时,当速度较小时,重力沿半径方向上的分力大于或等于小球做圆周运动需要的向心力,此时小球与外壁不存在相互挤压,外侧管壁对小球没有作用力,选项D 错误.
9.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴'OO 转动。
三个物体与圆盘间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力。
三个物体与轴O 共线且OA OB BC r ===,现将三个物体用轻质细线相连,保持细线伸直且恰无张力。
使圆盘从静止开始转动,角速度极其缓慢地增大,则对于这个过程,下列说法正确的是( )
A .A 、
B 两个物体同时达到最大静摩擦力
B .B 、
C 两个物体所受的静摩擦力先增大后不变,A 物体所受的静摩擦力先增大后减小再增大 C .当g
r
μω>
时整体会发生滑动 D 2μμω<<
g
g
r
r
时,在ω增大的过程中,B 、C 间的拉力不断增大
【答案】BCD 【解析】 【分析】 【详解】
ABC .当圆盘转速增大时,静摩擦力提供向心力,三个物体的角速度相等,由2F m r ω=知,由于C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时
()21222m g m r μω=⋅
解得
12g
r
μω=
当C 的摩擦力达到最大静摩擦力之后,B 、C 间细线开始出现拉力,B 的摩擦力增大,达到最大静摩擦力后,A 、B 间细线开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 达到最大静摩擦力时,对C 有
()2
2222T m g m r μω+=⋅
对A 、B 整体有
2T mg μ=
解得
2g
r
μω=
当g
r
μω>
时整体会发生滑动,故A 错误,BC 正确;
D .当
2μμω<<
g
g
r
r
时,C 所受摩擦力已是最大静摩擦力,对C 分析有
224T mg mr μω+=
在ω增大的过程中,B 、C 间的拉力不断增大,故D 正确。
故选BCD 。
10.如图所示,b 球在水平面内做半径为R 的匀速圆周运动,BC 为圆周运动的直径,竖直平台与b 球运动轨迹相切于B 点且高度为R 。
当b 球运动到切点B 时,将a 球从切点正上方的A 点水平抛出,重力加速度大小为g ,从a 球水平抛出开始计时,为使b 球在运动一周的时间内与a 球相遇(a 球与水平面接触后不反弹),则下列说法正确的是( )
A .a 球在C 点与b 球相遇时,a 球的运动时间最短
B .a 球在
C 点与b 球相遇时,a 球的初始速度最小
C .若a 球在C 点与b 球相遇,则a 2gR
D .若a 球在C 点与b 球相遇,则b 2R
g
【答案】C 【解析】 【分析】 【详解】
A .平抛时间只取决于竖直高度,高度 R 不变,时间均为2R
t g
=A 错误。
BC .平抛的初速度为
x v t
=
时间相等,在C 点相遇时,水平位移最大
max 2x R =
则初始速度最大为:
max 2
2 R
v gR
t
==
故B错误,C正确。
D.在C点相遇时,b球运动半个周期,故b球做匀速圆周运动的周期为
2
22
b R
T t
g
==
故D错误。
故选C。
11.如图所示,放于竖直面内的光滑金属细圆环半径为R,质量为m的带孔小球穿在环上,同时有一长为R的细绳一端系于球上,另一端系于圆环最低点,绳上的最大拉力为
2mg,当圆环以角速度ω绕竖直直径转动,且细绳伸直时,则ω不可能
...为()
A.2g
R
B.2
g
R
C.
6g
R
D.
7g
R
【答案】D
【解析】
【分析】
【详解】
因为圆环光滑,所以小球受到重力、环对球的弹力、绳子的拉力等三个力。
细绳要产生拉力,绳要处于拉伸状态,根据几何关系可知,此时细绳与竖直方向的夹角为60°,如图所示
当圆环旋转时,小球绕竖直轴做圆周运动,向心力由三个力在水平方向的合力提供,其大小为 2F m r ω=
根据几何关系,其中
sin60r R ︒=
一定,所以当角速度越大时,所需要的向心力越大,绳子拉力越大,所以对应的临界条件是小球在此位置刚好不受拉力,此时角速度最小,需要的向心力最小,对小球进行受力分析得
min tan60F mg ︒=
即
2min tan60sin60mg m R ω︒︒=
解得
min 2g R
ω=
当绳子的拉力达到最大时,角速度达到最大, m max N ax 606sin sin 0F T F ︒=+︒
N max cos cos 6060T mg F =︒︒+
可得
max 33g F m =
同理可知,最大角速度为
max 6g R ω=
则7g R 不在26g g R R
ω≤≤范围内,故选D 。
12.如图所示为某一传动机构中两个匀速转动的相互咬合的齿轮,a 、b 、c 、d 四点均在齿轮上。
a 、b 、c 、d 四个点中角速度ω与其半径r 成反比的两个点是( )
A .a 、b
B .b 、c
C .b 、d
D .a 、d
【答案】B
【解析】
【分析】
【详解】
a 、
b 同轴转动,
c 、
d 同轴转动,角速度相同,b 、c 紧密咬合的齿轮是同缘传动,边缘点线速度相等,根据v =ωr 得b 、c 两点角速度ω与其半径r 成反比,选项B 正确,ACD 错误。
故选B 。
13.如图所示,转台上固定有一长为4L 的水平光滑细杆,两个中心有孔的小球A 、B 从细杆穿过并用原长为L 的轻弹簧连接起来,小球A 、B 的质量分别为3m 、2m 。
竖直转轴处于转台及细杆的中心轴线上,当转台绕转轴匀速转动时( )
A .小球A 、
B 受到的向心力之比为3:2
B .当轻弹簧长度变为2L 时,小球A 做圆周运动的半径为1.5L
C .当轻弹簧长度变为3L 时,转台转动的角速度为ω,则弹簧的劲度系数为1.8mω²
D .如果角速度逐渐增大,小球A 先接触转台边沿
【答案】C
【解析】
【分析】
【详解】
A .由于弹簧的拉力提供小球做圆周运动的向心力,弹簧对两个小球的拉力相等,因此两个小球的向心力相等,A 错误;
B .由于向心力相等,因此
221232m r m r ωω=
而轻弹簧长度变为2L 时
122r r L +=
可得
10.8r L =,2 1.2r L =
当轻弹簧长度变为2L 时,小球A 做圆周运动的半径为0.8L ,B 错误;
C .当长度为3L 时,即
123r r L ''+=
可得
1 1.2r L '=
此时弹簧的弹力提供A 球做圆周运动的向心力,则
2(3)3 1.2k L L m L ω-=⨯
整理得
21.8k m ω=
C 正确;
D .由于B 球的轨道半径总比A 球的大,因此B 球先接触转台边沿,D 错误。
故选C 。
14.在粗糙水平桌面上,长为l=0.2m 的细绳一端系一质量为m=2kg 的小球,手握住细绳另一端O 点在水平面上做匀速圆周运动,小球也随手的运动做匀速圆周运动。
细绳始终与桌面保持水平,O 点做圆周运动的半径为r=0.15m ,小球与桌面的动摩擦因数为=0.6μ,210m/s g =。
当细绳与O 点做圆周运动的轨迹相切时,则下列说法正确的是(
)
A .小球做圆周运动的向心力大小为6N
B .O 点做圆周运动的角速度为42rad/s
C .小球做圆周运动的线速度为22m/s
D .小球做圆周运动的轨道半径为1
8m
【答案】B
【解析】
【分析】
【详解】
AD .小球做圆周运动的半径如图
根据几何关系有
220.25m R r l =+=
则有
tan r
l θ=
解得
37θ︒=
正交分解
sin T mg θμ=
cos T F θ=向
两式相比解得 0.62
10N 16N 3tan 374
F mg μ︒⨯⨯=
==向 故AD 错误; B .小球和O 点转动的角速度相同,根据
2F m R ω=向
可知
16rad/s 42rad/s 20.25
m F R ω=
==⨯向 故B 正确;
C .小球做圆周运动的线速度 420.25m/s 2m/s v R ω==⨯=
故C 错误。
故选B 。
15.如图所示,一根轻杆,在其B 点系上一根细线,细线长为R,在细线下端连上一质量为 m 小球.以轻杆的A 点为顶点,使轻杆旋转起来,其B 点在水平面内做匀速圆周运动,轻杆的轨迹为一个母线长为L 的圆锥,轻杆与中心轴AO 间的夹角为α.同时小球在细线的约束下开始做圆周运动,轻杆旋转的角速度为ω,小球稳定后,细线与轻杆间的夹角β = 2α.重力加速度用g 表示,则( )
A .细线对小球的拉カ为mg /sina
B .小球做圆周运动的周期为π/ω
C .小球做圆周运动的线速度与角速度的乘积为gtan2a
D .小球做圆周运动的线速度与角速度的比值为(L+R)sina
【答案】D
【解析】
【分析】
【详解】
细线的拉力满足cos F mg α=,得cos mg F α
=,选项A 错误;小球达到稳定状态后做匀速
圆周运动,其周期与轻杆旋转的周期相同,周期2T πω=的
,选项B 错误;小球做圆周运
动,根据题意有tan(2)mg mv ααω-=得,小球的线速度与角速度的乘积是tan v g ωα=,选项C 错误;小球做圆周运动的线速度与角速度的比值即是半径,根据题意得()sin r L R α=+,选项D 正确.
综上所述本题答案是:D。